3,654 research outputs found

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    Mesh-Mon: a Monitoring and Management System for Wireless Mesh Networks

    Get PDF
    A mesh network is a network of wireless routers that employ multi-hop routing and can be used to provide network access for mobile clients. Mobile mesh networks can be deployed rapidly to provide an alternate communication infrastructure for emergency response operations in areas with limited or damaged infrastructure. In this dissertation, we present Dart-Mesh: a Linux-based layer-3 dual-radio two-tiered mesh network that provides complete 802.11b coverage in the Sudikoff Lab for Computer Science at Dartmouth College. We faced several challenges in building, testing, monitoring and managing this network. These challenges motivated us to design and implement Mesh-Mon, a network monitoring system to aid system administrators in the management of a mobile mesh network. Mesh-Mon is a scalable, distributed and decentralized management system in which mesh nodes cooperate in a proactive manner to help detect, diagnose and resolve network problems automatically. Mesh-Mon is independent of the routing protocol used by the mesh routing layer and can function even if the routing protocol fails. We demonstrate this feature by running Mesh-Mon on two versions of Dart-Mesh, one running on AODV (a reactive mesh routing protocol) and the second running on OLSR (a proactive mesh routing protocol) in separate experiments. Mobility can cause links to break, leading to disconnected partitions. We identify critical nodes in the network, whose failure may cause a partition. We introduce two new metrics based on social-network analysis: the Localized Bridging Centrality (LBC) metric and the Localized Load-aware Bridging Centrality (LLBC) metric, that can identify critical nodes efficiently and in a fully distributed manner. We run a monitoring component on client nodes, called Mesh-Mon-Ami, which also assists Mesh-Mon nodes in the dissemination of management information between physically disconnected partitions, by acting as carriers for management data. We conclude, from our experimental evaluation on our 16-node Dart-Mesh testbed, that our system solves several management challenges in a scalable manner, and is a useful and effective tool for monitoring and managing real-world mesh networks

    Development of a Remotely Accessible Wireless Testbed for Performance Evaluation of AMI Related Protocols

    Get PDF
    Although smart meters are deployed in many countries, the data collection process from smart meters in Smart Grid (SG) still has some challenges related to consumer privacy that needs to be addressed. Referred to as Advanced Metering Infrastructure (AMI), the data collected and transmitted through the AMI can leak sensitive information about the consumers if it is sent as a plaintext. While many solutions have been proposed in the past, the deployment of these solutions in real-life was not possible since the actual AMIs were not accessible to researchers. Therefore, a lot of solutions relied on simulations which may not be able to capture the real performance of these solutions. In this thesis, two 802.11s wireless mesh-based SG AMI network testbeds are developed with Beaglebone Black and Raspberry Pi 3 boards to provide a baseline for the simulations. The Raspberry Pi 3 testbed is also configured to be remotely accessible

    On Reliability of Smart Grid Neighborhood Area Networks

    Get PDF
    With the integration of the advanced computing and communication technologies, smart grid system is dedicated to enhance the efficiency and the reliability of future power systems greatly through renewable energy resources, as well as distributed communication intelligence and demand response. Along with advanced features of smart grid, the reliability of smart grid communication system emerges to be a critical issue, since millions of smart devices are interconnected through communication networks throughout critical power facilities, which has an immediate and direct impact on the reliability of the entire power infrastructure. In this paper, we present a comprehensive survey of reliability issues posted by the smart grid with a focus on communications in support of neighborhood area networks (NAN). Specifically, we focus on network architecture, reliability requirements and challenges of both communication networks and systems, secure countermeasures, and case studies in smart grid NAN. We aim to provide a deep understanding of reliability challenges and effective solutions toward reliability issues in smart grid NAN

    Resource Efficient Advanced Metering Infrastructure Model

    Get PDF
    Advanced Metering Infrastructure (AMI) enables two-way communication between smart devices and utility control centers. This involves remote monitoring and control of energy consumption as well as other parameters in the electrical power network in real time. However, increasing technologies in AMI due to huge deployment of smart meters, integration of devices and application of sensors, demand a strong architectural model with the best network topology to guarantee efficient usage of network resources with minimal latency. In this work, a resource efficient multi-hop network architecture is proposed using hybrid media access protocols. The architecture combines queuing and random-access protocol to achieve optimal network performance. Numerical results show that the probability of delay incurred by an arbitrary smart meter depends on the mean and distribution of the queue switch over a period. It is also observed that for a single queued system, the throughput performance is equal to the existing hybrid method. As the number of smart meters increases to 500, the throughput of the proposed method improves by 10% compared to the existing method. Likewise, as the number of smart meters increases to 500, the delay reduced by 15% compared to the existing method. Keywords: Advanced Metering Infrastructure; hybrid media access protocols; Smart Meter; Smart Grid; Power Network

    Real-time Monitoring of Low Voltage Grids using Adaptive Smart Meter Data Collection

    Get PDF
    • …
    corecore