1,200 research outputs found

    Template Generation - A Graph Profiling Algorithm

    Get PDF
    The availability of high-level design entry tooling is crucial for the viability of any reconfigurable SoC architecture. This paper presents a template generation algorithm. The objective of template generation step is to extract functional equivalent structures, i.e. templates, from a control data flow graph. By profiling the graph, the algorithm generates all the possible templates and the corresponding matches. Using unique serial numbers and circle numbers, the algorithm can find all distinct templates with multiple outputs. A new type of graph (hydragraph) that can cope with multiple outputs is introduced. The generated templates pepresented by the hydragraph are not limited in shapes, i.e., we can find templates with multiple outputs or multiple sinks

    Design and Test Space Exploration of Transport-Triggered Architectures

    Get PDF
    This paper describes a new approach in the high level design and test of transport-triggered architectures (TTA), a special type of application specific instruction processors (ASIP). The proposed method introduces the test as an additional constraint, besides throughput and circuit area. The method, that calculates the testability of the system, helps the designer to assess the obtained architectures with respect to test, area and throughput in the early phase of the design and selects the most suitable one. In order to create the templated TTA, the ¿MOVE¿ framework has been addressed. The approach is validated with respect to the ¿Crypt¿ Unix applicatio

    Mapping for maximum performance on FPGA DSP blocks

    Get PDF
    The digital signal processing (DSP) blocks on modern field programmable gate arrays (FPGAs) are highly capable and support a variety of different datapath configurations. Unfortunately, inference in synthesis tools can fail to result in circuits that reach maximum DSP block throughput. We have developed a tool that maps graphs of add/sub/mult nodes to DSP blocks on Xilinx FPGAs, ensuring maximum throughput. This is done by delaying scheduling until after the graph has been partitioned onto DSP blocks and scheduled based on their pipeline structure, resulting in a throughput optimized implementation. Our tool prepares equivalent implementations in a variety of other methods, including high-level synthesis (HLS) for comparison. We show that the proposed approach offers an improvement in frequency of 100% over standard pipelined code, and 23% over Vivado HLS synthesis implementation, while retaining code portability, at the cost of a modest increase in logic resource usage

    Coarse-grained reconfigurable array architectures

    Get PDF
    Coarse-Grained Reconfigurable Array (CGRA) architectures accelerate the same inner loops that benefit from the high ILP support in VLIW architectures. By executing non-loop code on other cores, however, CGRAs can focus on such loops to execute them more efficiently. This chapter discusses the basic principles of CGRAs, and the wide range of design options available to a CGRA designer, covering a large number of existing CGRA designs. The impact of different options on flexibility, performance, and power-efficiency is discussed, as well as the need for compiler support. The ADRES CGRA design template is studied in more detail as a use case to illustrate the need for design space exploration, for compiler support and for the manual fine-tuning of source code
    corecore