70 research outputs found

    Call-By-Push-Value

    Get PDF
    Submitted for the degree of Doctor of PhilosophyCall-by-push-value (CBPV) is a new programming language paradigm, based on the slogan “a value is, a computation does”. We claim that CBPV provides the semantic primitives from which the call-by-value and call-by-name paradigms are built. The primary goal of the thesis is to present the evidence for this claim, which is found in a remarkably wide range of semantics: from operational semantics, in big-step form and in machine form, to denotational models using domains, possible worlds, continuations and games. In the first part of the thesis, we come to CBPV and its equational theory by looking critically at the call-by-value and call-by-name paradigms in the presence of general computational effects. We give a Felleisen/Friedman-style CK-machine semantics, which explains how CBPV can be understood in terms of push/pop instructions. In the second part we give simple CBPV models for printing, divergence, global store, errors, erratic choice and control effects, as well as for various combinations of these effects. We develop the store model into a possible world model for cell generation, and (following Steele) we develop the control model into a “jumping implementation” using a continuation language called Jump-With-Argument (JWA). We present a pointer game model for CBPV, in the style of Hyland and Ong. We see that the game concepts of questioning and answering correspond to the CBPV concepts of forcing and producing respectively. We observe that this game semantics is closely related to the jumping implementation. In the third part of the thesis, we study the categorical semantics for the CBPV equational theory. We present and compare 3 approaches: models using strong monads, in the style of Moggi; models using value/producer structures, in the style of Power and Robinson; models using (strong) adjunctions. All the concrete models in the thesis are seen to be adjunction models

    Compositional software verification based on game semantics

    Get PDF
    One of the major challenges in computer science is to put programming on a firmer mathematical basis, in order to improve the correctness of computer programs. Automatic program verification is acknowledged to be a very hard problem, but current work is reaching the point where at least the foundationalÃ?· aspects of the problem can be addressed and it is becoming a part of industrial software development. This thesis presents a semantic framework for verifying safety properties of open sequ;ptial programs. The presentation is focused on an Algol-like programming language that embodies many of the core ingredients of imperative and functional languages and incorporates data abstraction in its syntax. Game semantics is used to obtain a compositional, incremental way of generating accurate models of programs. Model-checking is made possible by giving certain kinds of concrete automata-theoretic representations of the model. A data-abstraction refinement procedure is developed for model-checking safety properties of programs with infinite integer types. The procedure starts by model-checking the most abstract version of the program. If no counterexample, or a genuine one, is found, the procedure terminates. Otherwise, it uses a spurious counterexample to refine the abstraction for the next iteration. Abstraction refinement, assume-guarantee reasoning and the L* algorithm for learning regular languages are combined to yield a procedure for compositional verification. Construction of a global model is avoided using assume-guarantee reasoning and the L* algorithm, by learning assumptions for arbitrary subprograms. An implementation based on the FDR model checker for the CSP process algebra demonstrates practicality of the methods

    Compositional software verification based on game semantics

    Get PDF
    One of the major challenges in computer science is to put programming on a firmer mathematical basis, in order to improve the correctness of computer programs. Automatic program verification is acknowledged to be a very hard problem, but current work is reaching the point where at least the foundationalÃ?· aspects of the problem can be addressed and it is becoming a part of industrial software development. This thesis presents a semantic framework for verifying safety properties of open sequ;ptial programs. The presentation is focused on an Algol-like programming language that embodies many of the core ingredients of imperative and functional languages and incorporates data abstraction in its syntax. Game semantics is used to obtain a compositional, incremental way of generating accurate models of programs. Model-checking is made possible by giving certain kinds of concrete automata-theoretic representations of the model. A data-abstraction refinement procedure is developed for model-checking safety properties of programs with infinite integer types. The procedure starts by model-checking the most abstract version of the program. If no counterexample, or a genuine one, is found, the procedure terminates. Otherwise, it uses a spurious counterexample to refine the abstraction for the next iteration. Abstraction refinement, assume-guarantee reasoning and the L* algorithm for learning regular languages are combined to yield a procedure for compositional verification. Construction of a global model is avoided using assume-guarantee reasoning and the L* algorithm, by learning assumptions for arbitrary subprograms. An implementation based on the FDR model checker for the CSP process algebra demonstrates practicality of the methods.EThOS - Electronic Theses Online ServiceEngineering and Physical Sciences Research Council (Great Britain) (EPSRC)Overseas Research Students Award Scheme (ORSAS)GBUnited Kingdo

    Decidability and syntactic control of interference

    Get PDF
    AbstractWe investigate the decidability of observational equivalence and approximation in Reynolds’ “Syntactic Control of Interference” (SCI), a prototypical functional-imperative language in which covert interference between functions and their arguments is prevented by the use of an affine typing discipline.By associating denotations of terms in a fully abstract “relational” model of finitary basic SCI (due to Reddy) with multitape finite state automata, we show that observational approximation is not decidable (even at first order), but that observational equivalence is decidable for all terms.We then consider the same problems for basic SCI extended with non-local control in the form of backwards jumps. We show that both observational approximation and observational equivalence are decidable in this “observably sequential” version of the language by describing a fully abstract games model in which strategies are regular languages

    A Rational Deconstruction of Landin's SECD Machine with the J Operator

    Full text link
    Landin's SECD machine was the first abstract machine for applicative expressions, i.e., functional programs. Landin's J operator was the first control operator for functional languages, and was specified by an extension of the SECD machine. We present a family of evaluation functions corresponding to this extension of the SECD machine, using a series of elementary transformations (transformation into continu-ation-passing style (CPS) and defunctionalization, chiefly) and their left inverses (transformation into direct style and refunctionalization). To this end, we modernize the SECD machine into a bisimilar one that operates in lockstep with the original one but that (1) does not use a data stack and (2) uses the caller-save rather than the callee-save convention for environments. We also identify that the dump component of the SECD machine is managed in a callee-save way. The caller-save counterpart of the modernized SECD machine precisely corresponds to Thielecke's double-barrelled continuations and to Felleisen's encoding of J in terms of call/cc. We then variously characterize the J operator in terms of CPS and in terms of delimited-control operators in the CPS hierarchy. As a byproduct, we also present several reduction semantics for applicative expressions with the J operator, based on Curien's original calculus of explicit substitutions. These reduction semantics mechanically correspond to the modernized versions of the SECD machine and to the best of our knowledge, they provide the first syntactic theories of applicative expressions with the J operator
    • 

    corecore