
Reasoning about e�ectful programs
and evaluation order

Dylan McDermott

Homerton College

October 2019

This dissertation is submitted for the degree of Doctor of Philosophy

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/323054318?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Declaration

This dissertation is the result of my own work and includes nothing which is the
outcome of work done in collaboration except as declared in the Preface and speci�ed in
the text. It is not substantially the same as any that I have submitted, or am concurrently
submitting, for a degree or diploma or other quali�cation at the University of Cambridge or
any other University or similar institution except as declared in the Preface and speci�ed
in the text. I further state that no substantial part of my dissertation has already been
submitted, or is being concurrently submitted, for any such degree, diploma or other
quali�cation at the University of Cambridge or any other University or similar institution
except as declared in the Preface and speci�ed in the text. This dissertation does not exceed
the prescribed limit of 60 000 words.

Dylan McDermott
October 2019

Reasoning about e�ectful programs and evaluation order
Dylan McDermott

Abstract

Program transformations have various applications, such as in compiler optimizations.
These transformations are often e�ect-dependent: replacing one program with another
relies on some restriction on the side-e�ects of subprograms. For example, we cannot
eliminate a dead computation that raises an exception, or a duplicated computation that
prints to the screen. E�ect-dependent program transformations can be described formally
using e�ect systems, which annotate types with information about the side-e�ects of
expressions.

In this thesis, we extend previous work on e�ect systems and correctness of e�ect-
dependent transformations in two related directions.

First, we consider evaluation order. E�ect systems for call-by-value languages are well-
known, but are not sound for other evaluation orders. We describe sound and precise e�ect
systems for various evaluation orders, including call-by-name. We also describe an e�ect
system for Levy’s call-by-push-value, and show that this subsumes those for call-by-value
and call-by-name. This naturally leads us to consider e�ect-dependent transformations
that replace one evaluation order with another. We show how to use the call-by-push-value
e�ect system to prove the correctness of transformations that replace call-by-value with
call-by-name, using an argument based on logical relations. Finally, we extend call-by-
push-value to additionally capture call-by-need. We use our extension to show a classic
example of a relationship between evaluation orders: if the side-e�ects are restricted to (at
most) nontermination, then call-by-name is equivalent to call-by-need.

The second direction we consider is non-invertible transformations. A program trans-
formation is non-invertible if only one direction is correct. Such transformations arise,
for example, when considering unde�ned behaviour, nondeterminism, or concurrency.
We present a general framework for verifying noninvertible e�ect-dependent transfor-
mations, based on our e�ect system for call-by-push-value. The framework includes a
non-symmetric notion of correctness for e�ect-dependent transformations, and a deno-
tational semantics based on order-enriched category theory that can be used to prove
correctness.

Acknowledgements

Most importantly, I thank Alan Mycroft for his enthusiastic supervision during my
PhD. We had many useful discussions about a wide range of topics, and he provided a lot
encouragement, and advice on how to write papers.

I also thank all of the people who I had helpful technical discussions with, including
Paul Downen, Paul Blain Levy, Martin Hyland, Dominic Orchard, Tomas Petricek, Sam
Staton, and Tarmo Uustalu. I’m particularly grateful to Ohad Kammar for collaboration
and many conversations about category theory and denotational semantics.

My friends and colleagues at the Computer Lab deserve thanks for My o�ce-mate Ian
Orton provided many entertaining (and occasionally useful) distractions after 12:30pm,
along with Sam Ainsworth, Aurore Alcolei, Matthew Daggitt, Hugo Paquet and Philip Sav-
ille, Nathanael Arkor, Adam Ó Conghaile, Andrej Ivašković, Ben Simner, Shaun Steenkamp
and Dima Szamozvancev. And probably some others I forgot to mention. I also thank
the admin sta� at the CL, especially Megan Sammons for her tireless work organising
supervisions.

I’m grateful to Matthew Parkinson, Dimitrios Vytiniotis and others at MSR Cambridge
for an interesting internship project, discussions about PhDs, and a surprisingly large
amount of fun debugging garbage collectors.

Finally, I thank the EPSRC for funding this work.

Contents

1 Introduction 7
1.1 Approach . 8
1.2 Contributions . 10

2 E�ect systems and evaluation orders 11
2.1 E�ect algebras . 12
2.2 Simply-typed lambda calculus . 13
2.3 Call-by-value . 15
2.4 Moggi-style call-by-name . 17
2.5 Graded monadic metalanguage . 18
2.6 Levy-style call-by-name . 25
2.7 Graded call-by-push-value . 27
2.8 Related work . 42
2.9 Summary . 42

3 Call-by-value and call-by-name 43
3.1 Logical relations for graded call-by-push-value 44
3.2 Restricting side-e�ects in call-by-value and call-by-name 51
3.3 A Galois connection between call-by-value and call-by-name 51
3.4 Reasoning principle for call-by-value and call-by-name 56
3.5 Related work . 59
3.6 Summary . 60

4 Noninvertible program transformations 63
4.1 Examples of noninvertible transformations . 64
4.2 Order-enriched semantics of GCBPV . 68
4.3 Relating syntax and semantics . 88
4.4 Relating call-by-value and call-by-name, semantically 95
4.5 Related work . 98
4.6 Summary . 99

5 Call-by-need and extended call-by-push-value 101
5.1 Extended call-by-push-value . 102
5.2 Call-by-need translation . 109
5.3 Equivalence between call-by-name and call-by-need 112
5.4 An e�ect system for extended call-by-push-value 116
5.5 Related work . 118
5.6 Summary . 119

5

6 Contents

6 Conclusions 121
6.1 Future work . 122
6.2 Final remarks . 123

Bibliography 125

A Order-enriched category theory 133

B Additional proofs 137
B.1 Erasing coercions in GCBPV terms . 137
B.2 Logical relations and the free lifting . 142
B.3 Call-by-name and call-by-need . 144

Chapter 1

Introduction

At a high level, the question considered in this thesis is:

When is it correct to replace one program phrase with another?

Suppose we are writing an optimizing compiler. The optimizations are applied locally, replacing
expressions 41 (which form part of the program) with other expressions 42. Setting aside the
question of whether replacing 41 with 42 actually improves the program (we do not consider
this), we want to know whether it is valid to do so. The output of the compiler should not
do anything the original program could not, so it is valid to replace 41 with 42 when every
observable behaviour of 42 is an observable behaviour of 41. We develop techniques for formal
reasoning about programs that can be used to prove the validity of program transformations.

Of course, formal reasoning about programs is not a new area. To motivate the speci�c
problems we consider, we give three examples of common program transformations:

Old expression Replacement
Dead code elimination
(where G not free in 4′)

let G = 4 in 4′ 4′

Inlining (_G . 4) 4′ 4′[G ↦→4]
Common subexpression
elimination

let G1 = 4 in let G2 = 4 in let G = 4 in
4′ (G1, G2) 4′ (G, G)

These examples highlight three important aspects of program transformations:
• They are often e�ect-dependent. The �rst example is valid if 4 has no side-e�ects, but

not e.g. if 4 changes some state that 4′ then reads from, or if 4 raises an exception. (For
these examples, let represents eager evaluation, so �rst 4 is evaluated, and then 4′ is.)
The �rst example is therefore e�ect-dependent, which means applying it requires static
knowledge of the side-e�ects of the expressions involved. The wide array of side-e�ects
available in practical languages means that a majority of the transformations we would
like to perform are e�ect-dependent. We therefore focus on verifying e�ect-dependent
transformations throughout this thesis, continuing a long line of work started by Tolmach
[95] and Benton et al. [12].

• They often depend on evaluation order. Consider the second example. This is clearly valid
in call-by-name languages (it is just V-reduction), even with arbitrary side-e�ects. It is not
in general valid in call-by-value languages. We cannot consider program transformations

7

8 Chapter 1. Introduction

without thinking about evaluation order. Even worse, the side-e�ects of expressions
depend on evaluation order, so we cannot validate any e�ect-dependent transformations
without considering evaluation order. Previous work on e�ect-dependent transformations
has mostly considered only a single evaluation order (usually call-by-value). We focus
on capturing a range of evaluation orders. This aspect also suggests another useful class
of program transformations: those that replace one evaluation order with another, such
as call-by-value with call-by-name.

• They are often noninvertible. One way to justify the validity of the third example (or in
general, any program transformation) is to show that both sides have the same semantics.
This is the method normally used, but it is unsuitable for many examples. Consider the
third example, and suppose that the only side-e�ect of 4 is to make nondeterministic
choices internally. We could allow the compiler to make nondeterministic choices
statically, by replacing the expression (41 or 42) with 41 or with 42. If this is the case,
then we can replace the expression on the left of the example, which makes the choices
in 4 twice, with the one on the right, even though it does not have the same semantics.
Program transformations are in general noninvertible: only one direction is valid.

This thesis constructs a general framework for proving the validity of program transformations
with all three of these aspects.

1.1 Approach

We have stated our aim, now we explain the approach that we take. Throughout, we express
program transformations inside some intermediate language that we construct for this pur-
pose. Given an expression that we want to transform, the �rst step is to translate it into our
intermediate language of choice. We then reason about the translation of the expression. The
intermediate languages we use in this thesis (GCBPV in Section 2.7, ECBPV in Section 5.1) are
based on Levy’s [56] call-by-push-value calculus (CBPV). (We use 4 for expressions in source
languages, and " for terms in intermediate languages, so each expression 4 can be translated
into a term " .)

Using intermediate languages in this way has several advantages. They can be designed
speci�cally for validating program transformations, ignoring considerations that apply to
source languages (we do not need to write programs directly in intermediate languages, be-
cause intermediate-language programs are constructed by the translations). In particular, the
intermediate language can be close to the denotational semantics. (For CBPV, several side-
e�ects have simpler models than e.g. for monadic intermediate languages [78]. This is one of
the reasons why CBPV is useful for verifying program transformations.)

However, the main advantage of intermediate languages is that we can design them so that
evaluation order is irrelevant (for a given intermediate-language program, every evaluation
order gives the same behaviour). The evaluation order of the source language is encoded in
the intermediate language programs (in the syntax) by the translation. We use intermediate
languages that capture several evaluation orders. CBPV and the variants we use capture
both call-by-value and call-by-name, so for every source-language expression 4 we have two
intermediate-language terms: a call-by-value translation L4 Mv and a call-by-name translation
L4 Mn. (We also have other translations in Chapters 2 and 5.) Encoding evaluation orders inside
programs in this way allows us to consider transformations that replace one evaluation order
with another inside a single expression, since they really can just transform the syntax of
the program. There is no change in the semantics of the intermediate language itself. For

1.1. Approach 9

call-by-value and call-by-name, we relate the behaviours of L4 Mv and L4 Mn, which are terms in
the same language.

We use e�ect systems [63] to enable e�ect-dependent transformations, following previous
work. E�ect systems re�ne type systems so that they statically (over-)estimate the side-
e�ects of expressions. (We do not attempt to de�ne1 side-e�ect precisely, but we use a broad
interpretation, which includes at least nontermination, nondeterministic and probabilistic
choice, and exceptions.) E�ect systems are the traditional way of working with e�ect-dependent
transformations. They are a lightweight technique (requiring only minor modi�cations to
type systems), and are expressive (we can use them to restrict the order and the number of
times that side-e�ects are used, not just whether particular side-e�ects are used). They are
also amenable to mechanization (for example, type inference algorithms can be extended to
e�ect inference algorithms). We design several e�ect systems to account for the fact that the
side-e�ects of expressions depend on evaluation order.

We formally de�ne validity of program transformations in terms of contextual preorders 4ctx.
It is correct to replace" with # when" 4ctx # , which means that every observable behaviour
of # is an observable behaviour of " . For example, if the only side-e�ect is nondeterministic
choice, this might mean that every possible result of a program containing # is a possible result
of the same program but containing " instead: the transformation does not make the set of
possible results of a program larger. If we want to validate a transformation that replaces 4 with
4′ inside a call-by-value source language, we show that L4 Mv 4ctx L4′Mv. Contextual preorders
might not be symmetric in examples; this allows us to consider noninvertible transformations.

Comparing evaluation orders requires more work than just asking whether the contextual
preorder relates them. Everything we do is typed, and it only makes sense to ask if " 4ctx # if
" and # have the same type, but in general this is not the case if " and # are two di�erent
translations of the same expression. Call-by-name functions take (thunked) computations as
arguments, call-by-value functions take values as arguments (the distinction is important in
CBPV), so if 4 is a function, it does not make sense to replace the call-by-value translation
L4 Mv with the call-by-name translation L4 Mn. To �x this, we need to add some extra glue to the
transformations. To pass a call-by-name argument to a call-by-value function it needs to be
evaluated �rst; to pass a call-by-value argument to a call-by-name function we need to convert
it into a trivial computation. To compare call-by-value and call-by-name, we therefore construct
maps between the two evaluation orders, and compose these with the two translations (this is
similar to the technique used by Reynolds [89] to relate direct and continuation semantics).
Other comparisons between evaluation orders require similar considerations.

We de�ne contextual preorders in terms of inequational theories, which are speci�ed by
axioms characterizing the constructs in the intermediate language. These axioms include V-
and [-laws, and also laws capturing the behaviour of the side-e�ects, for example, associativity
of nondeterministic choice, or that two reads from the same location can be merged. Di�erent
axioms are used for di�erent side-e�ects. We prefer inequational theories to e.g. operational
semantics for two reasons: theories allow us to apply inequations under lambdas (which is
important because we mainly consider open terms), and they allow uniformly specifying
various side-e�ects (e.g. the usual way of specifying operational semantics for global state is to
carry around an extra state parameter; this is not required for inequational theories).

To prove instances of contextual preorders, and hence to prove the validity of program
transformations, we employ two di�erent techniques. The �rst is to use logical relations on

1The best we can do is cheat by saying that a side-e�ect is roughly anything that we can capture in the
languages we use. (This includes the usual examples.) A proper de�nition could be along the lines of Sabry [91]: a
side-e�ect is anything that breaks equivalences between evaluation orders. (Though unlike Sabry we do not treat
divergence and errors as special cases.)

10 Chapter 1. Introduction

the syntax (type-indexed families of binary relations on terms). These lie somewhere between
inequational theories and contextual preorders. We construct them so that they relate more
pairs of terms than the inequational theory (in most cases, the program transformations we
consider are not instances of the inequational theory), and also so that they only relate " to #
when " 4ctx # (which means we can actually use them to validate program transformations).
We use logical relations to relate call-by-value and call-by-name executions of expressions in
Chapter 3. However, they turn out to be quite cumbersome to use. We therefore prefer the
second technique, which is to use denotational semantics.

We de�ne a categorical semantics of GCBPV in Chapter 4, and use it to verify noninvertible
program transformations. The semantics allows for models in various categories, which allows
us to model as wide a range of side-e�ects as possible. The categories we use are order-enriched,
which enables us to reason about noninvertible transformations: to show " 4ctx # holds, we
show È"É v È#É, where v is part of the data of the model.

When we relate call-by-name and call-by-need evaluation in Chapter 5 we are forced to
go back to logical relations on the syntax because we do not have a general call-by-need
denotational semantics. We actually need to use a more powerful notion of logical relation
than previously (Kripke logical relations of varying arity [39]), because of the extra di�culties
that call-by-need introduces.

Our framework for validating program transformations therefore has several components.
We have various source-language e�ect systems, one for each evaluation order we wish to
consider. We also have intermediate languages that capture all of these evaluation orders
via translations from source languages (L−Mv, L−Mn, etc.). We de�ne a notion of inequational
theory for each intermediate language, and use these to de�ne contextual preorders. Finally,
we also include machinery (logical relations and denotational semantics) for proving instances
of contextual preorders. Together, these components enable us to validate of all of the kinds
mentioned above.

1.2 Contributions
This thesis develops a framework for proving the correctness of e�ect-dependent program
transformations:

• We develop tools for formulating e�ect-dependent transformations for various evaluation
orders, including two forms of call-by-name (Chapter 2). This includes source-language
e�ect systems for each of the evaluation orders we consider, and an intermediate language
(GCBPV) we use for reasoning throughout most of this thesis.

• We establish a novel reasoning principle for relating call-by-value and call-by-name
(Chapter 3), which enables us to prove the validity of program transformations that
replace call-by-value with call-by-name, and vice versa. We technique we use to do this
is new, and we expect it to work more generally (to relate other evaluation orders).

• We develop machinery for proving the validity of noninvertible program transformations
(Chapter 4), including an order-enriched denotational semantics for GCBPV. We apply
this to examples including unde�ned behaviour, nondeterminism, and shared global
state.

• We extend GCBPV to additionally capture call-by-need evaluation (Chapter 5). This
extension enables us to give a new proof technique for relating evaluation orders. We
exemplify the technique by proving the classic result that call-by-name and call-by-need
are equivalent if the only side-e�ect is nontermination.

Chapter 2

E�ect systems and evaluation orders

We formalize e�ect-dependent program transformations using e�ect systems. The goal of an
e�ect system is to statically associate computations with e�ects Y, which abstractly represent
the side-e�ects the computation has. Hence by requiring computations to be associated with a
chosen e�ect Y, we can view e�ect systems as a way to restrict the side-e�ects of computations.

As noted in the introduction, di�erent expressions may have di�erent side-e�ects depending
on the evaluation order used. The e�ect system used must therefore re�ect the evaluation
order. Using a call-by-value e�ect system to analyse a call-by-name language could lead to
imprecise results (leading us to miss valid e�ect-dependent transformations), or worse, might
be unsound (leading us to incorrectly believe certain transformations are valid).

To reason about transformations that change the evaluation order it is useful to have a single
intermediate language that allows programs to express their evaluation order, rather than one
language for each evaluation order. Two such languages are Moggi’smonadic metalanguage [78]
and Levy’s call-by-push-value [56]. We can use these to reason about source languages with
a single evaluation order by translating from source to intermediate. Since valid changes in
evaluation order are also e�ect-dependent, we therefore also wish to de�ne e�ect systems for
intermediate languages.

This chapter serves two purposes. First, it provides a general introduction to e�ect systems.
In particular we explain e�ect algebras (Section 2.1), which provide the abstract notion of e�ect
we track, the well-known call-by-value e�ect system (Section 2.3), and the less well-known
e�ect system for the monadic metalanguage (Section 2.5). Second, it also makes two key
contributions:

• We describe e�ect systems for two di�erent forms of call-by-name (Sections 2.4 and 2.6).
These allow us to do e�ect-dependent reasoning in call-by-name languages. We contrast
the two forms of call-by-name in Section 2.6.

• We describe an e�ect system for call-by-push-value (Section 2.7), and show that transla-
tions from source languages into call-by-push-value respect the e�ect systems. We use
this call-by-push-value e�ect system as the basis for work in later chapters of this thesis.

Source and intermediate languages Before continuing, we clarify what we mean by source
and intermediate languages. If a language is intended primarily to be used for reasoning (e.g.
proving correctness of program transformations), then we call it an intermediate language.
In this chapter, the intermediate languages are the monadic metalanguage (Section 2.5) and
call-by-push-value (Section 2.7). We focus on making them easy to reason about (for example,
by ensuring that their e�ect systems are syntax-directed, and by making sequencing of side-
e�ecting computations explicit). Source languages are intended to more closely resemble

11

12 Chapter 2. E�ect systems and evaluation orders

programming languages (in particular, sequencing of computations is implicit as it is in ML),
and formal reasoning about source languages is intended to be done by translating source
programs into an intermediate language, and then reasoning in the intermediate language.
In this thesis, we concentrate mainly on the intermediate languages, and hence we keep the
source languages as small as possible (we only include booleans, unit type and function types).

2.1 E�ect algebras
An e�ect Y abstractly represents some collection of side-e�ects. E�ect systems statically assign
e�ects to program fragments; when the e�ect Y is assigned, this means the possible runtime
side-e�ects of the program fragment are restricted to Y. To do this, we require the e�ects to
have some extra structure, called an e�ect algebra1. There are various forms of e�ect algebra.
Commonly e�ects are assumed to form semilattices, but other structures, such as e�ectors [94]
or e�ect quantales [31] are also used. Here we follow Katsumata [45] and use preordered monoids.

De�nition 2.1.1 (Preordered monoid) A preordered monoid (E, ≤, ·, 1) consists of a monoid
(E, ·, 1) and a preorder ≤ on E, such that the binary operation · is monotone in each argument
separately. J

Preordered monoids have several advantages: they are simple, and they generalize the other
forms of e�ect algebra we have just mentioned (Katsumata postulates that e�ects always form
a preordered monoid). They can also be easily extended with additional data (such as iteration
operators for recursion).

The e�ects Y are elements of the set E. The sube�ecting relation ≤ provides a notion of
approximation of e�ects: Y ≤ Y′ means Y is more restrictive than Y′. The multiplication ·
represents sequencing of e�ects: Y ·Y′ is the e�ect of running a computation with e�ect Y
followed by a computation with e�ect Y′. Finally, the unit 1 is used for computations with no
side-e�ects. Each e�ect system is parameterized by the e�ect algebra, so we can instantiate an
e�ect system with di�erent e�ect algebras for di�erent use cases.

The simplest e�ect algebra is the trivial preordered monoid, in which E is a singleton
{★}. When instantiated with the trivial preordered monoid, e�ect systems do not track e�ect
information, and are the same as ordinary type systems. More interesting examples are Gi�ord-
style e�ect algebras, which are used for example by Lucassen and Gi�ord [63].

Example 2.1.2 Gi�ord-style e�ect algebras have the form (PΣ, ⊆,∪, ∅), where Σ is some set
of operations (e.g. Σ B {raise, get, put}), and PΣ is the powerset. In this case, e�ects Y ⊆ Σ
give the set of operations that a computation may use during its execution. For example, a
computation with e�ect {raise, get} may raise an exception or get the value of the state, but
does not change the value of the state. The sube�ecting relation ⊆ allows additional operations
(that are not used) to be included in the e�ect (this is useful to balance the two branches of
if-expressions). We can use a Gi�ord-style e�ect system to express e�ect-dependent program
transformations. For example, consider

let G = 4 in
let ~ = 4 in
(G,~)

let G = 4 in

(G, G)
1For the avoidance of doubt, these have nothing to do with e�ect algebras in quantum theory [22].

2.2. Simply-typed lambda calculus 13

If the e�ect of 4 is {raise, get}, then it is correct to replace the expression on the left with the
one on the right. However, if 4 uses put, this might not be the case. J

This example gives a may analysis: it allows overapproximation of e�ects. In general, if a
preordered monoid (E, ≤, ·, 1) describes a may analysis, then the preordered monoid (E, ≥, ·, 1)
(which is the same but with the opposite order) describes the corresponding must analysis that
allows under- instead of over-approximation.

Example 2.1.3 Consider a language with an operation flip that nondeterministically chooses
either true or false. We can use the preordered monoid (N+, ≤, ·, 1), where N+ is the set of
positive integers, · is the usual integer multiplication, and the unit is the integer 1, to statically
(over-)estimate the number of potential results of computations. The e�ect of flip would be the
integer 2. J

Example 2.1.4 Consider a language with global state, including operations get and put that
read from and write to the state. In general, to evaluate an expression we might have to supply
an initial state, but if put must be used before get, then we do not. We can determine whether
this is the case statically using a preordered monoid with underlying preorder {pf ≤ 1 ≤ gf}.
The e�ect pf means must set the value of the state, and does not get the value before setting it;
the unit 1 means does not get before setting the value, but may do neither; and gf means may
get the value �rst. The multiplication is de�ned by:

pf · Y = pf 1 · Y = Y gf · Y = gf

The e�ect of applying get is gf, and the e�ect of applying put is pf. Programs that have the
e�ect pf or the e�ect 1 do not require an initial state. For example, if 4′ has e�ect pf, then it is
correct to replace (4; 4′) with 4′. Even if 4 changes the state, it will be overwritten by 4′, and
hence will not change the behaviour of 4′. J

In some cases, it is useful to assume e�ect algebras with more structure than just a preordered
monoid. For example, for languages that include �xed points, we might assume an operator
(−)∗ that assigns to each e�ect Y ∈ E an e�ect Y∗ ∈ E of a recursive computation. Mycroft et al.
[80] discuss several cases in which we want additional structure. In this thesis, to keep the
discussion general, we mostly assume only a preordered monoid. We will occasionally require
E to have bounded binary joins:

De�nition 2.1.5 A partially ordered monoid is a preordered monoid (E, ≤, ·, 1) in which ≤ is
antisymmetric. An element Y′ ∈ E is an upper bound of Y1, Y2 ∈ E if Y1 ≤ Y′ and Y2 ≤ Y′. It is
the join of Y1 and Y2 if additionally Y′ ≤ Y′′ for all upper bounds Y′′. A partially ordered monoid
has bounded binary joins if for each pair of elements Y1, Y2 ∈ E, existence of an upper bound
implies the existence of a join Y1∨Y2. J

In this de�nition, we restrict to partial orders so that joins are unique. All of the above examples
are partially ordered monoids with bounded binary joins. Joins are also useful e.g. for e�ect
inference, but we do not discuss inference in this thesis.

2.2 Simply-typed lambda calculus
The source language we consider is based on the simply-typed lambda calculus. In later sections
of this chapter we consider various evaluation orders, and give e�ect systems that correspond to

14 Chapter 2. E�ect systems and evaluation orders

Γ ` G : g
if (G : g) ∈ Γ

Γ ` 4 : carop
Γ ` op 4 : arop Γ ` () : unit

Γ ` true : bool Γ ` false : bool
Γ ` 41 : bool Γ ` 42 : g Γ ` 43 : g

Γ ` if 41 then 42 else 43 : g

Γ, G : g ` 4 : g′

Γ ` _G :g . 4 : g → g′
Γ ` 41 : g → g′ Γ ` 42 : g

Γ ` 41 42 : g′

Figure 2.1: Source language type system

them. Here we give the syntax and type system of the source language without yet considering
how to track e�ects.

The syntax of source-language types g and expressions 4 is as follows:

g F unit | bool | g → g′

4 F G | op 4 | () | true | false | if 41 then 42 else 43 | _G :g . 4 | 41 42

Most of the syntax is standard. The particular choice of types is unimportant; we choose the
unit type, booleans and function types because we use them in examples.

We assume some set Σ of operations, ranged over by op. The purpose of these is to provide
side-e�ects. We could for example have operations get and put for interacting with global state,
or raise for raising exceptions. Each operation takes exactly one argument; hence the syntax
of expressions includes op 4 , which means apply the operation op to the argument 4 . We can
include nullary operations by using unit for the argument. If we had included products in the
syntax we could also have operations with more than one argument (we cannot get multiple
arguments by currying because of the restriction to ground types below). We do not give any
examples involving operations of more than one argument, so do not need to consider product
types here.

The operations op are generic e�ects [85]. Including operations in this way, rather than
for example just assuming an arbitrary collection of constants 2 , is useful when we consider
equivalences between evaluation orders (see Chapter 3).

To specify the type system, we assume an assignment of types for the operations op.
The ground types are unit and bool (i.e. types that do not include functions). We restrict the
operations to ground types (again this is useful for equivalences between evaluation orders).
We collect the data required to specify the type system into a notion of signature. Signatures
also include an e�ect algebra. This e�ect algebra is not used in this section, but is used in each
of our e�ect systems.

De�nition 2.2.1 (Signature) A (source-language) signature consists of the following data:
• A preordered monoid (E, ≤, ·, 1) of e�ects.
• A set Σ of operations.
• For each operation op ∈ Σ, ground types carop and arop, respectively called the coarity

and arity of op, and an e�ect e�op ∈ E. J

2.3. Call-by-value 15

Γ `v G : g & 1
if (G : g) ∈ Γ

Γ `v 4 : carop & Y
Γ `v op 4 : arop & Y ·e�op Γ `v () : unit & 1

Γ `v true : bool & 1 Γ `v false : bool & 1

Γ `v 41 : bool & Y Γ `v 42 : g & Y′ Γ `v 43 : g & Y′

Γ `v if 41 then 42 else 43 : g & Y ·Y′

Γ, G : g `v 4 : g′ & Y

Γ `v _G :g . 4 : g
Y−→ g′ & 1

Γ `v 41 : g
Y3−→ g′ & Y1 Γ `v 42 : g & Y2

Γ `v 41 42 : g′ & Y1 ·Y2 ·Y3

Γ `v 4 : g & Y
Γ `v 4 : g & Y′

if Y ≤ Y′

Figure 2.2: Call-by-value e�ect system

The coarity of an operation is the type of its argument; the arity is the type of its result.2 For
example, for global state storing a value of type bool, we would have an operation get with
coarity carget B unit and arity arget B bool, and an operation put with coarity bool and arity
unit. For binary nondeterministic choice we would have an operation flip with coarity unit
and arity bool, which nondeterministically chooses between true and false. (We can use this
to make one form of nondeterministic choice between two expressions 41, 42 of an arbitrary
type by writing if flip () then 41 else 42.)

Each operation op is also associated with the e�ect e�op of using it. One option would be
to use a Gi�ord-style e�ect algebra (Section 2.1), so that e�op B {op} for each op ∈ Σ, and the
preordered monoid is (PΣ, ⊆,∪, ∅). However, we allow other e�ect algebras to be used.

We assume a �xed signature to specify the type system. A typing context Γ is an ordered
list of (variable, type) pairs such that no variable appears more than once. We write � for the
empty typing context. The typing judgment Γ ` 4 : g is de�ned inductively by the rules in
Figure 2.1. Rules that add variables to typing contexts implicitly assume that those variables
are fresh. (This is the case for all of the typing rules in this thesis.)

2.3 Call-by-value

We augment the source language type system so that it tracks the e�ects of expressions. The
�rst e�ect system we present is well-known: it is for the traditional example of a call-by-value
source language. The call-by-value e�ect system consists of a typing judgment of the form
Γ `v 4 : g & Y, which assigns to each expression 4 an e�ect Y in addition to the type g .

2The reader may be concerned that these are the wrong way around, since the arity should specify the type
of the argument and the coarity the type of the result. However, generic e�ects with argument type g and result
type g ′ are in bijection with algebraic operations [85], which are g ′′-indexed families of maps from (g ′→ g ′′) to
(g → g ′′) satisfying certain conditions. When taking the algebraic operations view, the arity and coarity are the
correct way around. Our usage of the terms arity and coarity matches e.g. Katsumata [44].

16 Chapter 2. E�ect systems and evaluation orders

4
v
 4′

op 4 v
 op 4′

if true then 42 else 43
v
 42

if false then 42 else 43
v
 43

(_G :g . 4) E v
 4 [G ↦→E]

41
v
 4′1

if 41 then 42 else 43
v
 if 4′1 then 42 else 43

41
v
 4′1

41 42
v
 4′1 42

42
v
 4′2

(_G :g . 4) 42
v
 (_G :g . 4) 4′2

Figure 2.3: Call-by-value reduction relation

To add e�ects, we replace the syntax of types and expressions with the following:

g, g′ F unit | bool | g Y−→ g′

4 F G | op 4 | () | true | false | if 41 then 42 else 43 | _G :g . 4 | 41 42

The only di�erence with the previous syntax is that each function type is annotated with a
latent e�ect Y. The latent e�ect is the e�ect of applying the function.

We again assume a �xed source-language signature (De�nition 2.2.1) to specify the type
system. Since arities and coarities are required to be ground types, it does not matter that
the syntax of types has changed (the ground types are still unit and bool). Typing contexts Γ
are ordered lists of (variable, type) pairs without repetitions, as before. The typing judgment
Γ `v 4 : g & Y is de�ned inductively by the rules in Figure 2.2. For operations, we multiply the
e�ect of the argument by the e�ect of the operation itself (the argument is evaluated before
the operation is performed). Function application evaluates the function, then the argument,
and then the body of the function; hence the e�ect in the conclusion of the typing rule for
application is Y1 ·Y2 ·Y3. A di�erent evaluation order would require a di�erent e�ect here. The
�nal rule is sube�ecting, which allows e�ects to be overapproximated. The overapproximation
is necessary for programs that use if : we do not attempt to determine which branch will be
taken, so we require both branches to have the same e�ect.

We give a call-by-value operational semantics for the source language. It consists of a
small-step reduction relation v

 . The de�nition is straightforward: it is the smallest relation
closed under the rules in Figure 2.3. To specify V-reduction of functions, we use the following
syntax of values E , which form a subset of expressions:

E F () | true | false | _G :g . 4

Values are pure: if Γ`vE : g&Y for any e�ect Y, then Γ`vE : g&1. (The proof is a trivial induction
on the typing derivation.) We also use capture-avoiding substitution 4 [G ↦→E]. There are no
rules for reducing op E . To give a complete operational semantics to an instantiation of the
source language, one would augment the rules in the �gure to characterize the behaviour of the
operations, but we do not consider this here. (Though we do consider this for call-by-push-value;
see De�nition 2.7.4.)

Call-by-value reductions preserve the e�ect (and type) assigned by the call-by-value e�ect
system. (Recall that � is the empty typing context.)

Theorem 2.3.1 (Subject reduction for call-by-value) If � `v 4 : g & Y and 4 v
 4′ then

� `v 4′ : g & Y. J

2.4. Moggi-style call-by-name 17

Γ `moggi G : g & Y
if (G : g&Y) ∈ Γ

Γ `moggi 4 : carop & Y
Γ `moggi op 4 : arop & Y ·e�op Γ `moggi () : unit & 1

Γ `moggi true : bool & 1 Γ `moggi false : bool & 1

Γ `moggi 41 : bool & Y Γ `moggi 42 : g & Y′ Γ `moggi 43 : g & Y′

Γ `moggi if 41 then 42 else 43 : g & Y ·Y′

Γ, G : g&Y `moggi 4 : g′ & Y′

Γ `moggi _G :g&Y. 4 : g
Y,Y ′−−→ g′ & 1

Γ `moggi 41 : g
Y2,Y3−−−→ g′ & Y1 Γ `moggi 42 : g & Y2

Γ `moggi 41 42 : g′ & Y1 ·Y3

Γ `moggi 4 : g & Y
Γ `moggi 4 : g & Y′

if Y ≤ Y′

Figure 2.4: Call-by-name e�ect system

2.4 Moggi-style call-by-name
The e�ect system given in the previous section is not suitable for call-by-name evaluation.
This is because it assigns the e�ect 1 to each variable, but in call-by-name, variables may have
side-e�ects. Subject reduction does not hold in general if we use call-by-name reduction instead
of call-by-value.

In this section, we give an e�ect system for call-by-name. We refer to this as Moggi-style
call-by-name here because the e�ect system is partly based on Moggi’s monadic semantics
for call-by-name [78]. It is distinguished from Levy-style call-by-name (Section 2.6) in that
side-e�ects can occur at any type, rather than just at base types.3

Unlike the call-by-value e�ect system, a call-by-name e�ect system should not assign the
e�ect 1 to every variable. To assign the correct e�ects to variables, we change the notion of
typing context to also include e�ects. For Moggi-style call-by-name, a typing context is an
ordered list of triples of the form G : g&Y, where Y is the e�ect associated with the variable G .
The syntax is changed so that function types are annotated with the e�ect Y of the argument as
well as the latent e�ect Y′ of the function, and we also annotate lambdas with the e�ect of the
argument:

g, g′ F unit | bool | g Y,Y ′−−→ �

4 F 2 | G | () | true | false | if 41 then 42 else 43 | _G :g&Y. 4 | 41 42

A practical e�ect system would probably add e�ect polymorphism to this, so that each function
can be applied to arguments of various e�ects. The syntax of expressions 4 is the same as for
call-by-value.

The call-by-name e�ect system is parameterized by the same notion of signature (De�ni-
tion 2.2.1) as the other source-language type systems. The typing judgment Γ `moggi 4 : g & Y is
de�ned by the rules in Figure 2.4. Compared to the call-by-value e�ect system, only the rules

3Benton et al. [7] refer to Levy-style call-by-name as Algol-like.

18 Chapter 2. E�ect systems and evaluation orders

4
moggi
 4′

op 4
moggi
 op 4′

if true then 42 else 43
moggi
 42

if false then 42 else 43
moggi
 43

(_G :g&Y. 4) 4′
moggi
 4 [G ↦→4′]

41
moggi
 4′1

if 41 then 42 else 43
moggi
 if 4′1 then 42 else 43

41
moggi
 4′1

41 42
moggi
 4′1 42

Figure 2.5: Call-by-name reduction relation

for variables, lambda abstraction and application change. The rule for application requires the
e�ect Y2 of the argument to be the same as the annotation on the function type. The conclusion
of this rule does not mention the e�ect Y2, since the expression 42 is only evaluated if the
function uses its argument. If it does, the latent e�ect Y3 will re�ect this. The typing rule for
operations has not changed: operations still evaluate their arguments eagerly.

We also de�ne a call-by-name operational semantics, consisting of a small-step reduction
relation

moggi
 . Again the de�nition is straightforward; it is given in Figure 2.5. Call-by-name

reductions preserve e�ects.

Theorem 2.4.1 (Subject reduction for Moggi-style call-by-name) If �`moggi 4 : g & Y and

4
moggi
 4′ then � `moggi 4

′ : g & Y. J

2.5 Graded monadic metalanguage
So far, this chapter has given two source-language e�ect systems: one for call-by-value and one
for Moggi-style call-by-name. We now consider an intermediate language that captures both
of these evaluation orders, by making (side-e�ecting) computations into a �rst-class notion.

The intermediate language we describe is the graded monadic metalanguage (GMM), which
is essentially the monadic metalanguage [78]: it consists of a pure fragment together with a
type constructor that forms types of e�ectful computations. The primary di�erence is that the
type constructor is graded by the e�ect algebra. GMM is similar to languages described by
Katsumata [45] and by Gaboardi et al. [29].

The syntax of GMM types �, � and terms ", # is as follows:

�, � F 1 ", # F 2 | G
| unit | ()
| �1 ×�2 | ("1, "2) | fst" | snd"
| empty | case� " of {}
| �1 +�2 | inl�2" | inr�1" | case " of {inl G1. #1, inr G2. #2}
| �→ � | _G :�." | " #

| 〈Y〉� | op" | 〈"〉 | let 〈G〉 = " in # | coerceY≤Y ′"

We include a richer syntax of types than we do for source languages. The non-highlighted part
of the syntax is just the simply-typed lambda calculus, with base types 1, unit type, products,
empty type, sum types, and function types. GMM does not have general recursion built in (but

2.5. Graded monadic metalanguage 19

it can be added). The terms include constants 2 , and the eliminator case� " of {} of the empty
type. The constants 2 are intended to introduce elements of base types; for example, we could
have a base type nat of natural numbers and constants zero : nat and suc : nat→ nat for zero
and successor. They are not intended to provide side-e�ects (this is what the operations op
are for). Modulo constants, there are no closed terms of type empty. (This does not mean the
empty type is useless: there may still be closed terms of type 〈Y〉empty.) We sometimes omit
the type ascriptions (e.g. writing inl" instead of inl�2"). We also write _ for an arbitrary
fresh variable.

The highlighted part of the syntax concerns e�ectful computations. The type 〈Y〉� contains
computations that return results of type �, and have side-e�ects restricted to Y ∈ E. For
example, using a Gi�ord-style e�ect algebra (Example 2.1.2), computations " : 〈{raise, get}〉�
may use raise and get, but do not use the put operation. The type 〈Y〉� is the same as the
monadic type T� of Moggi’s language, except for the restriction on side-e�ects. We refer to
the family of type constructors 〈−〉 as the graded monad. The intention is that all side-e�ects
are encapsulated in the graded monad, including e.g. divergence.

The term op" is the application of the operation op to the argument " . The term 〈"〉
is a computation that immediately returns " , causing no side-e�ects (this is also commonly
written return"). Computations are sequenced using let 〈G〉 = " in # , which runs" , binds G
to the result (if any) and then runs # . (This is the same as" �= _G.# in Haskell.) The variable
G is bound inside # but not " . We emphasize that the evaluation order of let 〈- 〉 = " in # is
�xed: " is always evaluated eagerly. It is possible to express various evaluation orders in GMM
because computations are �rst-class. For example, it is possible to duplicate a computation by
passing it to a function. Computations with e�ect Y can be regarded as computations with a
less restrictive e�ect Y′ using coerceY≤Y ′ . This has the same purpose as the sube�ecting rule in
the above source-language e�ect systems. Sube�ecting in GMM is explicit so that the e�ect
system is syntax-directed.

As usual, we instantiate GMM with di�erent side-e�ects by choosing di�erent operations.
For example, de�ning bool B unit + unit, we could have the following (recall that the coarity
is the type of the argument of the operation, and the arity is the type of the output).

Operation op Coarity carop Arity arop E�ect e�op

raise unit empty {raise}
get unit bool {get}
put bool unit {put}

Again the arity and coarity of each operation are required to be ground types. In GMM, ground
types � are types that do not contain function types or the graded monad:

� F 1 | unit | �1 ×�2 | empty | �1 +�2

GMM is parameterized by the base types 1, operations, e�ect algebra and constants 2 .

De�nition 2.5.1 A GMM signature consists of the following data:
• A preordered monoid (E, ≤, ·, 1) of e�ects.
• A set B of base types.
• A type-indexed family of pairwise disjoint sets K� of constants of type �.
• A set Σ of operations.
• For each operation op ∈ Σ, ground types carop and arop, respectively called the coarity

and arity of op, and an e�ect e�op ∈ E. J

20 Chapter 2. E�ect systems and evaluation orders

Γ `mon 2 : �
if 2 ∈ K�

Γ `mon G : �
if (G : �) ∈ Γ

Γ `mon () : unit

Γ `mon "1 : �1 Γ `mon "2 : �2

Γ `mon ("1, "2) : �1 ×�2

Γ `mon " : �1 ×�2

Γ `mon fst" : �1

Γ `mon " : �1 ×�2

Γ `mon snd" : �2

Γ `mon " : empty

Γ `mon case� " of {} : �

Γ `mon " : �1

Γ `mon inl�2" : �1 +�2

Γ `mon " : �2

Γ `mon inr�1" : �1 +�2

Γ `mon " : �1 +�2 Γ, G1 : �1 `mon #1 : � Γ, G2 : �2 `mon #2 : �
Γ `mon case " of {inl G1. #1, inr G2. #2} : �

Γ, G : � `mon " : �
Γ `mon _G :�." : �→ �

Γ `mon " : �→ � Γ `mon # : �
Γ `mon " # : �

Γ `mon " : carop
Γ `mon op" : 〈Y〉arop

Γ `mon " : �
Γ `mon 〈"〉 : 〈1〉�

Γ `mon " : 〈Y〉� Γ, G : � `mon # : 〈Y′〉�
Γ `mon let 〈G〉 = " in # : 〈Y ·Y′〉�

Γ `mon " : 〈Y〉�
Γ `mon coerceY≤Y ′" : 〈Y′〉�

if Y ≤ Y′

Figure 2.6: GMM typing rules

We assume a �xed GMM signature for the rest of this section.
Typing contexts Γ are ordered lists of pairs of variable names and types such that each

variable appears at most once. The typing judgment has the form Γ `mon " : �. By contrast
with the above e�ect systems, it is not annotated with an extra e�ect: in GMM, e�ects only
appear inside types. The typing rules are given in Figure 2.6. Each of the rules that add variables
to the typing context implicitly assume the variable is fresh. The rules are syntax-directed,
so given a context Γ and term " , there is at most one type � such that Γ `mon " : �, and if
Γ `mon " : � holds then it has exactly one derivation.

The non-highlighted part consists of the standard typing rules of the simply-typed lambda
calculus. The rules for the graded monad are highlighted. For operations, we assume a pure
term " of type carop. In the source language e�ect systems, the arguments of operations are
computations, and the e�ect system re�ects the fact that they are eagerly evaluated. Here, if
we wish to use a computation " as an argument to an operation, it must be evaluated �rst. If
" has type 〈Y〉carop, we can do this by writing

let 〈G〉 = " in opG

which has type 〈Y ·e�op〉arop.

2.5. Graded monadic metalanguage 21

fst ("1, "2) ≡ "1©«
case inl�2" of
{inl G1. #1
, inr G2. #2}

ª®¬ ≡ #1 [G1 ↦→"]

(_G :�.") # ≡ " [G ↦→#]

snd ("1, "2) ≡ "2©«
case inr�1" of
{inl G1. #1
, inr G2. #2}

ª®¬ ≡ #2 [G2 ↦→"]

let 〈G〉 = 〈"〉 in # ≡ # [G ↦→"]

" ≡ ()
" ≡ case� # of {}
" ≡ _G :�." G

" ≡ let 〈G〉 = " in 〈G〉

" ≡ (fst", snd")

" [G ↦→#] ≡ ©«
case # of
{inl ~1. " [G ↦→ inl�2~1]
, inr~2. " [G ↦→ inr�1~2]}

ª®¬
let 〈~〉 = (let 〈G〉 = "1 in"2) in"3 ≡ let 〈G〉 = "1 inlet 〈~〉 = "2 in"3

coerceY1 ·Y2≤Y ′1 ·Y ′2 (let 〈G〉 = " in #) ≡ let 〈G〉 = coerceY1≤Y ′1 " in coerceY2≤Y ′2 #
coerceY≤Y " ≡ "

coerceY ′≤Y ′′ (coerceY≤Y ′") ≡ coerceY≤Y ′′"

Figure 2.7: Axioms of the GMM equational theory

Each of our other three highlighted rules corresponds to one part of the structure of the
e�ect algebra: we use 1 for returning a value, the binary operation · for sequencing two
computations, and the order ≤ for coercions from a more restrictive e�ect to a less restrictive
e�ect.

2.5.1 Equational theory

GMM is designed to prove validity of program transformations. We therefore require a notion
of contextual equivalence, which speci�es when it is correct to replace one program with another.
This is de�ned in terms of an equational theory (rather than an operational semantics). The
equational theory for GMM consists of a judgment of the form Γ `mon" ≡ # : �, which means
" and # both have type � in context Γ, and they have the same semantics. We sometimes
write this just as " ≡ # .

The axioms of the equational theory are listed in Figure 2.7. Since we relate well-typed
terms, each of the axioms should be read as assuming that both sides have the same type in
the same typing context (but not that they are closed). For example, the axiom " ≡ () holds
when Γ `mon " : unit. The necessary constraints can be derived by looking at the typing
rules (because they are syntax-directed). As usual, the non-highlighted part of the �gure is
standard from the simply-typed lambda calculus (it consists of the usual V- and [- laws), and the
highlighted part describes the behaviour of computations. Each of the axioms of the highlighted
part corresponds to one of the requirements in the de�nition of preordered monoid.

The �rst group of axioms consists of V-laws. The highlighted V-law states that sequenc-
ing can be eliminated if the �rst computation immediately returns a value. The constraints
necessary to ensure that both sides of the axiom have the same type are Γ `mon " : � and

22 Chapter 2. E�ect systems and evaluation orders

Γ, G : � `mon # : 〈Y〉�. When these hold both sides have the same type because of the left unit
law of the preordered monoid: 1·Y = Y.

The second group consists of one [-law for each of the type formers of GMM (excluding
base types). The highlighted axiom states that sequencing of computations can be added
without changing behaviour by returning the value of the variable G . It corresponds to the
right unit law Y ·1 = Y.

The third group contains the remaining axioms for computations. The �rst axiom states
that sequencing of computations is associative, and corresponds to associativity of ·. The
second states that coercion commutes with sequencing of computations. The two terms have
the same type because · is monotone. (A similar equation can be stated for commutativity of
coerce with the eliminator for sum types. This equation follows from the other axioms in the
�gure, so we do not need it as an additional axiom.) The �nal two axioms of the �gure allow
us to remove coercions that do not change the e�ect, and to combine adjacent coercions. They
correspond to re�exivity and transitivity of the preorder ≤.

In addition to the core axioms, we also close the equational theory under congruence. To
de�ne this, we use a notion of term context. A GMM term context C[] consists of a term with a
single hole (which we write as �):

C[] F � | (C[], "2) | ("1, C[]) | fstC[] | sndC[] | case� C[] of {}
| inl�2C[] | inr�1C[] | case C[] of {inl G1. #1, inr G2. #2}
| case " of {inl G1. C[], inr G2. #2} | case " of {inl G1. #1, inr G2. C[]}
| _G :�. C[] | C[] # | " C[]
| opC[] | 〈C[]〉 | let 〈G〉 = C[] in # | let 〈G〉 = " in C[] | coerceY≤Y ′ C[]

We write C["] for the term formed by replacing � with " . The term context may capture
some of the free variables of " : for example, if C[] is let 〈G〉 = " in 〈�〉 then C[(G,~)] is
let 〈G〉 = " in 〈(G,~)〉; in the latter term, only ~ is free.

This notion of term context is used in the de�nition of the GMM equational theory.

De�nition 2.5.2 We de�ne Γ `mon " ≡ # : � inductively by:
• Preorder: if Γ `mon " : � then Γ `mon " ≡ " : �, and if Γ `mon "1 ≡ "2 : � and
Γ `mon "2 ≡ "3 : � then Γ `mon "1 ≡ "3 : �.

• Congruence: if Γ `mon " ≡ # : � and both Γ′ `mon C["] : � and Γ′ `mon C[#] : � then
Γ′ `mon C["] ≡ C[#] : �.

• Axioms: If Γ `mon " : � and Γ `mon # : �, and " ≡ # is an instance of an axiom in
Figure 2.7, then Γ `mon " ≡ # : � and Γ `mon # ≡ " : �. J

For a �xed typing context Γ and type�, the equational theory is an equivalence relation on terms
of type� in context Γ. It is also closed under substitution: if G1 : �1, . . . , G= : �= `mon# ≡ # ′ : �,
and Γ `mon "8 ≡ "′8 : �8 for each 8 , then

Γ `mon # [G1 ↦→ "1, . . . , G= ↦→ "=] ≡ # ′[G1 ↦→ "′1, . . . , G= ↦→ "′=] : �

Two terms that are syntactically equal up to the placement of coercions are also usually related
by the equational theory. Given a term " , de�ne b" c to be the same as " but with all uses of
coerce deleted (for example, b_G :�. coerce1≤Y 〈G〉c = _G :�. 〈G〉).

Lemma 2.5.3 Suppose that the e�ect algebra is a partially ordered monoid with bounded
binary joins. Given two terms"1, "2 such that Γ `mon"1 : � and Γ `mon"2 : �, if b"1c = b"2c
then Γ `mon "1 ≡ "2 : �. J

2.5. Graded monadic metalanguage 23

LunitM B unit
LboolM B unit + unit

Lg
Y−→ g′M B Lg M → 〈Y〉Lg′M

L � M B �
LΓ, G : g M B LΓM, G : Lg M

LΓ `v G : g & 1M B 〈G〉
LΓ `v 4 : carop & Y M = "

LΓ `v op 4 : arop & Y ·e�opM = let 〈G〉 = " in opG

LΓ `v () : unit & 1M B 〈()〉

LΓ `v true : bool & 1M B 〈inlunit ()〉 LΓ `v false : bool & 1M B 〈inrunit ()〉

LΓ `v 41 : bool & Y M = "1 LΓ `v 42 : g & Y′M = "2 LΓ `v 43 : g & Y′M = "3

LΓ `v if 41 then 42 else 43 : g & Y ·Y′M B let 〈G〉 = "1 in case G of {inl _. "2, inr _. "3}

LΓ, G : g `v 4 : g′ & Y M = "

LΓ `v _G :g . 4 : g
Y−→ g′ & 1M B 〈_G :Lg M. "〉

LΓ `v 41 : g
Y3−→ g′ & Y1M = "1 LΓ `v 42 : g & Y2M = "2

LΓ `v 41 42 : g′ & Y1 ·Y2 ·Y3M B let 〈5 〉 = "1 in let 〈G〉 = "2 in 5 G

LΓ `v 4 : g & Y M = "

LΓ `v 4 : g & Y′M B coerceY≤Y ′"

Figure 2.8: Translation of call-by-value types (top left), contexts (top right), and typing deriva-
tions (bottom) into GMM.

A proof of a similar fact for our call-by-push-value e�ect system (Lemma 2.7.5) is given in
Appendix B.1, where we also conjecture a counterexample for an e�ect algebra that does not
have bounded binary joins. The proof for GMM is similar to the proof for call-by-push-value.

2.5.2 Translations into GMM

GMM captures both call-by-value and Moggi-style call-by-name via two translations (one for
each evaluation order) from source-language expressions 4 into GMM terms. They are based
on similar translations given by Moggi [77, 78], Wadler [98] and Benton et al. [7]. Translations
like these allow us to use intermediate languages to reason about source languages. Having
multiple evaluation-order-directed translations enables reasoning about changes in evaluation
order in the source language using the intermediate language.

In this section, we assume a source-language signature and GMM signature that are com-
patible. Recall that the source-language ground types are unit and bool. We translate these
into GMM ground types:

LunitM B unit LboolM B unit + unit

24 Chapter 2. E�ect systems and evaluation orders

(The two translations we give below agree on ground types with this de�nition.) We require
that both signatures have the same e�ect algebra, and that for each operation op in the source-
language signature: op is also included in the GMM signature; both signatures agree on
the e�ect of op; and if g and g′ are respectively the coarity and arity assigned to op by the
source-language signature, then Lg M and Lg′M are the coarity and arity assigned to op by the
GMM signature. We allow the GMM signature to contain additional operations, and place no
restrictions on base types or constants.

The �rst translation maps call-by-value source-language types g to GMM types Lg Mvmon
and call-by-value contexts Γ to GMM contexts LΓMvmon. It maps derivations of Γ `v 4 : g & Y to
GMM terms LΓ `v 4 : g & Y Mvmon. Since the call-by-value e�ect system is not syntax-directed,
derivations are not unique (there is a choice of where to use the sube�ecting rule), and di�erent
derivations are translated into syntactically di�erent GMM terms. The term LΓ `v 4 : g & Y Mvmon
is a computation with e�ect Y: in context LΓMvmon, it has type 〈Y〉Lg Mvmon. The de�nition of the
call-by-value translation is given in Figure 2.8, where we omit the sub- and superscripts. The
important part is the translation of functions. Source-language function types are translated
into GMM function types where the result is a computation (so may have side-e�ects), but the
argument is not. Function applications �rst evaluate the function itself, then the argument,
and then the function body (this matches the operational semantics in Figure 2.3).

Call-by-name types g and contexts Γ are translated into GMM types Lg Mmoggi
mon and contexts

LΓMmoggi
mon respectively. The translation of derivations of Γ `moggi 4 : g & Y has similar typing

to the call-by-value translation: LΓ `moggi 4 : g & Y Mmoggi
mon is a GMM term of type 〈Y〉Lg Mmoggi

mon
in context LΓMmoggi

mon . The de�nition of the call-by-name translation is in Figure 2.9. Many of
the cases are the same as for call-by-value. The key di�erences are for typing contexts and
functions. The translation of typing contexts uses the graded monad because variables have
side-e�ects. Similarly, arguments of functions have e�ects, and therefore are encapsulated in
the graded monad. The translation of a function application does not evaluate the argument
immediately; instead, the computation is passed to the function, and is evaluated each time the
function uses its argument (matching Figure 2.5).

The call-by-value and Moggi-style call-by-name translations have the desired typing:

Lemma 2.5.4
1. If " is the call-by-value translation of a derivation of Γ `v 4 : g & Y, then

LΓMvmon `mon " : 〈Y〉Lg Mvmon

2. If " is the call-by-name translation of a derivation of Γ `moggi 4 : g & Y, then

LΓMmoggi
mon `mon " : 〈Y〉Lg Mmoggi

mon J

Although it is important that we translate derivations rather than just well-typed expres-
sions, for suitable e�ect algebras it does not matter which derivation is chosen up to the
equational theory:

Lemma 2.5.5 Suppose that the e�ect algebra (E, ≤, ·, 1) is a partially ordered monoid with
bounded binary joins.

1. If " and "′ are call-by-value translations of derivations of Γ `v 4 : g & Y, then " ≡ "′.
2. If" and"′ are call-by-name translations of derivations of Γ `moggi 4 : g &Y, then" ≡ "′.

J

This follows immediately from Lemma 2.5.3. Hence when considering GMM terms up to ≡,
we can refer to the translation of a well-typed expression. We do this in the following theorem.

2.6. Levy-style call-by-name 25

LunitM B unit
LboolM B unit + unit

Lg
Y,Y ′−−→ g′M B 〈Y〉Lg M → 〈Y′〉Lg′M

L � M B �
LΓ, G : g&Y M B LΓM, G : 〈Y〉Lg M

LΓ `moggi G : g & Y M B G

LΓ `moggi 4 : carop & Y M = "

LΓ `moggi op 4 : arop & Y ·e�opM B let 〈G〉 = " in opG

LΓ `moggi () : unit & 1M B 〈()〉

LΓ `moggi true : bool & 1M B 〈inlunit ()〉 LΓ `moggi false : bool & 1M B 〈inrunit ()〉

LΓ `moggi 41 : bool & Y M = "1 LΓ `moggi 42 : g & Y′M = "2 LΓ `moggi 43 : g & Y′M = "3

LΓ `moggi if 41 then 42 else 43 : g & Y ·Y′M B let 〈G〉 = "1 in case G of {inl _. "2, inr _. "3}

LΓ, G : g&Y `moggi 4 : g′ & Y′M = "

LΓ `moggi _G :g&Y. 4 : g
Y,Y ′−−→ g′ & 1M B 〈_G : 〈Y〉Lg M. "〉

LΓ `moggi 41 : g
Y2,Y3−−−→ g′ & Y1M = "1 LΓ `moggi 42 : g & Y2M = "2

LΓ `moggi 41 42 : g′ & Y1 ·Y3M B let 〈5 〉 = "1 in 5 "2

LΓ `moggi 4 : g & Y M = "

LΓ `moggi 4 : g & Y′M B coerceY≤Y ′"

Figure 2.9: Translation of Moggi-style call-by-name types (top left), contexts (top right), and
typing derivations (bottom) into GMM.

Theorem 2.5.6 (Soundness) Suppose that the e�ect algebra (E, ≤, ·, 1) is a partially ordered
monoid with bounded binary joins.

1. If � `v 4 : g & Y and 4 v
 4′, then L4 Mvmon ≡ L4′Mvmon.

2. If � `moggi 4 : g & Y and 4
moggi
 4′, then L4 Mmoggi

mon ≡ L4′Mmoggi
mon . J

Both of the translations described in this section are compositional: the translation of a
typing derivation depends only on the translations of its subderivations (rather than the actual
structure of the derivations). This property is crucial for reasoning, because we look at parts of
programs rather than complete programs. Compositionality implies it is valid to do so.

2.6 Levy-style call-by-name

As we mentioned above, Moggi-style call-by-name is not the only form of call-by-name. We
also discuss Levy-style call-by-name.

26 Chapter 2. E�ect systems and evaluation orders

First we explain why there are two forms of call-by-name. Suppose we are in a language
(such as PCF) that has divergence as the only side-e�ect, and that Ωg is a closed diverging
term of type g . Each program " of type bool will either diverge or return a boolean. In a
domain-theoretic denotational semantics, the denotation of " is an element of 2⊥, where
2 = {true, false} is discrete, and the operation (−)⊥ freely adds a least element. What should
the denotation of a closed term of type bool→ bool be? It could be an element of either of the
following (where⇒ means function space):

(bool⊥ ⇒ bool⊥)⊥ bool⊥ ⇒ bool⊥

The left distinguishes between Ωbool→bool (which has interpretation ⊥) and _G . Ωbool. On
the right, there is no separate least element ⊥ for diverging terms of function type, so
ÈΩbool→boolÉ = È_G . ΩboolÉ.

In PCF there is no observable di�erence between Ωbool→bool and _G. Ωbool, because programs
can only use functions by applying them. Hence a denotational semantics does not need
to distinguish between these terms, and both interpretations of bool → bool are correct.
This breaks down if we add other ways to use functions: in Haskell, " `seq` # roughly
means evaluate " , discard the result, and then evaluate # ; by passing these two terms as
" we can distinguish between them. In languages with seq, only the interpretation on
the left is valid. However, in languages without seq, the interpretation on the right more
closely re�ects the observable behaviours of terms. In particular, [-expansion preserves the
interpretation of functions. The interpretation on the right also has other useful properties: for
example, the evident function swap : (g1 → g2 → g′) → (g2 → g1 → g′) is an isomorphism
(g1 → g2 → g′) � (g2 → g1 → g′) (by which we mean Èswap (swap 4)É = È4É). Both of the
two interpretations of call-by-name have advantages.

The Moggi-style call-by-name translation we de�ne in Figure 2.9 takes the option on the
left (think of 〈Y〉 as being (−)⊥). It assumes that it might be possible to observe side-e�ects
at any type. Levy-style call-by-name corresponds to the option on the right. It is the form of
call-by-name primarily considered by Levy [56].4 For Levy-style, we assume that side-e�ects
can only be observed at base types. This is the case for the source language we consider (and
so Levy-style is suitable) because we have not included any seq-like constructs.

To describe a source-language e�ect system for Levy-style call-by-name, we attach the
e�ects Y to base types (rather than having an extra parameter in the typing judgment). The
syntax of types is therefore

g, g′ F 〈Y〉unit | 〈Y〉bool | g → g′

The similarity with the graded monad 〈−〉 of GMM (Section 2.5) is not accidental. For example,
〈Y〉bool should be thought of as the type of computations of e�ect Y that return booleans.
Typing contexts Γ are lists of pairs of the form G : g . The syntax of expressions is similar to the
other source languages:

4 F G | op 4 | () | true | false | if 41 then 42 else 43 | _G :g . 4 | 41 42

The e�ect system is again parameterized by a source-language signature (De�nition 2.2.1).
The coarity and arity of each operation is either unit or bool; these are not annotated with
e�ects, and hence are not Levy-style call-by-name types (but 〈Y〉g is for g ∈ {unit, bool}). The

4And this is why we call it Levy-style, though it has been considered previously. For example, it is used for
PCF and idealized Algol [90], and is discussed by Benton et al. [7].

2.7. Graded call-by-push-value 27

Γ `n G : g
if (G : g) ∈ Γ

Γ `n 4 : 〈Y〉carop
Γ `n op 4 : 〈Y ·e�op〉arop Γ `n () : 〈1〉unit

Γ `n true : 〈1〉bool Γ `n false : 〈1〉bool
Γ `n 41 : 〈Y〉bool Γ `n 42 : g Γ `n 43 : g

Γ `n if 41 then 42 else 43 : 〈〈Y〉〉g

Γ, G : g `n 4 : g′

Γ `n _G :�. 4 : g → g′
Γ `n 41 : g → g′ Γ `n 42 : g

Γ `n 41 42 : g′
Γ `n 4 : 〈〈Y〉〉g
Γ `n 4 : 〈〈Y′〉〉g

if Y ≤ Y′

Figure 2.10: E�ect system for Levy-style call-by-name

typing judgment has the form Γ `n 4 : g . To de�ne it, we use a function 〈〈Y〉〉 that adds the e�ect
Y to types. The type 〈〈Y〉〉g is given by:

〈〈Y〉〉(〈Y′〉unit) B 〈Y ·Y′〉unit 〈〈Y〉〉(〈Y′〉bool) B 〈Y ·Y′〉bool 〈〈Y〉〉(g → g′) B g → 〈〈Y〉〉g′

The typing judgment is inductively de�ned by the rules of Figure 2.10. Most of the rules
are standard; in particular, the rules for _-abstraction and application are the same as for
the simply-typed _-calculus. Hence [-expansion preserves types: if Γ `n 4 : g → g′ then
Γ `n _G : g . 4 G : g → g′. (This is the key property that we would expect if we can only
observe e�ects at base types. It is not true for the Moggi-style e�ect system.) In the rule
for if 41 then 42 else 43, the operation 〈〈Y〉〉 is used because the expression 41 (with e�ect Y) is
evaluated before evaluating either 42 or 43. The sube�ecting rule is similar to those in our other
e�ect systems.

The Levy-style call-by-name operational semantics consists of a small-step reduction
relation n

 . The rules de�ning this are exactly the same as for Moggi-style call-by-name
(Figure 2.5), except for the slightly di�erent _-abstraction syntax. The Levy-style call-by-name
e�ect system also satis�es the following subject reduction theorem. (Recall that � is the empty
typing context.)

Theorem 2.6.1 (Subject reduction for Levy-style call-by-name) If � `n 4 : g and 4 n
 4′

then � `n 4′ : g . J

A natural question to ask is whether we can add Levy-style call-by-name to the translations
into the graded monadic metalanguage described in Section 2.5.2. Filinski [24] de�nes a
generalized let construct that can be used to do this. However, as explained by Levy [56],
the result is di�cult to reason about because the translation of if depends on the type g .
This motivates call-by-push-value, which is designed to admit a more suitable translation of
Levy-style call-by-name.

2.7 Graded call-by-push-value
The language we use for the remainder of this thesis is Levy’s call-by-push-value (CBPV) [56].
CBPV has several advantages over other intermediate languages such as the monadic metalan-
guage. The main advantage for our purposes is that is allows us to express more evaluation

28 Chapter 2. E�ect systems and evaluation orders

orders. There is a compositional translation from Moggi’s monadic metalanguage (and there-
fore from call-by-value and Moggi-style call-by-name), and a compositional translation from
Levy-style call-by-name. As for the other languages in this chapter, we wish to use an e�ect
system to enable e�ect-dependent reasoning. We therefore present graded call-by-push-value
(GCBPV), which is similar to CBPV except that the type system tracks e�ect information. Before
doing this, we take a closer look at how CBPV allows programs to control their evaluation
order.

CBPV strati�es terms into values, which do not have side-e�ects, and computations, which
might.5 Evaluation order is irrelevant for values (because of the lack of side-e�ects), so we only
need to be careful about how computations are sequenced. There is exactly one CBPV primitive
that causes the evaluation of more than one computation. The computation " to G . # runs
the computation " , binds G to the result, and then runs the computation # . (It is similar to
let 〈G〉 = " in # in GMM.) The evaluation order is �xed: " is always evaluated eagerly. To
allow more control over evaluation order, CBPV allows computations to be thunked. The term
thunk" is a value that contains the thunk of the computation " . Thunks can be duplicated
(to allow a single computation to be evaluated more than once), and discarded (so that the
computation is not evaluated). If + is a thunk, it can be converted back into a computation
with force+ .

2.7.1 Syntax

The syntax of graded call-by-push-value is as follows. It is similar to the syntax of ordinary
call-by-push-value, except that it tracks e�ect information.6

�, � F 1 + ,, F 2 | G
| unit | ()
| �1 ×�2 | (+1,+2) | fst+ | snd+
| empty | case� + of {}
| �1 +�2 | inl�2+ | inr�1+ | case + of {inl G1.,1, inr G2.,2}
| U� | thunk"

�,� F unit ", # F _{}
| �1 ×�2 | _{1. "1, 2. "2} | 1‘" | 2‘"
| �→ � | _G :�." | + ‘"
| 〈Y〉� | op+ | 〈+ 〉 | " to G . # | coerceY≤Y ′"

| force+

Types are strati�ed into value types �, � and computation types �, � ; terms are strati�ed into
value terms + ,, and computation terms ", # . Value types include base types 1, the unit type,
product types, the empty type, and sum types. As for GMM, we include a collection of constants

5There are several calculi that similarly capture various evaluation orders by stratifying their syntax into two
parts, such as polarized calculi [102]. These have various viewpoints on the distinction between the two parts,
and these a�ect the design of the language. We return to this issue when we add call-by-need in Chapter 5.

6Other than tracking e�ect information, the only di�erence with ordinary CBPV is that eliminators of product
and sum types are value terms rather than computation terms (which makes value terms slightly more general).
Levy [56] calls this CBPV with complex values. This in�uences how we think about the split between values
and computations: with complex values, value terms do not have side-e�ects when they are executed; without
complex values, values do not reduce at all.

2.7. Graded call-by-push-value 29

2 . All GCBPV constants are value terms; we do not need constants on the computation level
(this is discussed further below). Values also include thunks. The value type U� contains
thunks of computations of type � . The value term thunk+ suspends a computation " ; the
computation term force+ runs a suspended computation + . Computation types include a
unit type unit (introduced by the computation term _{}), and lazy binary products �1 ×�2.
Pairs of computation terms are written _{1. "1, 2. "2}, and the �rst and second projections
are 1‘" and 2‘" . Laziness means 8‘" evaluates only the 8th component of the pair; the other
component (and its side-e�ects) are ignored. Binary products of value types give us strict
pairing. Functions send values to computations, and are computations themselves. Application
is written + ‘" , where + is the argument and " is the function to apply.

The highlighted computation type 〈Y〉� is a returner type. It contains computations which
have side-e�ects restricted to the e�ect Y, before potentially returning a value (which must be
an element of �). The side-e�ects could include e.g. divergence (and hence such a computation
might never return a value). The corresponding type in ordinary CBPV is usually written F�;
we add grading by the e�ect Y. Application of an operation op to the argument + is written
op+ . As for GMM, the argument is not a computation; to apply an operation to the result of
a computation " we can use (" to G . opG). Returners (i.e. elements of returner types) are
introduced by 〈+ 〉, which is a computation that immediately returns + (with no side-e�ects).
The eliminator is " to G . # (which requires " to have returner type). As mentioned above,
this runs " , then binds G to the result and runs # . Notationally, to is right-associative (so
"1 to G . "2 to ~."3 means "1 to G . ("2 to ~."3)), and variable bindings extend as far to the
right as possible (so _G :�."1 to ~."2 means _G :�. ("1 to ~."2)). Finally, we can coerce
computations of returner type from e�ect Y to a less restrictive e�ect Y′ with coerceY≤Y ′ .

The eliminators of the empty and sum types are value terms. We also have syntactic sugar
for eliminators of value terms on the computation level:

case
�
+ of {} B force (caseU� + of {})

case + of {inl G1. "1, inr G2. "2} B force (case + of {inl G1. thunk"1, inr G2. thunk"2})

In GCBPV, all side-e�ects occur at returner types. This is similar to Levy-style call-by-name,
where side-e�ects occur at base types. Lambda abstraction therefore does not thunk e�ects,
so [-expansion is valid for function types. Similarly, products of computation types are lazy.
The computation 1‘_{1. "1, 2. "2} has the same semantics as "1 (it does not evaluate "2),
and [-expansion is valid (if " is a product of computations, it has the same semantics as
_{1. 1‘", 2. 2‘"}).

Ground types � in GCBPV are value types that do not contain thunks.

� F 1 | unit | �1 ×�2 | empty | �1 +�2

The notion of signature for graded call-by-push-value is almost identical to that of the graded
monadic metalanguage (De�nition 2.5.1).

De�nition 2.7.1 A GCBPV signature consists of the following data:
• A preordered monoid (E, ≤, ·, 1) of e�ects.
• A set B of base types.
• A family of pairwise disjoint sets K� of constants of type �, indexed by value types �.
• A set Σ of operations.
• For each operation op ∈ Σ, ground types carop and arop, respectively called the coarity

and arity of op, and an e�ect e�op ∈ E. J

30 Chapter 2. E�ect systems and evaluation orders

Γ ` + : �

Γ ` 2 : �
if 2 ∈ K�

Γ ` G : �
if (G : �) ∈ Γ

Γ ` () : unit

Γ ` +1 : �1 Γ ` +2 : �2

Γ ` (+1,+2) : �1 ×�2

Γ ` + : �1 ×�2

Γ ` fst+ : �1

Γ ` + : �1 ×�2

Γ ` snd+ : �2

Γ ` + : empty

Γ ` case� + of {} : �

Γ ` + : �1

Γ ` inl�2+ : �1 +�2

Γ ` + : �2

Γ ` inr�1+ : �1 +�2

Γ ` + : �1 +�2 Γ, G1 : �1 `,1 : � Γ, G2 : �2 `,2 : �
Γ ` case + of {inl G1.,1, inr G2.,2} : �

Γ ` " : �
Γ ` thunk" : U�

Γ ` " : �

Γ ` _{} : unit
Γ ` "1 : �1 Γ ` "2 : �2

Γ ` _{1. "1, 2. "2} : �1 ×�2

Γ ` " : �1 ×�2

Γ ` 1‘" : �1

Γ ` " : �1 ×�2

Γ ` 2‘" : �2

Γ, G : � ` " : �
Γ ` _G :�." : �→ �

Γ ` + : � Γ ` " : �→ �

Γ ` + ‘" : �

Γ ` + : carop
Γ ` op+ : 〈e�op〉arop

Γ ` + : �
Γ ` 〈+ 〉 : 〈1〉�

Γ ` " : 〈Y〉� Γ, G : � ` # : �
Γ ` " to G . # : 〈〈Y〉〉�

Γ ` " : 〈Y〉�
Γ ` coerceY≤Y ′" : 〈Y′〉�

if Y ≤ Y′
Γ ` + : U�

Γ ` force+ : �

Figure 2.11: Graded call-by-push-value typing rules

2.7. Graded call-by-push-value 31

Typing contexts Γ are ordered lists mapping variable names to value types �; as usual, we
assume no variable appears more than once. Variables do not have computation types (but they
may be thunks of computations). There are two typing judgments: Γ ` + : � means the value
term + has value type � in context Γ, and similarly Γ ` " : � means the computation term
" has computation type � in context Γ. To de�ne them, we use a function 〈〈Y〉〉 that adds the
e�ect Y to computation types, similar to the function on types used for Levy-style call-by-name.
The computation type 〈〈Y〉〉� is de�ned by recursion on the structure of � .

〈〈Y〉〉unit B unit 〈〈Y〉〉(�1 ×�2) B 〈〈Y〉〉�1 × 〈〈Y〉〉�2
〈〈Y〉〉(�→ �) B �→ 〈〈Y〉〉� 〈〈Y〉〉(〈Y′〉�) B 〈Y ·Y′〉�

The base case of the recursion is returner types, where we collect the two e�ects Y and Y′
together by multiplying them. We do not look at the structure of � in this case. The de�nition
of the typing judgments is given inductively by the rules in Figure 2.11. As for our other type
systems, rules that extend typing contexts implicitly assume the extra variable is fresh. We use
〈〈Y〉〉 in the typing rule for to because it evaluates more than one computation.

We also have a substitution lemma for GCBPV. Since we need it later, we �rst de�ne a
notion of well-typed substitution. Substitutions are given by the following grammar:

f F � | f, G ↦→+

where � is the empty substitution. Variables are associated with value types (not computation
types) in typing contexts, and are therefore mapped to value terms by substitutions. We have a
typing judgment Γ ` f : Δ for substitutions, meaning in the context Γ the terms in f have the
types given in the context Δ. This is de�ned as follows:

Γ ` � : �
Γ ` f : Δ Γ ` + : �

Γ ` (f, G ↦→+) : (Δ, G : �)

We write + [f] and " [f] for the applications of the substitution f to the value term + and to
the computation term " . These are de�ned by induction on the structure of the terms, and
are capture-avoiding. The key property of the substitution typing judgment is the substitution
lemma:

Lemma 2.7.2 (Substitution) Suppose that Γ ` f : Δ.
1. (Values) If Δ ` + : � then Γ ` + [f] : �.
2. (Computations) If Δ ` " : � then Γ ` " [f] : � .

Proof sketch. There is a weakening lemma on value terms, which states that if Γ, Γ′ `, : �
then Γ, G : �′, Γ′ `, : �. This is proved by induction on the typing derivation mutually with a
similar weakening lemma for computation terms. The weakening lemma for value terms can
then be extended to substitutions. Finally, the substitution lemma is proved by induction on
the typing derivation for + (or "), using weakening. �

GCBPV allows sube�ecting on returner types using coerce. We could have instead included
a general form of subtyping, by including terms of the form coerce�<:� " in the syntax, but
this turns out to be unnecessary. Subtyping � <: � for computation types and � <: � for value
types is de�ned inductively by the rules on the left of Figure 2.12. Both subtyping relations
are provably re�exive and transitive. Subtyping on terms is then syntactic sugar: value terms
coerce�<:�+ and computation terms coerce�<:� " are given by induction on the derivation

32 Chapter 2. E�ect systems and evaluation orders

Subtyping rule Syntactic sugar

� <: � Γ ` coerce�<:�+ : �

1 <: 1
coerce1<:1 + B +

unit <: unit
coerceunit<:unit+ B +

�1 <: �1 �2 <: �2
�1 ×�2 <: �1 × �2

coerce�1×�2<:�1×�2 + B

(coerce�1<:�1 (fst+), coerce�2<:�2 (snd+))

empty <: empty
coerceempty<:empty+ B +

�1 <: �1 �2 <: �2
�1 +�2 <: �1 + �2

coerce�1+�2<:�1+�2 + B

case + of
{inl G1. inl�2 (coerce�1<:�1 G1)
, inr G2. inr�1 (coerce�2<:�2 G2)}

� <: �
U� <: U�

coerceU�<:U� + B thunk (coerce�<:� (force+))

� <: � Γ ` coerce�<:� " : �

unit <: unit
coerceunit<:unit" B "

�1 <: �1 �2 <: �2

�1 ×�2 <: �1 × �2

coerce�1×�2<:�1×�2
" B

_{1. coerce�1<:�1
(1‘"), 2. coerce�2<:�2

(2‘")}

� <: � � <: �
(�→ �) <: (� → �)

coerce(�→�)<: (�→�)" B

_G :�. coerce�<:� ((coerce�<:� G) ‘")

Y ≤ Y′ � <: �
〈Y〉� <: 〈Y′〉�

coerce〈Y〉�<:〈Y ′〉�" B coerceY≤Y ′ (" to G . 〈coerce�<:� G〉)

Figure 2.12: Subtyping in graded call-by-push-value

2.7. Graded call-by-push-value 33

of subtyping on the right of Figure 2.12. In general, the de�nition [-expands the terms (for
example, coercions between function types introduce lambdas) and propagates coercions down
to returner types. Recall that [-expansion preserves the semantics of GCBPV terms. Coercions
have the expected typing: if � <: � then Γ ` + : � implies Γ ` coerce�<:�+ : �, and if � <: �
then Γ ` " : � implies Γ ` coerce�<:� " : � .

A useful property is that the functions 〈〈Y〉〉 on computation types form an action of the
preordered monoid of e�ects on the preorder of computation types (ordered by subtyping).

De�nition 2.7.3 An action of a preordered monoid (E, ≤, ·, 1) on a preordered set (-, v) is a
function ∗ : E × - → - that is monotone in both arguments and satis�es

1 ∗ G = G Y ∗ (Y′ ∗ G) = (Y ·Y′) ∗ G

for all Y, Y′ ∈ E and G ∈ - . J

2.7.2 (In)equational theories
As for GMM (Section 2.5) we give an equational theory for determining when it is correct
to replace one program with another. However, there are two key di�erences in this section.
The �rst is that we de�ne a general notion of theory for GCBPV, consisting of some core
axioms possibly augmented with additional axioms, rather than constraining ourselves to one
particular equational theory. The reason for this is that we add extra axioms to capture the
behaviour of side-e�ects included in the signature. The second di�erence is that we do not
constrain ourselves to symmetric theories (hence we prefer the term inequational theory rather
than equational theory). We give examples of non-symmetric theories in Chapter 4.

For GCBPV an inequational theory consists of two judgment forms, one for values and one
for computations:

Γ ` + 4, : � Γ ` " 4 # : �
These mean that the terms are well-typed, and every behaviour of + (or ") is a possible
behaviour of, (or #). (For this chapter, we can use the same intuition as for ≡ in GMM. The
lack of symmetry only becomes important in Chapter 4.) As before, we omit the typing context
and type when they are obvious or unimportant.

Each inequational theory must satisfy a core set of symmetric axioms, which are listed
in Figure 2.13. We use the symbol ≡ to indicate that they should be read symmetrically (we
de�ne ≡ to be the intersection of 4 and its opposite <). They are just the usual axioms for
call-by-push-value (with complex values), plus some additional axioms for coercions. Each
axiom is subject to suitable restrictions on free variables and typing (for example, " ≡ _{} can
hold only if " has type unit).

The �rst group consists of V laws. The second consists of [laws; there is an [law for
every GCBPV type (excluding base types). In the third group, the �rst two equations state that
sequencing of computations commutes with formation of binary products and functions. A
consequence of these two axioms and the [laws is that it is not necessary to allow arbitrary
computation types on the right-hand side of to; returner types su�ce. This is the case because:

" to G . # ≡ _{} if # : unit
" to G . # ≡ _{1. " to G . 1‘#, 2. " to G . 2‘# } if # : �1 ×�2
" to G . # ≡ _~ :�." to G .~‘# if # : �→ �

where ~ is not free in # . (These are instances of the equational theory de�ned below, but not
axioms.) The third axiom of the third group is associativity of to. The fourth is commutativity

34 Chapter 2. E�ect systems and evaluation orders

fst (+1,+2) ≡ +1

case inl�2+ of
{inl G1.,1
, inr G2.,2}

≡ ,1 [G1 ↦→+]

1 ‘ _{1. "1, 2. "2} ≡ "1

+ ‘ _G :�." ≡ " [G ↦→+]
force (thunk") ≡ "

snd (+1,+2) ≡ +2

case inr�1+ of
{inl G1.,1
, inr G2.,2}

≡ ,2 [G2 ↦→+]

2 ‘ _{1. "1, 2. "2} ≡ "2

〈+ 〉 to G . " ≡ " [G ↦→+]

+ ≡ ()
+ ≡ case�, of {}
+ ≡ thunk (force+)

" ≡ _{}
" ≡ _G :�. G ‘"

+ ≡ (fst+ , snd+)

+ [G ↦→,] ≡
case, of
{inl ~1.+ [G ↦→ inl�2~1]
, inr~2.+ [G ↦→ inr�1~2]}

" ≡ (1‘", 2‘")
" ≡ " to G . 〈G〉

_{1. " to G . #1, 2. " to G . #2} ≡ " to G . _{1. #1, 2. #2}
_~ :�." to G . # ≡ " to G . _~ :�. #

("1 to G . "2) to ~."3 ≡ "1 to G . "2 to ~."3

coerceY1 ·Y2≤Y ′1 ·Y ′2 (" to G . #) ≡ (coerceY1≤Y ′1 ") to G . coerceY2≤Y ′2 #
coerceY≤Y ′" ≡ "

coerceY ′≤Y ′′ (coerceY≤Y ′") ≡ coerceY≤Y ′′"

Figure 2.13: Core axioms of GCBPV inequational theories

of coerce with to. This axiom can only be applied if # has returner type; this is not an issue
because we can write all uses of to in terms of those that only use returner types. The equation

coerce〈〈Y〉〉�<:〈〈Y ′〉〉� ′ (" to G . #) ≡ (coerceY≤Y ′") to G . coerce�<:� ′ #

follows. Finally, there are two equations corresponding to re�exivity and transitivity of the
order ≤ on e�ects. The equations

coerce�<:� " ≡ " coerce� ′<:� ′′ (coerce�<:� ′") ≡ coerce�<:� ′′"

follow from these.
Each inequational theory is also required to be closed under congruence. Congruence

involves two kinds of term context: we have C[] for value terms with a single hole, and C[] for
computation terms with a single hole. We write � for a hole where a value term is expected,

2.7. Graded call-by-push-value 35

and � for a hole where a computation term is expected.

C[] F � | (C[],+2) | (+1, C[]) | fstC[] | sndC[] | case� C[] of {}
| inl�2C[] | inr�1C[] | case C[] of {inl G1.,1, inr G2.,2}
| case + of {inl G1. C[], inr G2.,2} | case + of {inl G1.,1, inr G2. C[]}
| thunkC[]

C[] F � | _{1. "1, 2. C[]} | _{1. C[], 2. "2} | 1‘C[] | 2‘C[] | _G :�. C[] | C[]‘" | + ‘C[]
| opC[] | 〈C[]〉 | C[] to G . # | " to G . C[] | coerceY≤Y ′ C[] | forceC[]

If C[] is a term context that expects a value term, we write C[+] for the term formed by
replacing � with the value term + , and similarly for the other kinds of term context. The term
context may capture some of the free variables of + .

Both judgments of an inequational theory are also required to be closed under substitution
(see also Lemma 2.7.2). To state closure under substitution, we extend the value judgment

Γ ` + 4, : �

of each inequational theory to substitutions componentwise: given a typing context Γ, as well
as another typing context and two substitutions

Δ = G1 : �1, . . . G= : �= f = G1 ↦→ +1, . . . , G= ↦→ += f′ = G1 ↦→ + ′1 , . . . , G= ↦→ + ′=

we write Γ ` f 4 f′ : Δ if Γ ` f : Δ, Γ ` f′ : Δ, and for all 8 ,

Γ ` +8 4 + ′8 : �8

We now collect together our requirements on inequational theories into a single de�nition:

De�nition 2.7.4 (Inequational theory) An inequational theory consists of a GCBPV signa-
ture and two judgments

Γ ` + 4, : � Γ ` " 4 # : �
such that:

• Preorder:
– Values: if Γ ` + : � then Γ ` + 4 + : �, and if Γ ` +1 4 +2 : � and Γ ` +2 4 +3 : �

then Γ ` +1 4 +3 : �.
– Computations: if Γ ` " : � then Γ ` " 4 " : � , and if Γ ` "1 4 "2 : � and

Γ ` "2 4 "3 : � then Γ ` "1 4 "3 : � .
• Congruence: if Γ ` + 4, : � then for term contexts with hole �

Γ′ ` C[+] : � ∧ Γ′ ` C[,] : � ⇒ Γ′ ` C[+] 4 C[,] : �
Γ′ ` C[+] : � ∧ Γ′ ` C[,] : � ⇒ Γ′ ` C[+] 4 C[,] : �

If Γ ` " 4 # : � then for term contexts with hole �

Γ′ ` C["] : � ∧ Γ′ ` C[#] : � ⇒ Γ′ ` C["] 4 C[#] : �
Γ′ ` C["] : � ∧ Γ′ ` C[#] : � ⇒ Γ′ ` C["] 4 C[#] : �

• Substitution: If Γ ` f 4 f′ : Δ then

Δ ` + 4, : � ⇒ Γ ` + [f] 4, [f′] : �
Δ ` " 4 # : � ⇒ Γ ` " [f] 4 # [f′] : �

36 Chapter 2. E�ect systems and evaluation orders

get () to G . (putG ; 〈G〉) ≡ coerce{get}≤{get,put} (get ())
put+ ; get () ≡ put+ ; coerce∅≤{get} 〈+ 〉
put+1; put+2 ≡ put+2

get () to G . get () to ~. 〈(G,~)〉 ≡ get () to G . 〈(G, G)〉
get (); 〈()〉 ≡ coerce∅≤{get} 〈()〉

Figure 2.14: Signature axioms for global state

• Core axioms:

– Values: if Γ ` + : � and Γ `, : �, and + ≡ , is an instance of an axiom in
Figure 2.13, then Γ ` + 4, : � and Γ `, 4 + : �.

– Computations: if Γ ` " : � and Γ ` # : � , and " ≡ # is an instance of an axiom in
Figure 2.13, then Γ ` " 4 # : � and Γ ` # 4 " : � . J

For a �xed typing context Γ and type �, each inequational theory is a preorder on terms of
type � in context Γ, and similarly for computations. We use the symbol ≡ for the symmetric
part of the inequational theory (e.g. on values, Γ ` + ≡, : � means both Γ ` + 4, : � and
Γ ` + 4, : � hold).

The smallest possible inequational theory (i.e. the one that relates the fewest terms), is given
by taking the core axioms, and closing them under re�exivity, transitivity and congruence.
(Closure under substitution holds automatically in this case.) Since all of the core axioms are
symmetric, the smallest inequational theory is also symmetric.

In general, to specify an inequational theory, we give a list of (possibly non-symmetric)
signature axioms (which characterize the side-e�ects in the signature) to be taken in addition to
the core axioms. The 4 judgments are then given by closing under congruence, re�exivity and
transitivity. We do not assume that inequational theories are given by a �nite set of axioms (or
axiom schemas). Nor do we forbid in�nitary rules in the de�nition. This allows us to consider
inequational theories for recursion (using an in�nitary rational continuity rule [19]).

We give one example here, for global state (further examples are given in Chapter 4). For
this example, we use the Gi�ord-style e�ect algebra with two operations: get with coarity unit
and arity bool, and put with coarity unit and arity bool. E�ects are subsets of {get, put}. We
write " ; # as syntactic sugar for " to G . # , where G is fresh. The signature axioms for this
example are listed in Figure 2.14; they characterize the behaviour of get and put. The signature
axioms for global state imply more general equations. For example, the fourth axiom, which
allows us to merge two adjacent reads, implies the following general equation:

get () to G . get () to ~." ≡ get () to I. " [G ↦→ I,~ ↦→ I]

As an aside, we mention that these are not the same as the axioms given by Plotkin and
Power [88]. If we forget about the e�ect system (more formally, if we use the trivial e�ect
algebra), then our axioms are equivalent to Plotkin and Power’s. However, the proof that our
�fth axiom (which is just get (); 〈()〉 ≡ 〈()〉 for the trivial e�ect algebra) follows from theirs is
a sequence of equalities involving put. We cannot use that proof with a Gi�ord-style e�ect
algebra because the e�ect for this axiom does not contain {put}. In general, when adding an
e�ect system it may be necessary to specify additional axioms.

2.7. Graded call-by-push-value 37

In the rest of this chapter we consider arbitrary inequational theories 4. Given a value term
+ we de�ne b+ c to be + but with all uses of coerce deleted, and similarly for computation
terms. We have:

Lemma 2.7.5 Suppose that the e�ect algebra (E, ≤, ·, 1) is a partially ordered monoid with
bounded binary joins.

1. Given two value terms +1,+2 such that Γ ` +1 : � and Γ ` +2 : �, if b+1c = b+2c then
Γ ` +1 ≡ +2 : �.

2. Given two computation terms"1, "2 such that Γ `"1 : � and Γ `"2 : � , if b"1c = b"2c
then Γ ` "1 ≡ "2 : � . J

We use this fact when considering the translations from source-language e�ect systems.
A proof is given in Appendix B.1. We conjecture that this lemma does not hold when the
assumption about the e�ect algebra is dropped. A conjectured counterexample is given along
with the proof.

When we consider equivalences between terms in graded call-by-push-value, we ask for
the terms to have the same observable behaviour. We therefore de�ne a contextual preorder for
GCBPV, by considering closed computations that return elements of ground types.

De�nition 2.7.6 (Contextual preorder) Given an inequational theory, the contextual pre-
order consists of two judgment forms.

1. Between value terms: Γ `+ 4ctx, : � if Γ `+ : �, Γ `, : �, and for all ground types� ,
e�ects Y, and term contexts C[] with hole � such that �`C[+] : 〈Y〉� and �`C[,] : 〈Y〉�
we have

� ` C[+] 4 C[,] : 〈Y〉�

2. Between computation terms: Γ ` " 4ctx # : � if Γ ` " : � , Γ ` # : � , and for all ground
types � , e�ects Y, and term contexts C[] with hole � such that � ` C["] : 〈Y〉� and
� ` C[#] : 〈Y〉� we have

� ` C["] 4 C[#] : 〈Y〉� J

As for inequational theories, we often omit the typing context and type. The inequational
theory is stronger than contextual equivalence: if " 4 # then " 4ctx # (and similarly for
value terms), because 4 is a congruence. For closed terms of 〈Y〉� , where � is a ground type,
the converse also holds: if � `" 4ctx # : 〈Y〉� then � `" 4 # : 〈Y〉� . This is not generally the
case for open terms or for other types. For example, with global state

G : 〈{get}〉unit ` G 4 coerce∅≤{get} 〈()〉 : 〈{get}〉unit

does not hold, but the two computations have the same observable behaviour.

2.7.3 Translations into GCBPV
To reason about evaluation orders using graded call-by-push-value, we give compositional
translations from our source-language e�ect systems, similar to the translations into the graded
monadic metalanguage described in Section 2.5.2. In addition to call-by-value and Moggi-style
call-by-name we give a translation from Levy-style call-by-name into GCBPV.7 We could not
do this satisfactorily for GMM. The call-by-value and Levy-style call-by-name translations we
give here are based on those of Levy [56], with some minor modi�cations to deal with e�ects.

7We can also translate most of GMM into GCBPV by decomposing the graded monad 〈Y〉− as U (〈Y〉−).
(Function types cannot be translated.)

38 Chapter 2. E�ect systems and evaluation orders

LunitM B unit
LboolM B unit + unit

Lg
Y−→ g′M B U (Lg M → 〈Y〉Lg′M)

L � M B �
LΓ, G : g M B LΓM, G : Lg M

LΓ `v G : g & 1M B 〈G〉
LΓ `v 4 : carop & Y M = "

LΓ `v op 4 : arop & Y ·e�opM = " to G . opG

LΓ `v () : unit & 1M B 〈()〉

LΓ `v true : bool & 1M B 〈inlunit ()〉 LΓ `v false : bool & 1M B 〈inrunit ()〉

LΓ `v 41 : bool & Y M = "1 LΓ `v 42 : g & Y′M = "2 LΓ `v 43 : g & Y′M = "3

LΓ `v if 41 then 42 else 43 : g & Y ·Y′M B "1 to G . case G of {inl _. "2, inr _. "3}

LΓ, G : g `v 4 : g′ & Y M = "

LΓ `v _G :g . 4 : g
Y−→ g′ & 1M B 〈thunk (_G :Lg M. ")〉

LΓ `v 41 : g
Y3−→ g′ & Y1M = "1 LΓ `v 42 : g & Y2M = "2

LΓ `v 41 42 : g′ & Y1 ·Y2 ·Y3M B "1 to 5 . "2 to G . G ‘force 5

LΓ `v 4 : g & Y M = "

LΓ `v 4 : g & Y′M B coerceY≤Y ′"

Figure 2.15: Translation of call-by-value types (top left), contexts (top right), and typing
derivations (bottom) into GCBPV.

The translations we give in this section assume a �xed source-language signature (De�ni-
tion 2.2.1) that is used to instantiate the source-language e�ect systems, and a �xed GCBPV
signature (De�nition 2.7.1). The two signatures are required to be compatible. We translate
source-language ground types g ∈ {unit, bool} into GCBPV as follows:

LunitM B unit LboolM B unit + unit

For compatibility we assume that the two signatures have the same e�ect algebra, and that for
each source-language operation op: the GCBPV signature also includes op; the two signatures
assign the same e�ect e�op to op; and if g and g′ are respectively the coarity and arity of
op in the source-language signature, then Lg M and Lg′M are the coarity and arity of op in the
GCBPV signature. The GCBPV signature is allowed to contain operations that are not in the
source-language signature, and we place no requirements on base types or constants.

Call-by-value types g are translated into GCBPV value types Lg Mv, which represent values
of type g (with no side-e�ects), and call-by-value contexts Γ are translated into GCBPV contexts
LΓMv. Call-by-value derivations Γ `v 4 : g & Y are translated into GCBPV computations LΓ `v 4 :
g & Y Mv that return elements of Lg M, so LΓMv ` L4 Mv : 〈Y〉Lg Mv, where we omit the context
and type in L4 Mv. (Recall that we have to translate derivations rather than just well-typed

2.7. Graded call-by-push-value 39

LunitM B unit
LboolM B unit + unit

Lg
Y,Y ′−−→ g′M B U (U (〈Y〉Lg M) → 〈Y′〉Lg′M)

L � M B �
LΓ, G : g&Y M B LΓM, G : U (〈Y〉Lg M)

LΓ `moggi G : g & Y M B forceG

LΓ `moggi 4 : carop & Y M = "

LΓ `moggi op 4 : arop & Y ·e�opM = " to G . opG

LΓ `moggi () : unit & 1M B 〈()〉

LΓ `moggi true : bool & 1M B 〈inlunit ()〉 LΓ `moggi false : bool & 1M B 〈inrunit ()〉

LΓ `moggi 41 : bool & Y M = "1 LΓ `moggi 42 : g & Y′M = "2 LΓ `moggi 43 : g & Y′M = "3

LΓ `moggi if 41 then 42 else 43 : g & Y ·Y′M B "1 to G . case G of {inl _. "2, inr _. "3}

LΓ, G : g&Y `moggi 4 : g′ & Y′M = "

LΓ `moggi _G :g&Y. 4 : g
Y,Y ′−−→ g′ & 1M B 〈thunk (_G :U (〈Y〉Lg M) . ")〉

LΓ `moggi 41 : g
Y2,Y3−−−→ g′ & Y1M = "1 LΓ `moggi 42 : g & Y2M = "2

LΓ `moggi 41 42 : g′ & Y1 ·Y3M B "1 to 5 . (thunk"2) ‘ (force 5)

LΓ `moggi 4 : g & Y M = "

LΓ `moggi 4 : g & Y′M B coerceY≤Y ′"

Figure 2.16: Translation of Moggi-style call-by-name types (top left), contexts (top right), and
typing derivations (bottom) into GCBPV.

expressions because the call-by-value e�ect system is not syntax directed.) The side-e�ects of
4 are encapsulated in the returner type.

The de�nition of the call-by-value translation is in Figure 2.15, where we omit the superscript
on L−Mv. For function types we use computations of returner type with e�ect Y (for the latent
e�ect of the function), and the side-e�ects of the function are thunked by wrapping it in U. This
means that call-by-value expressions of function type are translated into computation terms
that return thunks of GCBPV functions. For operations op, the expression 4 is �rst eagerly
evaluated, and then op is applied to the result. In the translation of if-expressions we use the
eliminator of GCBPV sum types on the computation level (recall that this is de�ned in terms
of the eliminator on the value level). In the translation of lambda abstraction and function
application we explicitly specify where side-e�ects are thunked, and where thunks are forced.

Most of the translation of Moggi-style call-by-name is similar to the call-by-value translation.
Types g are translated into GCBPV value types Lg Mmoggi, which represent values of type g with
no side-e�ects. Contexts Γ become GCBPV contexts LΓMmoggi. Derivations of Γ `moggi 4 : g & Y
become computation terms LΓ `moggi 4 : g & Y Mmoggi of type 〈Y〉Lg Mmoggi.

The de�nition is in Figure 2.16. The primary di�erence is in the translation of function types,

40 Chapter 2. E�ect systems and evaluation orders

L〈Y〉unitM B 〈Y〉unit
L〈Y〉boolM B 〈Y〉(unit + unit)
Lg → g′M B ULg M → Lg′M

L � M B �
LΓ, G : g M B LΓM, G : ULg M

LΓ `n G : g M B forceG

LΓ `n 4 : 〈Y〉caropM = "

LΓ `n op 4 : 〈Y ·e�op〉aropM = " to G . opG

LΓ `n () : 〈1〉unitM B 〈()〉

LΓ `n true : 〈1〉boolM B 〈inlunit ()〉 LΓ `n false : 〈1〉boolM B 〈inrunit ()〉

LΓ `n 41 : 〈Y〉boolM = "1 LΓ `n 42 : g M = "2 LΓ `n 43 : g M = "3

LΓ `n if 41 then 42 else 43 : 〈〈Y〉〉g M B "1 to G . case G of {inl _. "2, inr _. "3}

LΓ, G : g `n 4 : g′M = "

LΓ `n _G :g . 4 : g → g′M B _G :ULg M. "

LΓ `n 41 : g → g′M = "1 LΓ `n 42 : g M = "2

LΓ `n 41 42 : g′M B (thunk"2) ‘"1

LΓ `n 4 : 〈〈Y〉〉g M = "

LΓ `n 4 : 〈〈Y′〉〉g M B coerce〈〈Y〉〉Lg M<:〈〈Y ′〉〉Lg M "

Figure 2.17: Translation of Levy-style call-by-name types (top left), contexts (top right), and
typing derivations (bottom) into GCBPV.

where arguments are thunked computations rather than just values. Similarly, typing contexts
contain thunks. Variables G force the corresponding thunk; hence we reevaluate a computation
each time G is used. Operations eagerly evaluate their argument. For function application, the
argument is not evaluated immediately; instead a thunk is passed to the function.

Both the call-by-value and Moggi-style call-by-name translations into GCBPV are somewhat
similar to the corresponding translations into GMM. In this section, we add a translation for
Levy-style call-by-name. Unlike the previous two, Levy-style call-by-name types g are translated
into GCBPV computation types Lg Mn. The elements of Lg Mn are therefore computations, and
might have side-e�ects. A derivation Γ `n4 : g is translated into a computation term LΓ `n4 : g Mn
of type Lg Mn. We do not introduce an additional returner type (in contrast to the previous
translations), because the side-e�ects occur at returner types that appear in Lg Mn. Typing
contexts Γ are translated into GCBPV typing contexts LΓMn as before.

The de�nition of the translation from Levy-style call-by-name into GCBPV is given in
Figure 2.17. Returner types are attached to unit and bool because these are the types at which
side-e�ects occur for Levy-style call-by-name. As for Moggi-style call-by-name, functions take
thunks of computations as arguments. Otherwise, they just use the GCBPV function types
directly. The translation of types satis�es L〈〈Y〉〉g Mn = 〈〈Y〉〉Lg Mn. Contexts are translated using
thunks. Most of the cases in the translation of typing derivations are similar to the Moggi-style
call-by-name translation. The case for function application is simpler because the side-e�ects
associated with computing the function are not thunked. Like the other two translations in
this section, the translation from Levy-style call-by-name into GCBPV is compositional.

2.7. Graded call-by-push-value 41

Each of the three translations in this section satis�es some useful properties. First, the
terms that arise from translating typing derivations into graded call-by-push-value have the
desired types.

Lemma 2.7.7

1. If " is the translation of a derivation of Γ `v 4 : g & Y in call-by-value then

LΓMv ` " : 〈Y〉Lg Mv

2. If " is the translation of a derivation of Γ `moggi 4 : g & Y in Moggi-style call-by-name
then

LΓMmoggi ` " : 〈Y〉Lg Mmoggi

3. If " is the translation of a derivation of Γ `n 4 : g in Levy-style call-by-name then

LΓMn ` " : Lg Mn J

Next, we note that any two typing derivations with the same conclusion in our source-
language e�ect systems can di�er only in where sube�ecting is used. Hence by Lemma 2.7.5,
for typical e�ect algebras, translations of derivations with the same conclusion are the same
up to the GCBPV inequational theory.

Lemma 2.7.8 Suppose that the e�ect algebra (E, ≤, ·, 1) is a partially ordered monoid with
bounded binary joins.

1. If " and "′ are call-by-value translations of derivations of Γ `v 4 : g & Y then " ≡ "′.

2. If " and "′ are Moggi-style call-by-name translations of derivations of Γ `moggi 4 : g & Y
then " ≡ "′.

3. If " and "′ are Levy-style call-by-name translations of derivations of Γ `n 4 : g then
" ≡ "′. J

In particular, when considering GCBPV terms up to the (symmetric part of) the inequational
theory, we can consider translations of well-typed expressions; the choice of derivation is
irrelevant. (For example, for each Γ, g and Y, the call-by-value translation is a function from
expressions 4 such that Γ `v 4 : g & Y to equivalence classes of computation terms up to ≡.) We
use this in the statement of soundness for the three translations. Recall that � is the empty
typing context. In the statement of soundness we omit the typing context, type and e�ect when
writing translations of well-typed expressions.

Lemma 2.7.9 Suppose that the e�ect algebra (E, ≤, ·, 1) is a partially ordered monoid with
bounded binary joins.

1. If � `v 4 : g & Y and 4 v
 4′ then L4 Mv ≡ L4′Mv.

2. If � `moggi 4 : g & Y and 4
moggi
 4′ then L4 Mmoggi ≡ L4′Mmoggi.

3. If � `n 4 : g and 4 n
 4′ then L4 Mn ≡ L4′Mn. J

42 Chapter 2. E�ect systems and evaluation orders

2.8 Related work
Previous work on e�ect systems has focused on call-by-value languages. Historically these
used Gi�ord-style e�ect algebras [63], which are well-known. The more general form of e�ect
algebra we use here (preordered monoids) was �rst described by Katsumata [45]. E�ect systems
can be extended, for example by adding operations to the e�ect algebras to support more
language constructs [80], or by adding support for regions [81]. The Moggi-style call-by-name
e�ect presented here was �rst described by McDermott and Mycroft [69], but is somewhat
similar to a system described by Abadi et al. [1]. The Levy-style e�ect system is new here.
GMM is similar to languages described by Katsumata [45] and Gaboardi et al. [29].

A version of the call-by-push-value e�ect system we present here was �rst described by
McDermott and Mycroft [70]. Kammar and Plotkin [42] describe a Gi�ord-style e�ect system
for call-by-push-value, called MAIL (multi-adjunctive intermediate language). Unlike GCBPV,
in MAIL thunk types, returner types, and the typing judgment are all annotated with e�ects.
MAIL does not generalize to other e�ect algebras: if the e�ect algebra is allowed to be an
arbitrary preordered monoid then it is unsound, and some computations that are typable in
GCBPV are not typable in MAIL. It also overapproximates e�ects more than ours, even for
Gi�ord-style. Hence our e�ect system has several advantages, though in many cases Kammar
and Plotkin’s su�ces.

Our translations into GMM and GCBPV are partly based on translations given by Moggi
[78], Wadler [98] and Levy [56, 59]. We could have presented these translations di�erently.
For example, the translation of Moggi-style call-by-name into GMM can be presented by �rst
translating into call-by-value [35, 34]. We choose to translate directly from source languages
into GMM and GCBPV for simplicity. We could also have considered languages other than
GMM or GCBPV, such as Filinski’s [24].

2.9 Summary
One of the themes of this thesis is reasoning about programs using knowledge of local restric-
tions on side-e�ects. That is, by supposing that parts of programs are restricted to particular
side-e�ects, rather than every part of every program. A standard method for doing this is to
use e�ect systems. We take this approach here. This chapter provides the e�ect systems we
use to do e�ect-dependent reasoning.

In later chapters, we reason about di�erent evaluation orders for the source language, in the
presence of side-e�ects. The method we use relies on having an intermediate language together
with translations, one for each evaluation order of interest, from the source language. This
chapter supplies these. The intermediate language we use is graded call-by-push-value (Sec-
tion 2.7), and we have e�ect systems for call-by-value (Section 2.3), Moggi-style call-by-name
(Section 2.4) and Levy-style call-by-name (Section 2.6), each with a translation (Section 2.7.3)
into GCBPV. We are therefore in a position to consider equivalences between evaluation orders
in the next chapter.

Chapter 3

Call-by-value and call-by-name

One of the goals of this thesis is to relate evaluation orders. Speci�cally, suppose we have
some program " (for example in GCBPV) that uses a mix of several evaluation orders and we
construct a new program "′ by replacing one evaluation order with another for some subterm.
We want to reason formally about the relationship between " and "′. These relationships
generally depend on restrictions on side-e�ects. For example, for replacing call-by-value with
call-by-name:

• If there are no side-e�ects at all (in particular, all programs are strongly normalizing),
the choice of call-by-value or call-by-name does not a�ect the semantics of the program:
" and "′ terminate with the same result.

• If there are diverging terms (for instance, via recursion), then the behaviour may change:
a program might diverge under call-by-value and return a result under call-by-name.
However, we can say something about how the behaviour changes: if " terminates with
some result, then "′ terminates with the same result.

• If nondeterminism is the only side-e�ect, every possible result of " is a possible result
of "′.

These properties are intuitively obvious, and can be proved for speci�c examples by reasoning
at the meta-level.

In this chapter, we show how to relate call-by-value (Section 2.3) and Levy-style call-by-
name (Section 2.6). We obtain a reasoning principle (Theorem 3.4.2) for relating these two
evaluation orders. This reasoning principle can be applied to various e�ects. As an example, we
show that, in GCBPV instantiated with global state, call-by-value and Levy-style call-by-name
have the same observable behaviour for subterms restricted to no side-e�ects. (Of course, is
not the case if we drop the restriction.)

Rather than reasoning at the meta-level, we use a common intermediate language (here
GCBPV) that captures both evaluation orders via translations from source-language e�ect
systems. We relate the observable behaviours of the call-by-value translation L4 Mv and the Levy-
style call-by-name translation L4 Mn of each source-language expression 4 (the two translations
are the subterms we refer to above). Intuitively, we want to show L4 Mv 4ctx L4 Mn (recall that
4ctx is the contextual preorder de�ned in De�nition 2.7.6). However, there are two subtleties
we need to deal with.

The �rst is that the two translations have di�erent types, and hence we cannot relate them
directly using the contextual preorder. The way around this is inspired by work relating direct
and continuation interpretations of languages [89]: we identify maps between the call-by-value
and call-by-name interpretations1, and then compose these with the translations of expressions
to arrive at two terms that can be compared directly. We show that, under certain conditions

43

44 Chapter 3. Call-by-value and call-by-name

on the side-e�ects, the maps between call-by-value and call-by-name form a Galois connection,
and this fact allows us to derive our reasoning principle.

The second subtlety arises when we consider e�ect systems, which we do so that we only
need to restrict subterms to particular side-e�ects, rather than the entire source language. We
have various e�ect systems, each for a di�erent evaluation order, and these assign di�erent
e�ects to each source language expression 4 . We deal with this by only considering e�ect
algebras in which, if 4 is typable without tracking e�ects (i.e. our �rst source-language type
system, de�ned in Section 2.2), then it is typable under both the call-by-value and call-by-name
e�ect systems. In this chapter, we consider only Gi�ord-style e�ect algebras, for which this
holds.

The technique we propose is intended to be general, in that it should work for other pairs
of evaluation orders, such as call-by-need and call-by-name (even though we only concentrate
on one pair here). We also work abstractly and identify properties of side-e�ects that enable us
to relate call-by-value and call-by-name, rather than just considering some �xed collection of
side-e�ects. An advantage of the technique of using Galois connections is that the properties
required are derived from the structure of the two maps between evaluation orders.

To derive our reasoning principle, we need a method of proving instances of the GCBPV
contextual preorder. We use logical relations to do this. We therefore discuss logical relations for
graded call-by-push-value in this chapter before considering call-by-value and call-by-name.

This chapter has two main contributions:
• We describe a notion of logical relation for graded call-by-push-value (Section 3.1), based

on previous work on logical relations for other languages. We also provide a method of
constructing such a logical relation, called the free lifting (Section 3.1.1).

• We derive a reasoning principle for relating call-by-value and Levy-style call-by-name
(Section 3.4). This is formulated in terms of a Galois connection between call-by-value
and call-by-name computations (Section 3.3).

In this chapter, we work exclusively with syntax. In particular, we do not use denotational
semantics. Chapter 4 shows (amongst other things) how to derive a similar reasoning principle
using denotational semantics, and argues that the denotational approach has several advantages
over the approach we use in this chapter. However, Chapter 4 requires signi�cantly more
machinery than this one.

3.1 Logical relations for graded call-by-push-value
To prove instances of GCBPV contextual preorders, we use logical relations. We consider binary
logical relations on GCBPV terms in general, before considering evaluation orders in later
sections of this chapter.

Recall that an inequational theory for GCBPV consists of a signature (De�nition 2.7.1) and
two judgments

Γ ` + 4, : � Γ ` " 4 # : �

satisfying certain properties (see De�nition 2.7.4). Each inequational theory induces a contextual
preorder 4ctx (De�nition 2.7.6). As usual, we write

Γ ` + ≡, : � Γ ` " ≡ # : �
1Speci�cally, these map between computations of type 〈Y〉LgvY Mv and computations of type LgnY Mn, where gvY

and gnY are source-language types annotated with the e�ect Y.

3.1. Logical relations for graded call-by-push-value 45

RÈunitÉ = Termunit × Termunit

RÈ�1 ×�2É = {(+ ,+ ′) | (fst+ , fst+ ′) ∈ RÈ�1É ∧ (snd+ , snd+ ′) ∈ RÈ�2É}
RÈemptyÉ = ∅
RÈ�1 +�2É = {(inl�2+ , inl�2+

′) | (+ ,+ ′) ∈ RÈ�1É} ∪ {(inr�1+ , inr�1+
′) | (+ ,+ ′) ∈ RÈ�2É}

RÈU�É = {(+ ,+ ′) | (force+ , force+ ′) ∈ RÈ�É}

RÈunitÉ = Termunit × Termunit

R
�
�1 ×�2

�
= {(","′) | (1‘", 1‘"′) ∈ R

�
�1

�
∧ (2‘", 2‘"′) ∈ R

�
�2

�
}

RÈ�→ �É = {(","′) | ∀(+ ,+ ′) ∈ RÈ�É. (+ ‘",+ ′‘"′) ∈ RÈ�É}

Figure 3.1: Logical relations for graded call-by-push-value

for the symmetric part of the equational theory (i.e. + ≡, if + 4, and, 4 +). For each
value type � we de�ne Term

�
as the set of ≡-equivalence classes of closed terms of type �, and

similarly de�ne Term
�

for computation types:

Term� B {[+]≡ | � ` + : �} Term
�
B {["]≡ | � ` " : �}

Throughout this chapter, we consider terms up to ≡. All of the de�nitions we use are invariant
under ≡ (including for example the contextual preorder 4ctx). We omit the square brackets
when writing equivalence classes.

In GCBPV, a logical relation consists of two families of types

� ↦→ RÈ�É ⊆ Term� × Term� � ↦→ RÈ�É ⊆ Term
�
× Term

�

indexed by value types � and by computation types � . These are usually de�ned by induction
on the structure of the types. They are logical in the sense that they respect the equations
in Figure 3.1. These equations uniquely determine the logical relation on every type former,
except for base types and returner types. For ground types these are standard. Note that for
unit the set Termunit contains only one equivalence class. Since the only way to use a thunk
is to force it, the de�nition on thunk types just requires the two forced computations to be
related. For products of computation types the de�nition is similar to products of value types:
we require that each of the projections are related. For function types, we require that related
arguments are sent to related results.

The only type formers that are omitted from the �gure are base types and returner types.
For these, the logical relation must be chosen based on the constants and side-e�ects included
in the language. In particular, the de�nition of the logical relation on returner types depends
on the choice of operations op ∈ Σ. In the de�nition of logical relations, we impose some
additional requirements on these:

De�nition 3.1.1 (Logical relation) A logical relation consists of a relation RÈ�É ⊆ Term
�
×

Term
�

for each value type� and a relation RÈ�É ⊆ Term
�
×Term

�
for each computation type

� , such that:
• The relations satisfy the equations in Figure 3.1.
• Closure under operations: for each operation op ∈ Σ, if (+ ,+ ′) ∈ R

�
carop

�
then

(op+ , op+ ′) ∈ R
�
〈e�op〉arop

�
.

46 Chapter 3. Call-by-value and call-by-name

• Closure under pure computations: if (+ ,+ ′) ∈ RÈ�É then (〈+ 〉, 〈+ ′〉) ∈ RÈ〈1〉�É.
• Closure under to: if (","′) ∈ RÈ〈Y〉�É, and G : � ` # : 〈Y′〉� and G : � ` # ′ : 〈Y′〉�

satisfy
∀(+ ,+ ′) ∈ RÈ�É. (# [G ↦→+], # ′[G ↦→+ ′]) ∈ RÈ〈Y′〉�É

then
(" to G . # ,"′ to G . # ′) ∈ RÈ〈Y ·Y′〉�É

• Closure under coerce: if (","′) ∈ RÈ〈Y〉�É and Y ≤ Y′ then

(coerceY≤Y ′", coerceY≤Y ′"′) ∈ RÈ〈Y′〉�É

• For each constant 2 ∈ K� we have (2, 2) ∈ RÈ�É. J

In the de�nition, we require closure under to only when # and # ′ have returner type. This
su�ces to get closure under to for arbitrary computation types � , because, as we noted in
Section 2.7.2, having to only for returner types on the right-hand side su�ces.

Lemma 3.1.2 Suppose that RÈ−É is a logical relation. If (","′) ∈ RÈ〈Y〉�É, and G : �`# : �
and G : � ` # ′ : � are well-typed computations such that

∀(+ ,+ ′) ∈ RÈ�É. (# [G ↦→+], # ′[G ↦→+ ′]) ∈ RÈ�É

then
(" to G . # ,"′ to G . # ′) ∈ RÈ〈〈Y〉〉�É

Proof. By induction on the structure of� . For unit this holds by the equation for RÈunitÉ. For
�1 ×�2, it su�ces to show that

(8‘(" to G . #), 8‘("′ to G . # ′)) ∈ R
�
〈〈Y〉〉�

8

�
for each 8 ∈ {1, 2}. We have

8‘(" to G . #) ≡ 8‘(_{1. " to G . 1‘#, 2. " to G . 2‘# })
≡ " to G . 8‘#

and similarly for "′ to G . # ′. The result then follows from the inductive hypothesis, using the
fact that

∀(+ ,+ ′) ∈ RÈ�É. ((8‘#) [G ↦→+], (8‘# ′) [G ↦→+ ′]) ∈ R
�
�
8

�
For � → � we show that

(, ‘(" to G . #), , ′‘("′ to G . # ′)) ∈ RÈ〈〈Y〉〉�É

for each (,,, ′) ∈ RÈ�É. This is the case because

, ‘(" to G . #) ≡ , ‘(_~ :�." to G .~‘#)
≡ " to G ., ‘#

and similarly for "′ to G . # ′, so we can apply the inductive hypothesis using

∀(+ ,+ ′) ∈ RÈ�É. ((, ‘#) [G ↦→+], (, ′‘# ′) [G ↦→+ ′]) ∈ RÈ�É

Finally, for returner types we have closure under to by assumption. �

3.1. Logical relations for graded call-by-push-value 47

RÈ〈∅〉�É B {(〈+ 〉, 〈+ ′〉) | (+ ,+ ′) ∈ RÈ�É}

RÈ〈{get}〉�É B
{(
get () to 1. if 1 then 〈,1〉 else 〈,2〉,
get () to 1. if 1 then 〈, ′1〉 else 〈, ′2〉

) ����� (,1,,
′
1), (,2,,

′
2) ∈ RÈ�É

}
RÈ〈{put}〉�É B {(coerce∅≤{put}〈, 〉,coerce∅≤{put}〈, ′〉) | (,,, ′) ∈ RÈ�É} ∪MustPut�

RÈ〈{get, put}〉�É B
{(
get () to 1. if 1 then"1 else"2,

get () to 1. if 1 then"′1 else"
′
2

) ����� ("1, "
′
1), ("2, "

′
2) ∈ MustPut�

}
where (MustPut�) ⊆ Term〈{put}〉� × Term〈{put}〉� is given by

MustPut� B
{(
(put+ ; 〈, 〉), (put+ ; 〈, ′〉)

) �� + ∈ {true, false} ∧ (,,, ′) ∈ RÈ�É
}

Figure 3.2: Logical relation for global state

For many concrete examples, it is di�cult to show that closure under to holds for all computation
types directly. We instead show that it holds for returner types.

Example 3.1.3 As an example, consider global state. We have no base types and a Gi�ord-style
e�ect algebra with two operations: get with coarity unit and arity bool = unit + unit, and put
with coarity bool and arity unit. We gave a (symmetric) inequational theory for this example
in Figure 2.14. To de�ne a logical relation, we only need to give RÈ〈Y〉�É in terms of RÈ�É for
each Y ⊆ {get, put}. We do this in Figure 3.2. The idea behind the de�nition is to think about
how computations with each e�ect could behave. For example, a computation with e�ect {put}
can either just return a result (without setting the value of the state), or set the state once and
then return. Computations that use put more than once are equivalent to computations that use
put exactly once because put+1; put+2 ≡ put+2 (lack of recursion implies that computations
are �nite).

The proof that the requirements in the de�nition of logical relation are met in this case
uses the inequational theory. In particular, to show that the logical relations are closed under
operations, we need to show that (get (), get ()) ∈ RÈ〈{get}〉boolÉ and if + ∈ {true, false}
then (put+ , put+) ∈ RÈ〈{put}〉unitÉ. These follow from the [-laws:

get () ≡ get () to 1. 〈1〉 ≡ get () to 1. if 1 then 〈true〉 else 〈false〉
put+ ≡ put+ to G . 〈G〉 ≡ put+ to G . 〈()〉 ≡ put+ ; 〈()〉

So the terms have the correct form to be related by the logical relation. The signature axioms
for global state come into play when showing that the logical relation is closed under pure
computations and under to. To show closure under to for Y = Y′ = {get}, we use the axiom that
merges adjacent uses of get:

(get () to 1. if 1 then 〈+1〉 else 〈+2〉) to G . get () to 1′. if 1′ then 〈,1〉 else 〈,2〉
≡ get () to 1. get () to 1′. if 1 then if 1′ then 〈,1 [G ↦→+1]〉 else 〈,2 [G ↦→+1]〉

else if 1′ then 〈,1 [G ↦→+2]〉 else 〈,2 [G ↦→+2]〉
≡ get () to 1. if 1 then if 1 then 〈,1 [G ↦→+1]〉 else 〈,2 [G ↦→+1]〉

else if 1 then 〈,1 [G ↦→+2]〉 else 〈,2 [G ↦→+2]〉
≡ get () to 1. if 1 then 〈,1 [G ↦→+1]〉 else 〈,2 [G ↦→+2]〉

48 Chapter 3. Call-by-value and call-by-name

We return to our global state example in Section 3.1.1. J

We extend logical relations to typing contexts Γ, for which we relate closed substitutions.
Recall from Section 2.7 that substitutions f satisfying � ` f : Γ map variables (G : �) ∈ Γ to
closed terms of type �. Also recall that we extend the inequational theory to substitutions
componentwise. The set of equivalence classes of closed substitutions is

SubstΓ B {[f]≡ | � ` f : Γ}

In this chapter we identify substitutions that are related by ≡, and omit the square brackets on
equivalence classes.

We extend logical relations RÈ−É to typing contexts Γ by de�ning a relation RÈΓÉ ⊆
SubstΓ × SubstΓ on closed substitutions componentwise:

RÈ�ÉB {(�,�)} RÈΓ, G : �ÉB {((f, G ↦→+), (f′, G ↦→+ ′)) | (f, f′) ∈ RÈΓÉ∧(+ ,+ ′) ∈ RÈ�É}

The key property that follows from the requirements in the de�nition of logical relation is
the fundamental lemma.

Lemma 3.1.4 (Fundamental) Suppose that RÈ−É is a logical relation and (f, f′) ∈ RÈΓÉ.
1. (Values) If Γ ` + : � then (+ [f],+ [f′]) ∈ RÈ�É.
2. (Computations) If Γ ` " : � then (" [f], " [f′]) ∈ RÈ�É.

Proof sketch. By induction on the derivations of Γ ` + : � and Γ ` " : � . Most of the cases are
standard, so we do not give them. For op+ and 〈+ 〉 we use the assumptions that the logical
relation is closed under operations and pure computations. For " to G . # we use closure
under to for arbitrary computation types (Lemma 3.1.2): by the inductive hypothesis we have
(" [f], " [f′]) ∈ RÈ〈Y〉�É, and

∀(+ ,+ ′) ∈ RÈ�É. (# [f, G ↦→ +], # [f′, G ↦→ + ′])

Hence
((" [f] to G . # [f]), (" [f′] to G . # ′[f′])) ∈ RÈ〈〈Y〉〉�É

For coerceY≤Y ′" we use closure under coerce. For constants we use the assumption about
constants. �

A consequence of the fundamental lemma is that each relation is re�exive (using the empty
context for Γ and the empty substitution for f and f′). Hence if " ≡ "′ for closed, well-
typed terms ","′ : � , then (","′) ∈ RÈ�É (recall that we relate ≡-equivalence classes
of terms). In general the converse (","′) ∈ RÈ�É ⇒ " ≡ "′ does not hold. Nor does
" 4"′⇒ (","′) ∈RÈ�É.

In the fundamental lemma the logical relation is applied to open terms by quantifying
over pairs of related substitutions. We do this frequently, and so de�ne abbreviations for
this notion. For values we write (+ ,+ ′) : RÈΓÉ ¤→ RÈ�É if Γ ` + : � and Γ ` + ′ : �,
and (+ [f],+ ′[f′]) ∈ RÈ�É for all (f, f′) ∈ RÈΓÉ. Similarly, for computations we write
(","′) : RÈΓÉ ¤→ RÈ�É if Γ ` " : � and Γ ` "′ : � , and (" [f], "′[f′]) ∈ RÈ�É for all
(f, f′) ∈ RÈΓÉ.

Recall that the contextual preorder 4ctx is de�ned by considering closed term-contexts of
type 〈Y〉� , where� is a ground type. In this chapter, we use logical relations to prove instances
of 4ctx. We show that we can do this for logical relations that satisfy an additional assumption
at the types 〈Y〉� . (This assumption is satis�ed for our global state example.)

3.1. Logical relations for graded call-by-push-value 49

Lemma 3.1.5 Suppose that RÈ−É is a logical relation, and that for each ground type � , e�ect
Y, and pair of computations #, # ′ we have:

(#, # ′) ∈ RÈ〈Y〉�É ⇒ # 4 # ′

1. If (+ ,+ ′) : RÈΓÉ ¤→ RÈ�É then Γ ` + 4ctx + ′ : �.
2. If (","′) : RÈΓÉ ¤→ RÈ�É then Γ ` " 4ctx "′ : � .

Proof sketch. For (1) we show for all typing contexts Γ′, types � and term contexts C[] with hole
� that if Γ′ ` C[+] : � and Γ′ ` C[+ ′] : � then (C[+], C[+ ′]) : RÈΓ′É ¤→ RÈ�É, and similarly
for computation-typed term contexts C[]. These are by induction on the typing derivations,
and are similar to the proof of the fundamental lemma. For C[] = � we use the assumption
about (+ ,+ ′).

Then given a ground type� , e�ect Y and term context C[] with hole � such that � ` C[+] :
〈Y〉� and �` C[+ ′] : 〈Y〉� , we have (C[+], C[+ ′]) ∈ RÈ〈Y〉�É (using the above with the empty
context for Γ′). By the assumption about ground types, it follows that C[+] 4 C[+ ′].

The proof of (2) is similar. �

3.1.1 Free lifting

Logical relations must be compatible with the side-e�ects and e�ect system that GCBPV is
instantiated with. The main di�culty in constructing a logical relation is lifting a relation
RÈ�É for the value type �, to form relations RÈ〈Y〉�É on computations for each e�ect Y. There
are several existing techniques for lifting relations to computations, such as >>-lifting [62, 43]
and codensity lifting [46]. Here we give a further lifting technique, called the free lifting.
This technique is folklore, and is described for category-theoretic monads by Kammar and
McDermott [41]. The free lifting has the important property that it is initial: it relates only the
computations that must be related in order to form a logical relation (see Lemma 3.1.7). This
does not mean it is the best possible lifting for all applications (a logical relation can relate too
few terms), but it is for some (e.g. Example 3.4.5). The example logical relation we give above
(for global state) is an instance of the free lifting.

The insight used to de�ne the free lifting is that every closed computation of returner type,
when evaluated, will execute a sequence of operations (get, put, raise, etc.), before possibly
returning a result. This means that, up to ≡, every closed computation has one of three forms:
it is either a return 〈+ 〉, a coercion coerceY≤Y ′" where " is a closed computation of returner
type, or a sequencing op+ to G . " of an operation op followed by a closed computation " .
The free lifting is constructed as the smallest relation that relates computations of all three
forms.

Given a relation RfreeÈ1É ∈ Term1
× Term

1
for each base type 1, we form a logical relation

RfreeÈ−É, by de�ning RfreeÈ�É on non-base types � by induction on the structure of �. We
use the equations in Figure 3.1 as the de�nition on the rest of the type formers except returner
types. It remains to provide, given a type � for which the logical relation is de�ned, a family of
relations

RfreeÈ〈Y〉�É ⊆ Term〈Y〉� × Term〈Y〉�
indexed by Y ∈ E. We de�ne this family inductively by the following rules:

• If (+ ,+ ′) ∈ RfreeÈ�É then (〈+ 〉, 〈+ ′〉) ∈ RfreeÈ〈1〉�É.
• If (","′) ∈ RfreeÈ〈Y〉�É and Y ≤ Y′ then (coerceY≤Y ′", coerceY≤Y ′"′) ∈ RfreeÈ〈Y′〉�É.

50 Chapter 3. Call-by-value and call-by-name

• For each op ∈ Σ, if (","′) : Rfree
�
G : arop

�
¤→ RfreeÈ〈Y〉�É and (+ ,+ ′) ∈ Rfree

�
carop

�
then

((op+ to G . "), (op+ ′ to G . "′)) ∈ Rfree
�
〈e�op ·Y〉�

�
In this de�nition we use the logical relation on the arity and coarity of operations. The arity
and coarity are ground types (in particular do not contain returner types), so the de�nition is
well-founded.

Lemma 3.1.6 If (2, 2) ∈ RfreeÈ�É for each constant 2 ∈ K�, then RfreeÈ−É is a logical relation.

Proof. See Appendix B.2. �

Hence the free lifting does give us a way of constructing logical relations. Logical relations
constructed in this way are initial in the following sense:

Lemma 3.1.7 Suppose that RÈ−É is a logical relation and RfreeÈ1É = RÈ1É for all base types
1. Then RfreeÈ�É ⊆ RÈ�É implies RfreeÈ〈Y〉�É ⊆ RÈ〈Y〉�É.

Proof. See Appendix B.2. �

This lemma does not imply that RfreeÈ−É is included in RÈ−É at every type, because of
the contravariance of the logical relation at function types. However, it does imply that
RfreeÈ〈Y〉�É ⊆ RÈ〈Y〉�É for ground types � . In particular, this means if any logical relation
satis�es the assumptions in Lemma 3.1.5 (which we use to prove contextual equivalence), then
a logical relation based on the free lifting does.

The de�nition of the free lifting slightly simpli�es when we restrict to Gi�ord-style e�ect
algebras. In particular, in the above de�nition of the free lifting we de�ne the entire Y-indexed
family of relations RÈ〈Y〉�É by an induction. For Gi�ord-style e�ect algebras, we can instead
de�ne each relation RÈ〈Y〉�É separately by induction.

Suppose that the e�ect algebra is the preordered monoid

(PΣ, ⊆,∪, ∅)

so that each e�ect Y is just a set of operations, and that for each operation op ∈ Σ we have
e�op = {op}. Given RfreeÈ�É, we de�ne relations R′freeÈ〈Y〉�É (our alternative de�nition). We
show that the alternative de�nition coincides with our general de�nition below.

For each e�ect Y ⊆ Σ, the relation R′freeÈ〈Y〉�É ⊆ Term〈Y〉� ×Term〈Y〉� is de�ned inductively
by the following rules:

• If (+ ,+ ′) ∈ RfreeÈ�É then (coerce∅≤Y 〈+ 〉, coerce∅≤Y 〈+ ′〉) ∈ R′freeÈ〈Y〉�É.
• For each op ∈ Y, if (","′) : Rfree

�
G : arop

�
¤→ R′freeÈ〈Y〉�É and (+ ,+ ′) ∈ Rfree

�
carop

�
then

((op+ to G . "), (op+ ′ to G . "′)) ∈ R′freeÈ〈Y〉�É

Lemma 3.1.8 For each value type � and e�ect Y ⊆ Σ,

R′freeÈ〈Y〉�É = RfreeÈ〈Y〉�É

Proof. See Appendix B.2. �

This alternative de�nition is closer to the one given by Kammar and McDermott [41].

3.2. Restricting side-e�ects in call-by-value and call-by-name 51

3.2 Restricting side-e�ects in call-by-value and
call-by-name

As we mentioned in the introduction to this chapter, there are two major di�culties in relating
the call-by-value and call-by-name translations of expressions when restricting side-e�ects.
The �rst is that the side-e�ects of expressions depend on the evaluation order. This is why
di�erent evaluation orders have di�erent e�ect systems (each of which can be instantiated with
the same e�ect algebra). In particular, we have one e�ect system for call-by-value (Section 2.3)
and another for Levy-style call-by-name. This means we cannot in general use the same
restriction on side-e�ects for both call-by-value and call-by-name.

For the rest of this chapter, we therefore restrict to Gi�ord-style e�ect algebras (Exam-
ple 2.1.2). Hence we take the preordered monoid to be (PΣ, ⊆,∪, ∅), where Σ is the set of
operations from the signature. The two key properties that Gi�ord-style e�ect algebras satisfy
are that the unit ∅ is the least element and that the multiplication ∪ is idempotent. Hence it
does not matter that call-by-name might discard or duplicate side-e�ects; the call-by-value and
call-by-name e�ect systems assign the same e�ects.

To impose restrictions on side-e�ects for both call-by-value and call-by-name we do the
following. Recall that the syntax of source-language types g does not have any e�ect annotations.
For call-by-value and Levy-style call-by-name, we use types that do have e�ect annotations.
Given any source-language type g and e�ect Y, we write gvY and gnY respectively for the call-by-
value and call-by-name types constructed by annotating g with Y everywhere:

gnY unitnY B 〈Y〉unit boolnY B 〈Y〉bool (g → g′)nY B gnY → g′nY

gvY unitvY B unit boolvY B bool (g → g′)vY B gvY
Y−→ g′vY

We annotate source-language typing contexts Γ pointwise to get ΓvY for call-by-value and ΓnY
for call-by-name. (Since expressions contain types we similarly have expressions 4vY and 4nY ,
although we write both of these just as 4 to avoid cluttering the notation. It can always be
determined which we mean from context.) De�ne >?B 4 ⊆ Σ to be the set of operations that
appear syntactically in the (unannotated) expression 4 . If we annotate types with an e�ect
Y ⊇ >?B 4 , then 4 is well-typed in both the call-by-value and call-by-name e�ect systems:

Lemma 3.2.1 If Γ ` 4 : g and >?B 4 ⊆ Y then ΓvY `v 4 : gvY & Y and ΓnY `n 4 : gnY . J

Hence we can consider expressions restricted to Y in both evaluation orders simultaneously.
Even though we translate derivations of expressions in this lemma, it does not matter which
derivations we choose. This is because we identify GCBPV terms up to ≡ throughout this
chapter, and can apply Lemma 2.7.8.

This way of restricting side-e�ects of source-language expressions, where we just annotate
everything with the same e�ect, is slightly ad hoc. There may be better ways of restricting
side-e�ects across evaluation orders. In particular, e�ect polymorphism may enable a more
principled way of restricting side-e�ects.

3.3 A Galois connection between call-by-value and
call-by-name

The second problem with relating the call-by-value and call-by-name translations of expressions
is that they have di�erent types. Given an unannotated source-language type g and e�ect Y

52 Chapter 3. Call-by-value and call-by-name

we write Lg MvY for LgvY Mv and Lg MnY for LgnY Mn, i.e. the call-by-value and call-by-name translations
of g into GCBPV, where all of the e�ect annotations are Y. Similarly for typing contexts. If
Γ ` 4 : g and >?B 4 ⊆ Y then we also write L4 MvY and L4 MnY for the call-by-value and Levy-style
call-by-name translations of 4 with Y for the e�ect annotations. These are typable in the two
e�ect systems by Lemma 3.2.1. Pictorially, we have:

ΓvY `v 4 : gvY & Y LΓMvY ` L4 MvY : 〈Y〉Lg MvY

Γ ` 4 : g

ΓnY `n 4 : gnY LΓMnY ` L4 MnY : Lg MnY

The two computations on the right are the ones that we want to relate using the contextual
preorder. However, we cannot ask whether L4 MvY 4ctx L4 MnY because one computation has a
call-by-value type and one has a call-by-name type. It does not make sense to replace L4 MvY
with L4 MnY inside a GCBPV program, because the result would not be well-typed.

A similar problem arises when comparing two di�erent denotational semantics of the same
language. When comparing direct and continuation semantics of the lambda calculus, Reynolds
[89], solves this problem by de�ning maps between the two semantics, so that a denotation
in the direct semantics can be viewed as a denotation in the continuation semantics and vice
versa. We use a similar idea here.

Speci�cally, we de�ne maps Φ from call-by-value computations to call-by-name computa-
tions, and Ψ from call-by-name to call-by-value:

Γ ` " : 〈Y〉Lg MvY ↦→ Γ ` Φg,Y" : Lg MnY Γ ` # : Lg MnY ↦→ Γ ` Ψg,Y# : 〈Y〉Lg MvY

Then instead of replacing L4 MvY with L4 MnY directly, we use Φ and Ψ to convert L4 MnY to a compu-
tation of the correct type (de�ned formally in Section 3.4). The result looks something like the
following composition of the translation of the expression 4 with two maps:

LΓMvY −→ LΓMnY
L4 MnY−−−→ Lg MnY −→ 〈Y〉Lg MvY

This behaves like a call-by-name computation, but has the same type as a call-by-value compu-
tation. We could instead have chosen to convert L4 MvY into a computation of the same type as
L4 MnY . This choice is arbitrary, because of the properties of Galois connections.

We do not want just any maps between call-by-value and call-by-name. We show that under
certain conditions (which is where the choice of side-e�ects becomes important) the maps we
de�ne form Galois connections [73]. This is crucial for the correctness of our reasoning principle.
It also intuitively implies that it does not matter where we use Φ and Ψ inside programs.

The maps Φg,Y and Ψg,Y are de�ned by induction on the structure of g in Figure 3.3. We use
some extra variables in the de�nition, which are assumed to be fresh. To go from a call-by-value
computation to a call-by-name computation we �rst evaluate the call-by-value computation,
and then map the result to call-by-name using Φ̂g,Y , which has the following typing:

Γ ` + : Lg MvY ↦→ Γ ` Φ̂g,Y+ : Lg MnY

On the base types bool and unit, the maps Φ and Ψ do nothing. On function types, they convert
the argument to the other evaluation order, apply the function, and then convert back. (Due to
the contravariance of arguments the two maps are mutually de�ned.) These have the types
stated because the unit e�ect ∅ is the least element of the e�ect algebra, and the multiplication
∪ is idempotent.

3.3. A Galois connection between call-by-value and call-by-name 53

Φg,Y" B " to G . Φ̂g,YG

Φ̂unit,Y+ B coerce∅≤Y 〈+ 〉
Φ̂bool,Y+ B coerce∅≤Y 〈+ 〉
Φ̂g→g ′,Y+ B _G :U Lg MnY .Ψg,Y (forceG) to I. Φg ′,Y (I‘force+)

Ψunit,Y# B #

Ψbool,Y# B #

Ψg→g ′,Y# B coerce∅≤Y
〈
thunk _G :Lg MvY .Ψg ′,Y

(
(thunk (Φ̂g,YG)) ‘#

)〉
Figure 3.3: Syntactic maps Φ from call-by-value to Levy-style call-by-name and Ψ from Levy-
style call-by-name to call-by-value

In the rest of this section, we show that for side-e�ects satisfying certain conditions, the
two maps form Galois connections. We do this with respect to some given logical relation
RÈ−É, with the aim that we can use the logical relation to show instances of the contextual
preorder (by applying Lemma 3.1.5). In addition to the usual requirements on logical relations
(De�nition 3.1.1), we assume that the relations RÈ�É and RÈ�É are transitive for each � and
� . This implies (using Lemma 3.1.4) that each relation is a preorder.2 We emphasize that the
assumptions we have made about the logical relation so far are weak: it should be possible to
de�ne a useful logical relation satisfying these assumptions for every collection of side-e�ects
(in particular, they hold for our global state example). We add further constraints below that
allow us to derive our reasoning principle.

De�nition 3.3.1 (Galois connection) A Galois connection (Φ,Ψ) from� to � is pair of maps

" : � ↦→ Φ" : � # : � ↦→ Ψ# : �

such that for all closed " : � and # : � ,

(Φ", #) ∈ RÈ�É ⇔ (",Ψ#) ∈ RÈ�É J

In this de�nition we restrict to closed terms. Although Φg,Y and Ψg,Y are de�ned for open terms,
we do not need to consider open terms when showing that they form a Galois connection,
because RÈΓÉ ¤→ RÈ�É is de�ned in terms of RÈ�É on closed computations, and this is what
we need to prove instances of.

For (Φg,Y,Ψg,Y) to be a Galois connection the following must hold:

(Φg,Y (Ψg,Y"), ") ∈ RÈLg MnY É (#, Ψg,Y (Φg,Y#)) ∈ RÈ〈Y〉Lg MvYÉ

The right cannot hold in general when g is a function type g′→ g′′, because the term Ψg,Y (Φg,Y#)
has no side-e�ects, even if # does. If we convert a computation # from call-by-value to call-by-
name and then back using these maps then the side-e�ects of # are thunked. The side-e�ects
do not occur until the function is applied. For g = unit→ unit we get

Ψunit→unit,Y (Φunit→unit,Y#) ≡ coerce∅≤Y 〈thunk _G :unit. # to I. G ‘ force I〉
2Galois connections are normally de�ned for partial orders. We do not have antisymmetry, and hence need to

generalize to preorders, but this is unimportant.

54 Chapter 3. Call-by-value and call-by-name

Based on this observation, we require a further constraint on the logical relation to ensure
that we get Galois connections. This is where it becomes important which side-e�ects we have:
it is only satis�ed in certain cases (see Example 3.3.5). The constraint is that computations are
thunkable:

De�nition 3.3.2 (Thunkable) A closed computation " : 〈Y〉� is thunkable if
(" to G . 〈thunk coerce∅≤Y 〈G〉〉, coerce∅≤Y 〈thunk"〉) ∈ RÈ〈Y〉U 〈Y〉�É

An e�ect Y is thunkable if for every value type �, every closed computation " : 〈Y〉� is
thunkable. J

This property was �rst de�ned in a symmetric setting (non-enriched Kleisli categories) by
Führmann [27]. Our setting is not in general symmetric (even though we only give a symmetric
example in this chapter), so we give a directed version (an alternative name might be lax
thunkable). We only need one direction to hold for the proofs.

For intuition, suppose we have a computation ~ : U 〈Y〉� ` # : � . Then
" to G . # [~ ↦→ thunk coerce∅≤Y 〈G〉] coerce�<:〈〈Y〉〉� (# [~ ↦→ thunk"])

are two closed computations of type 〈〈Y〉〉� . The left computation evaluates " exactly once
(like function arguments in call-by-value); the right potentially evaluates " several times (like
call-by-name). If " is thunkable, then the left is related to the right by 'È〈〈Y〉〉�É. In other
words, it is correct to replace a computation that evaluates " once with one that evaluates "
zero or more times.

A key example is thunking the side-e�ects of call-by-value functions. Every computation
" : 〈Y〉Lg′→ g′′MvY has two opportunities to have side-e�ects: when evaluating " to a function
(immediate), and after applying the function (latent). If " is thunkable, the immediate side-
e�ects can be turned into latent side-e�ects, because " is related to the following computation
by RÈ〈Y〉Lg′→ g′′MvYÉ:

coerce∅≤Y 〈thunk _G :Lg′MvY . " to 5 . G ‘force 5 〉
where the " is now inside the lambda.

To solve the issue with Ψunit→unit,Y (Φunit→unit,Y") above it su�ces for " to be thunkable.
In fact, if enough computations are thunkable then the maps de�ned above do in fact form
Galois connections:

Theorem 3.3.3 Suppose that the e�ect Y is thunkable. For every source-language type g the
pair (Φg,Y,Ψg,Y) is a Galois connection from 〈Y〉Lg MvY to Lg MnY .

Proof. By induction on the structure on g . This is trivial for unit and bool, because the maps
are just identities.

The interesting case is when g is a function type g′→ g′′. We �rst show that (",Ψg,Y#) ∈
RÈ〈Y〉Lg MvYÉ implies (Φg,Y", #) ∈ RÈLg MnY É. It su�ces to show for arbitrary (%, % ′) ∈ RÈLg′MnY É
that we have

(thunk %) ‘Φg,Y" R (thunk % ′) ‘#
We reason as follows:

" to G .Ψg ′,Y% to I. I‘forceG
R Ψg,Y# to G .Ψg ′,Y% to I. I‘forceG (assumption)
≡ Ψg ′,Y% to I.Ψg ′′,Y

(
(thunkΦg ′,Y (coerce∅≤Y 〈I〉)) ‘#

)
R Ψg ′′,Y

(
(thunkΦg ′,Y (Ψg ′,Y%)) ‘#

)
(Y is thunkable)

R Ψg ′′,Y ((thunk % ′) ‘#) (Galois connection on g′)

3.3. A Galois connection between call-by-value and call-by-name 55

This and the fact that we have a Galois connection on g′′ then imply

thunk % ‘Φg,Y" ≡ Φg ′′,Y (" to G .Ψg ′,Y% to I. I‘forceG) R (thunk % ′) ‘#

as required.
Second, we show that (Φg,Y", #) ∈ RÈLg MnY É implies (",Ψg,Y#) ∈ RÈ〈Y〉Lg MvYÉ. We have

already mentioned that " is related to

coerce∅≤Y 〈thunk _G :Lg′MvY . " to 5 . G ‘force 5 〉

(using the fact that " is thunkable) so it su�ces to show that this computation is related to
Ψg,Y# by RÈ〈Y〉Lg MvYÉ. By looking at the de�nitions of Ψg,Y and this relation, and using the
fact that logical relations are closed under coerce, it is therefore enough to show that, for all
(+ ,+ ′) ∈ RÈLg′MvYÉ, the following computations are related by RÈ〈Y〉Lg′′MvYÉ:

" to 5 .+ ‘force 5 Ψg ′,Y
(
(thunk (Φ̂g ′,Y+ ′)) ‘#

)
We prove this by �rst reasoning as follows:

Φg ′′,Y (" to 5 .+ ‘force 5) ≡ Φg ′′,Y (" to 5 . coerce∅≤Y 〈+ 〉 to I. I‘force 5)
R Φg ′′,Y (" to 5 .Ψg ′,Y (Φg ′,Y (coerce∅≤Y 〈+ ′〉)) to I. I‘force 5)

(Galois connection on g′)
≡ (thunk (Φ̂g ′,Y+ ′)) ‘Φg,Y"
R (thunk (Φ̂g ′,Y+ ′)) ‘# (assumption)

and then using the fact that we have a Galois connection for g′′. �

This theorem also has a partial converse: if the maps form Galois connections, then compu-
tations that return elements of base types are thunkable:

Lemma 3.3.4 If the pair (Φunit→unit,Y,Ψunit→unit,Y) is a Galois connection then every closed
computation " : 〈Y〉g , where g ∈ {unit, bool}, is thunkable.

Proof. De�ne the closed computation "′ : 〈Y〉Lunit→ g MvY by

"′ B " to G . 〈thunk __ :unit. coerce∅≤Y 〈G〉〉

By a standard property of Galois connections, "′ is related by RÈ〈Y〉Lunit→ g MvYÉ to the
computation Ψunit→g,Y (Φunit→g,Y"′). Hence:

" to G . 〈thunk coerce∅≤Y 〈G〉〉 ≡ "′ to C . 〈thunk (() ‘ force C)〉
R Ψunit→g,Y (Φunit→g,Y"

′) to C . 〈thunk (() ‘ force C)〉
≡ coerce∅≤Y 〈thunk"〉 �

This proof works for base types g because the two maps Φg,Y and Ψg,Y are identities.
We end this section by returning to our main example.

Example 3.3.5 Recall our global state example. There are four possible e�ects: ∅, {get}, {put}
and {get, put}. As expected, the e�ect ∅ is thunkable. This is the case because if " : 〈∅〉� then
by the fundamental lemma (Lemma 3.1.4) there is some+ : � such that " ≡ 〈+ 〉. We therefore
have:

" to G . 〈thunk 〈G〉〉 ≡ 〈thunk 〈+ 〉〉 ≡ coerce∅≤∅ 〈thunk"〉

56 Chapter 3. Call-by-value and call-by-name

and these terms are related by RÈ〈∅〉�É.
The e�ect {put} is not thunkable, because the computation put true is not. This is also

what we would expect: if put true were thunkable then we would have

put true to G . 〈thunk coerce∅≤{put} 〈G〉〉 �ctx coerce∅≤{put} 〈thunk (put true)〉

which implies (using the computation context� to C . put false; force C) that put false 4 put true.
Clearly we do not want this to be the case (and it is not). The e�ect {get, put} similarly is not
thunkable.

The most interesting case is {get}. This e�ect is not thunkable because the computation
get () is not (this can be veri�ed trivially by looking at the de�nition of the logical relation). We
would not expect get to be thunkable because the state is not read-only: if get were thunkable
then we would have

get () to G . 〈thunk coerce∅≤{get} 〈G〉〉 �ctx coerce∅≤{get} 〈thunk (get ())〉 (3.1)

and using the context put false; � to C . (put true; force C) this implies

coerce{put}≤{get,put} (put true; 〈false〉) ≡ coerce{put}≤{get,put} (put true; 〈true〉)

which is not the case because the results of the two computations di�er.3
To summarize: the only e�ect that is thunkable for this example is ∅, and hence ∅ is the only

e�ect for which we can apply our reasoning principle (more interesing examples are discussed
in Section 4.4). In other words, we can only replace call-by-value with call-by-name in our
global state example for subterms that have no side-e�ects. (Though the rest of the program
might still have side-e�ects.) J

3.4 Reasoning principle for call-by-value and
call-by-name

We now use the Galois connections de�ned in the previous section to relate the call-by-value
and Levy-style call-by-name translations of expressions, and arrive at our reasoning principle.

Recall that we compose the call-by-name translation of each expression 4 with the maps Φ
and Ψ de�ned above, to arrive at a GCBPV computation of the same type as the call-by-value
translation4:

LΓMvY −→ LΓMnY
L4 MnY−−−→ Lg MnY −→ 〈Y〉Lg MvY

We �rst give a precise de�nition of this composition. The arrow on the right is just given by
applying Ψg,Y . The arrow on the left is a substitution Φ̂Γ,Y from terms in call-by-name contexts
LΓMnY to terms in call-by-value contexts LΓMvY . We de�ne Φ̂Γ,Y for the source-language typing
context Γ = G1 : g1, . . . G= : g= as

Φ̂Γ,Y B G1 ↦→ thunk
(
Φ̂g1,YG1

)
, . . . , G= ↦→ thunk

(
Φ̂g=,YG=

)
3However, even if we removed put from the language, and used the same de�nition of the logical relation

(but omitting the {put} and {get, put} cases, the computation get () would still not be thunkable with respect to
the logical relation. This suggests that the de�nition of RÈgetÉ above (and hence the free lifting) might not be
suitable in that case. We might be able to use a logical relation that relates more computations.

4Also recall that we identify GCBPV terms up to ≡ throughout this chapter, and therefore, because the e�ect
algebra is Gi�ord-style, it does not matter which typing derivation for 4 we choose to translate. We use this fact
implicitly in this section.

3.4. Reasoning principle for call-by-value and call-by-name 57

The composition above is then the term Ψg,Y
(
L4 MnY [Φ̂Γ,Y]

)
. If Γ ` 4 : g and >?B 4 ⊆ Y then

LΓMvY ` Ψg,Y
(
L4 MnY [Φ̂Γ,Y]

)
: 〈Y〉Lg MvY , so this computation has the same typing as L4 MvY .

The reasoning principle we derive proves instances of the contextual preorder that have
the form

L4 MvY 4ctx Ψg,Y
(
L4 MnY [Φ̂Γ,Y]

)
This works by �rst showing the two terms are related by the logical relation:(

L4 MvY , Ψg,Y
(
L4 MnY [Φ̂Γ,Y]

))
: RÈLΓMvYÉ ¤→ RÈ〈Y〉Lg MvYÉ

and then applying Lemma 3.1.5, which allows us to promote this to an instance of the contextual
preorder. We prove that the two terms are related using the properties of Galois connections,
which allow us to push composition with Ψg,Y into the structure of terms.

Lemma 3.4.1 Suppose that (Φg ′,Y,Ψg ′,Y) is a Galois connection from 〈Y〉Lg′MvY to Lg′MnY for every
source language type g′. If Γ ` 4 : g and >?B 4 ⊆ Y then

(L4 MvY , Ψg,Y
(
L4 MnY [Φ̂Γ,Y]

)
) : RÈLΓMvYÉ ¤→ RÈ〈Y〉Lg MvYÉ

Proof. By induction on the derivation of Γ ` 4 : g . In each case of the induction we consider an
arbitrary pair (f, f′) ∈ RÈLΓMvYÉ (recall that this is how ¤→ is de�ned). We de�ne f′′ to be the
composition of Φ̂Γ,Y with f′. In each case we are required to show (L4 MvY [f], Ψg,Y (L4 MnY [f′′])) ∈
RÈ〈Y〉Lg MvYÉ. We only give three representative cases.

• If 4 is a variable G then, writing + for f G and + ′ for f′ G , we have:

LG MvY [f] ≡ coerce∅≤Y 〈+ 〉 R Ψg,Y (Φg,Y ′ (coerce∅≤Y 〈+ ′〉)) ≡ Ψg,Y (LG MnY [f′′])

• If 4 is a _-abstraction _G :g′. 4 and g = g′→ g′′ then (expanding the de�nition of Ψg,Y) it
su�ces to show that (_G :Lg′MvY . L4 MvY) [f] is related by RÈLg′MvY → 〈Y〉Lg′′MvYÉ to(

_G :Lg′MvY .Ψg ′′,Y
(
L4 MnY [G ↦→ thunk (Φ̂g ′,YG)]

))
[f′′]

Consider arbitrary (,,, ′) ∈ RÈLg′MvYÉ. We have:

, ‘ (_G :Lg′MvY . L4 MvY) [f] ≡ L4 MvY [f, G ↦→,]
R Ψg ′′,Y

(
L4 MnY [f′′, G ↦→ thunk (Φ̂g ′,Y, ′)]

)
≡ , ′ ‘

(
_G :Lg′MvY .Ψg ′′,Y

(
L4 MnY [G ↦→ thunk (Φ̂g ′,YG)]

))
[f′′]

• If 4 is a function application 41 42, where 41 has type g′→ g , then:

L41 42MvY [f] ≡ L41MvY to 5 . L42M
v
Y to G . G ‘ force 5

R Ψg ′→g,Y
(
L41MnY [f′′]

)
to 5 .Ψg ′,Y

(
L42MnY [f′′]

)
to G . G ‘ force 5

R Ψg,Y
(
Φg,Y

(
Ψg ′→g,Y

(
L41MnY [f′′]

)
to 5 .Ψg ′,Y

(
L42MnY [f′′]

)
to G . G ‘ force 5

))
(Galois connection on g)

≡ Ψg,Y
(
(thunk (L42MnY [f′′])) ‘Φg ′→g,Y (Ψg ′→g,Y (L41MnY [f′′]))

)
R Ψg,Y

(
(thunk (L42MnY [f′′])) ‘ L41MnY [f′′]

)
(Galois connection on g′→ g)

≡ Ψg,Y
(
L41 42MnY [f′′]

)
�

58 Chapter 3. Call-by-value and call-by-name

We showed in the previous section (Theorem 3.3.3) that the maps between the two evaluation
orders form Galois connections if the e�ect Y is thunkable. Hence we arrive at our reasoning
principle, which we state formally as Theorem 3.4.2. Recall that each inequational theory
4 (De�nition 2.7.4) induces a contextual preorder 4ctx (De�nition 2.7.6). Given any such
inequational theory, to show that the call-by-value and call-by-name translations of source-
language expressions restricted to the e�ect Y are related by 4ctx it is enough to de�ne a suitable
logical relation, and show that the e�ect Y is thunkable.

Theorem 3.4.2 (Call-by-value and call-by-name) Suppose we given some GCBPV inequa-
tional theory and a logical relation such that:

• Each relation RÈ�É and each relation RÈ�É is transitive.
• For each ground type � and e�ect Y′ we have:

(#, # ′) ∈ RÈ〈Y〉�É ⇒ # 4 # ′

for all # , # ′.
• The e�ect Y is thunkable.

If Γ ` 4 : g and >?B 4 ⊆ Y then

L4 MvY 4ctx Ψg,Y
(
L4 MnY [Φ̂Γ,Y]

)
Proof. By Theorem 3.3.3, the maps between call-by-value and call-by-name computations form
Galois connections. Hence we can apply Lemma 3.4.1, which tells us that

(L4 MvY , Ψg,Y
(
L4 MnY [Φ̂Γ,Y]

)
) : RÈLΓMvYÉ ¤→ RÈ〈Y〉Lg MvYÉ

Finally, Lemma 3.1.5 implies the corresponding instance of the contextual preorder, which is
the result we want. �

The generality of this theorem comes from two sources. First, we consider arbitrary
inequational theories 4 in which the e�ect algebra is Gi�ord-style. (It may be possible to prove
a similar reasoning principle for other e�ect algebras on a case-by-case basis.) The only other
requirement is the existence of a suitable logical relation in which enough computations are
thunkable. Second, this theorem applies to terms that are open and have higher types, using the
maps between the two evaluation orders. We obtain a result about source-language programs
(closed expressions of base types) as a corollary. The corollary is closer to the standard results
that are proved for speci�c side-e�ects, because the maps are trivial.

Corollary 3.4.3 Suppose that the assumptions of Theorem 3.4.2 hold. If 4 is a closed source-
language expression of type g ∈ {unit, bool} and >?B 4 ⊆ Y then L4 MvY 4 L4 MnY . J

Like our result about Galois connections, the reasoning principle has a partial converse.
If call-by-value can be replaced with call-by-name, then computations of certain types are
thunkable:

Lemma 3.4.4 Suppose that for each Γ ` 4 : g with >?B 4 ⊆ Y we have

(L4 MvY , Ψg,Y
(
L4 MnY [Φ̂Γ,Y]

)
) : RÈLΓMvYÉ ¤→ RÈ〈Y〉Lg MvYÉ

For every base type � ∈ {unit, bool}, all closed computations " : 〈Y〉� are thunkable.

3.5. Related work 59

Proof. First we show that every closed computation # : 〈Y〉Lg MvY is related to Ψg,Y (Φg,Y#) (this is
one of the properties of Galois connections). To do this, de�ne the following source-language
expression 4 and GCBPV value + :

4 B G () (G : unit→ g ` 4 : g)
+ B thunk (_~ :unit. #) (� ` + : U (unit→ 〈Y〉Lg MvY))

Now we apply the assumption to 4:

≡ L4 MvY [G ↦→+] R Ψg,Y
(
L4 MnY [G ↦→ thunk (Φ̂unit→g,Y+)]

)
≡ Ψg,Y (Φg,Y#)

We use this to prove the result as follows. Let g′ be either unit or bool, so that Lg′MvY = �.
De�ne the closed computation # : 〈Y〉Lunit→ g′MvY by:

B " to G . 〈thunk _~ :unit. coerce∅≤Y 〈G〉〉

Using the above with g = unit→ g′ we have:

" to G . 〈thunk coerce∅≤Y 〈G〉〉 ≡ # to 5 . 〈thunk (()‘force 5)〉
R Ψunit→g ′,Y (Φunit→g ′,Y#) to 5 . 〈thunk (()‘force 5)〉
≡ coerce∅≤Y 〈thunk"〉

so " is thunkable. �

We again return to our main example, and apply our reasoning principle to it.

Example 3.4.5 Recall that for our global state example the e�ect ∅ is thunkable, but the
other three e�ects {get}, {put}, and {get, put} are not. (So the maps Φg,Y and Ψg,Y are Galois
connections for Y = ∅.) We have already mentioned that the logical relation for global state
satis�es the assumption about ground types that allows us to use it to prove instances of
the contextual preorder (this is not di�cult to show). We can therefore apply our reasoning
principle to expressions 4 that do not use either of the operations get and put. (This restriction
also applies to the free variables of 4 . Their types are annotated with the e�ect ∅ in both the
call-by-value and call-by-name e�ect systems, and hence we cannot bind them to expressions
that have side-e�ects.)

If we have any program with a call-by-value subterm that does not have side-e�ects then
the reasoning principle shows that we can replace the evaluation order of the subterm with
call-by-name. For this example, the contextual preorder is symmetric, so we could also replace
call-by-name with call-by-value: the reasoning principle shows they have identical behaviour.
In both cases, the program itself may have side-e�ects. The restriction on side-e�ects applies
only on the subterm. The corollary shows that if we have an entire program 4 that does not have
any side-e�ects, then call-by-value and call-by-name are equivalent: we have L4 Mv∅ ≡ L4 Mn∅.J

3.5 Related work
Comparing evaluation orders Plotkin [84] and many others relate call-by-value and call-
by-name. Crucially, they consider lambda-calculi with no side-e�ects other than divergence.
This makes a signi�cant di�erence to the techniques that can be used, in particular because in
this case the equational theory for call-by-name is strictly weaker than for call-by-value. This
is not necessarily true for other side-e�ects. Other evaluation orders (such as call-by-need)
have also been compared in similarly restricted settings [67, 70, 33].

It might also be possible to recast some of our work in terms of the duality between
call-by-value and call-by-name [23, 18, 99].

60 Chapter 3. Call-by-value and call-by-name

Relating semantics of languages The technique we use here to relate call-by-value and
call-by-name is based on the idea used �rst by Reynolds [89] to relate direct and continuation
semantics of the lambda calculus, and later used by others (e.g. [75, 52, 16, 24]). There are
several di�erences with our approach. Reynolds �rst constructs a logical relation between
the two semantics, and uses this to establish a relationship between direct and continuation
semantics using the two maps. Our logical relations do not relate call-by-value and call-by-
name, they instead relate arbitrary GCBPV terms. Reynolds also relies on continuations with a
large-enough domain of answers (e.g. a solution to a particular recursive domain equation) to
construct the maps between the two semantics. In our case we do not need to impose such a
restriction for the maps to exist.

There has been previous work [92, 54, 93] on soundness and completeness properties of
translations (similar to the translations into GCBPV). Galois connections (and similar structures)
in which the order is reduction of programs play a signi�cant role in these. A key di�erence
in our case is that we consider the observable behaviour of programs. We cannot consider
reductions in our case, because moving from call-by-value to call-by-name can add, remove,
and reorder reductions.

Axiomatic properties of side-e�ects In this chapter, we emphasize the use of axiomatic
properties of side-e�ects [27] for formal reasoning about programs. Many of these properties
have been used for this and similar purposes, and have been studied for particular side-e�ects
[14, 42, 60]. We contribute a new use for them.

3.6 Summary
This chapter has two primary goals. The �rst is to show that we can use GCBPV for formal
reasoning about e�ect-dependent program transformations, including those that involve source
languages. We do this primarily by de�ning a notion of logical relation for GCBPV (De�ni-
tion 3.1.1) and relating it to the contextual preorder (Lemma 3.1.5). We also describe a technique
for constructing these logical relations (the free lifting in Section 3.1.1).

The second is to derive a reasoning principle (Theorem 3.4.2) that relates call-by-value and
call-by-name. The principle shows that it is correct to replace call-by-value with call-by-name
for subterms restricted to thunkable e�ects (De�nition 3.3.2). It is about open expressions,
and allows us to change evaluation order within programs. We obtain a result about call-by-
value and call-by-name evaluations of programs as a corollary (Corollary 3.4.3). The reasoning
principle is not restricted to a particular collection of side-e�ects; we instead identify the
axiomatic property of side-e�ects (thunkable) that gives rise to a relationship between the two
evaluation orders.

We expect that the technique we use can be applied to other evaluation orders. Two evalu-
ation orders can be related by giving translations into some common intermediate language
(here we use GCBPV), constructing maps between the two translations, and showing that (for
some models) these maps form Galois connections. In Chapter 5 we give a speci�c example
of a relationship between call-by-name and call-by-need (with nontermination as the only
side-e�ect), but not a general reasoning principle.

In this chapter we work exclusively at the level of syntax. For example, the notion of
logical relation we use relates pairs of GCBPV terms, and we de�ne thunkable in terms of
the inequational theory. The advantage of using syntax rather than a denotational semantics
is that the syntax requires less machinery. However, it also has disadvantages. Sticking to
syntax makes it more di�cult to work with some side-e�ects (such as recursion) syntactically,

3.6. Summary 61

and many of the proofs (e.g. Theorem 3.3.3 and Lemma 3.4.1) are more complex. This partly
motivates the next chapter, where we switch to semantics. We redevelop the relationship
between call-by-value and call-by-name in terms of the semantics, and give more examples of
side-e�ects that it can be applied to. At a high-level, the principle does not change much, and
the technique used to derive it is the same. Both versions have merits.

Chapter 4

Noninvertible program transformations

Most of the previous work on proving the correctness of e�ect-dependent transformations
has been restricted to cases where the transformations are invertible in the sense that both
directions are valid, since they rely on the expressions having the same behaviour. However,
there are many situations in which only one direction of a program transformation is valid.
Consider the following two expressions:

let G = 4 in
let ~ = 4 in
(G,~)

let G = 4 in

(G, G)

In some cases these have the same behaviour, e.g. if the only side-e�ect of 4 is to write to
some state that is not shared between threads. When this is true and the expression on the left
appears inside some program, then it can safely be replaced with the expression on the right,
perhaps as part of a compiler optimization.

Suppose that 4 above is allowed to write to state that is shared between threads. In this
case, the two expressions are not equivalent, because some other thread may concurrently
use the state between the two executions of 4 on the left. The observable behaviours of the
expression on the right are an (in general proper) superset of those on the left. Replacing the
left with the right would be a valid transformation, but the reverse is not. We cannot verify all
e�ect-dependent transformations by proving only equivalences between expressions.

There are also other examples. Consider a language with boxing (i.e. conversion of primitive
values into immutable references), and an equality operator on such references. We might
wish to validate a transformation that merges boxes of the same value. This transformation
would change uses of equality that could have evaluated to either true or false into ones that
always give true. The reverse transformation is not valid because it could replace a program
that is guaranteed to give true with one that might give false. Another example is unde�ned
behaviour (e.g. in the C language). The C standard allows each expression that has unde�ned
behaviour to be replaced with any other (even one that causes arbitrary e�ects), but the reverse
is not true. Including unde�ned behaviour when considering program transformations is useful
even if the source language does not have unde�ned behaviour [55].

These examples explain why we de�ned inequational theories in Section 2.7.2. This chapter
develops machinery that we can use for reasoning about these noninvertible e�ect-dependent
transformations.

Contributions We show that previous work on equational reasoning about e�ects can be
adapted to noninvertible e�ect-dependent transformations:

63

64 Chapter 4. Noninvertible program transformations

• We describe a general order-enriched categorical semantics for GCBPV that allows us to
state and prove noninvertible transformations semantically (Section 4.2).

• We relate the syntax to the semantics by describing how to prove adequacy of models of
GCBPV (Section 4.3). We do this by developing an abstract notion of logical relation that
generalizes the one given in Section 3.1.

• We apply the framework to examples by verifying e�ect-dependent transformations
involving unde�ned behaviour, nondeterminism, and mutable state shared between
threads. The examples are introduced in Section 4.1.

• We use the denotational semantics to redevelop our reasoning principle for relating
call-by-value and call-by-name (Section 4.4).

Much of this chapter simply shows that techniques that have previously been applied to
reasoning about e�ect-dependent transformations can be adapted to non-invertible cases,
allowing support for previously neglected applications. To do this we have to redevelop some
of the de�nitions that appear in the previous chapter. There we worked exclusively with syntax
(in particular, the notion of logical relation we used relates terms to other terms). Many of the
de�nitions we give here generalize those in the previous chapter.

4.1 Examples of noninvertible transformations
We �rst instantiate GCBPV (by choosing suitable inequational theories) to characterize three
di�erent collections of side-e�ects that we use as examples. For each example, we also state
instances of the contextual preorder 4ctx (and its symmetric counterpart �ctx) that represent
e�ect-dependent program transformations. We defer the proofs that these instances hold to
later sections of this chapter.

We use the following syntactic sugar for booleans (with eliminators for values and for
computations), let bindings, and sequencing of computations throughout.

bool B unit + unit true B inl () false B inr ()
if + then,1 else,2 B case + of {inl G1.,1, inr G2.,2} (G8 not free in,8)
if + then"1 else"2 B case + of {inl G1. "1, inr G2. "2} (G8 not free in "8)

let G = + in" B 〈+ 〉 to G . "
" ; # B " to ~. # (~ not free in #)

The syntactic sugar for let-bindings can be written equivalently using lambdas or substitution:

let G = + in" ≡ + ‘ _G. " ≡ " [G ↦→+]

4.1.1 Unde�ned behaviour

As a simple example, we consider C-style unde�ned behaviour. Computations with unde�ned
behaviour are allowed to do anything (including arbitrary side-e�ects) at runtime. Here we
consider unde�ned behaviour in isolation, without any other side-e�ects in the language. We
contribute a denotational semantics for unde�ned behaviour.

Recall that to instantiate GCBPV we need to choose a signature (see De�nition 2.7.1), which
consists of an e�ect algebra, base types, constants, and operations (with coarities, arities and
e�ects). For this example, the signature consists of the following data:

4.1. Examples of noninvertible transformations 65

• The e�ect algebra is the trivial preordered monoid {★}. (So we do not actually track any
e�ect information, and none of the transformations we consider are e�ect-dependent.
This example is intended to be as simple as possible.)

• The only base type is int, which contains signed 32-bit integers.

• We have a constant = : int for each = in the set ÈintÉ B {−231, . . . , 231 − 1}, and two
constants

geq : int × int→ bool add : int × int→ int

The �rst determines if its �rst argument is greater than or equal to its second argument,
and the second adds two integers, with the result de�ned to wrap around on over�ow.

• There are two operations. The �rst is undef, which has coarity unit, arity empty and ef-
fect★. Hence undef () is a computation of type 〈★〉empty. Semantically, it has unde�ned
behaviour (and the inequational theory we de�ne below captures this property.) As syn-
tactic sugar we have an unde�ned computation undef� of type � for every computation
type �:

undef� B undef () to G . case
�
G of {}

(We have undef () ≡ undef 〈★〉empty.) The second operation is addnsw (no signed wrap),
which adds two integers with unde�ned behaviour on over�ow. Its coarity is int × int,
its arity is int, and its e�ect is ★, so if+1,+2 : int then addnsw (+1,+2) : 〈★〉int adds+1 and
+2.

As we explain in Section 2.7.2, we can give an inequational theory by specifying a list of
signature axioms, which characterize the behaviour of the operations and constants.

The main axiom we have is that unde�ned behaviour can be replaced with any computation
(for all � and "):

undef� 4 "

(Recall our usual convention on typing of equations: the axiom holds only if both sides have
the same type in the same typing context.)

We also have axioms that specify the behaviour of the three functions on constant integers.
These are (for all<,= ∈ ÈintÉ):

add(<,=) ≡ < + = + 232 if (< + =) < −231

add(<,=) ≡ < + = if (< + =) ∈ ÈintÉ
add(<,=) ≡ < + = − 232 if (< + =) ≥ 231

geq(<,=) ≡ true if< ≥ =
geq(<,=) ≡ false if< < =

addnsw(<,=) ≡ 〈< + =〉 if (< + =) ∈ ÈintÉ
addnsw(<,=) ≡ undef int if (< + =) ∉ ÈintÉ

where + is the usual addition of integers in Z. (Recall that we write ≡ to mean both directions
are taken as axioms.) This completes the de�nition of the inequational theory.

A consequence of these signature axioms is that if unde�ned behaviour occurs as part of a
larger computation, then the whole computation is unde�ned:

undef� to G . " ≡ undef�

66 Chapter 4. Noninvertible program transformations

We give some valid program transformations for the inequational theory for unde�ned
behaviour. The �rst is replacing addnsw with add inside programs:

addnsw(E1, E2) 4ctx 〈add(E1, E2)〉

Validity of this transformation implies it is correct to compile addnsw as add. It is not invertible
in general (since the reverse can introduce unde�ned behaviour).

A common optimization is to simplify comparisons of integers by using the fact that
some operations on signed integers have unde�ned behaviour. One example is the following
transformation:

addnsw(+1,+2) to G .
let 1 = geq(G,+1) in
#

4ctx

addnsw(+1,+2) to G .
let 1 = geq(+2, 0) in
#

(This is especially useful when +2 is a constant, because the comparison on the right can be
evaluated statically.) Perhaps surprisingly, the reverse direction is also valid. This is the case
because if the addition over�ows, both terms have unde�ned behaviour, so the result of the
comparison is irrelevant. It would not be correct to apply either direction of this transformation
if add was used instead of addnsw.

4.1.2 Nondeterminism
We also consider binary nondeterminism [11], so that programs choose from �nite nonempty
sets of results via a binary choice operation flip (that “�ips a coin”). Unlike previous work (such
as [11]), we allow nondeterministic choices to be made statically by program transformations,
reducing the amount of runtime nondeterminism. These transformations are correct because
they restrict the behaviour of programs; they do not add new behaviours. This is not the case for
the reverse direction, and hence these transformations are not invertible. Finite nondeterminism
is super�cially similar to unde�ned behaviour, but not the same since there is no equation that
corresponds to undef� to G . " ≡ undef� .

The GCBPV signature for this example consists of the following data:
• The e�ect algebra tracks nondeterminism. It is the preordered monoid {1 ≤ +} with least

upper bound as the multiplication and 1 as the unit. In this case, 1 means deterministic,
and + means potentially nondeterministic.

• There are no base types or constants.
• There is a single operation flip with coarity unit, arity bool and e�ect +. The computation
flip () has type 〈+〉bool, and nondeterministically chooses either true or false.

We use the operation flip to choose between arbitrary computations "1, "2 by de�ning

"1 or"2 B flip () to G . if G then"1 else"2

If Γ ` "1 : � and Γ ` "2 : � then Γ ` "1 or "2 : 〈〈+〉〉� . The [-law for bool implies that
flip () ≡ 〈true〉 or 〈false〉.

Again we specify the inequational theory by giving signature axioms. These are listed in
Figure 4.1. The �rst is the crucial one: it allows us to replace flip () with true or false statically
(a similar axiom with false instead of true is derivable). The other direction of this axiom (with
< rather than 4) is not derivable, so we cannot replace constant booleans with flip (). The �nal
three axioms in this group ensure that nondeterministic choice is idempotent, commutative
and associative. Although these three axioms are non-symmetric (we only assume 4 rather
than ≡) the other direction of each is derivable.

4.1. Examples of noninvertible transformations 67

flip () 4 coerce1≤+ 〈true〉
coerce1≤+ 〈()〉 4 flip (); 〈()〉

flip () 4 flip () to G . 〈if G then false else true〉

©«
flip () to G .
if G then flip () to ~. 〈inlunit ()〉

else coerce1≤+ 〈inrbool ()〉

ª®®¬ 4
©«
flip () to G .
if G then coerce1≤+ 〈inlunittrue〉

else flip () to ~.
〈if ~ then inlunitfalse else inrbool ()〉

ª®®®®¬
Figure 4.1: Signature axioms for nondeterminism

Lemma 4.1.1
1. If Γ ` "1 : � and Γ ` "2 : � then "1 or"2 ≡ "2 or"1.
2. If Γ ` " : � then " or" ≡ coerce�<:〈〈+〉〉� " .
3. If Γ ` "1 : � and Γ ` "2 : � then

"1 or"2 4 coerce�<:〈〈+〉〉� "1 "1 or"2 4 coerce�<:〈〈+〉〉� "2

4. If Γ ` "1 : � , Γ ` "2 : � and Γ ` "3 : � then ("1 or"2) or"3 ≡ "1 or ("2 or"3).
5. If Γ ` "1 : 〈Y〉�, Γ ` "2 : 〈Y〉� and Γ, G : � ` # : � then

("1 or"2) to G . # ≡ ("1 to G . #) or ("2 to G . #) J

This completes the inequational theory we use for our nondeterminism example.
We consider a transformation that reuses the result of a duplicated computation:

" to G . " to ~. # 4ctx " to G . # [~ ↦→G]

Validity of this transformation is shown in later sections of this chapter. Benton et al. [11]
consider a similar transformation when " is deterministic; in this case, the reverse direction
also holds (if " has e�ect 1, then �ctx holds). Their equational framework cannot validate
this duplicated computation transformation when nondeterminism is allowed because it is not
invertible (the right-to-left direction is not correct in general). Our framework can. We can also
validate other transformations involving nondeterminism, for example, dead code elimination:

" ; # �ctx #

4.1.3 Shared global state
We also consider a concurrency example. We again use mutable global state as a source of
side-e�ects, but in this case assume the state can be accessed by multiple threads, which
requires us to use directed versions of the signature axioms for global state. We do not attempt
to fully characterize a concurrent language in this example. Instead, we focus only on a single
thread (assuming there might be other threads that can arbitrarily access and mutate the state),
and do not include any concurrency primitives (e.g. creation of new threads). The idea is
that we can validate transformations on subprograms that use the shared state but do not use
any concurrency primitives. For simplicity, the state is the only source of side-e�ects in this
example.

The signature for this example consists of the following data:

68 Chapter 4. Noninvertible program transformations

get () to G . (putG ; 〈G〉) 4 coerce{get}≤{get,put} (get ())
put+ ; get () 4 put+ ; coerce∅≤{get} 〈+ 〉
put+1; put+2 4 put+2

get () to G . get () to ~. 〈(G,~)〉 4 get () to G . 〈(G, G)〉
get (); 〈()〉 ≡ coerce∅≤{get} 〈()〉

Figure 4.2: Signature axioms for shared global state

• We use a Gi�ord-style e�ect algebra (Example 2.1.2) with set of operations Σ B {get, put},
so that e�ects Y ⊆ Σ specify the operations that may be used.

• There are no base types or constants.
• There are two operations:

Operation op Coarity carop Arity arop E�ect e�op

get unit bool {get}
put bool unit {put}

The signature axioms of the inequational theory are given in Figure 4.2. The axioms are the
same as those for non-shared global state (Figure 2.14), except that four of them are directed.
The reverse directions introduce data races if another thread is accessing the state concurrently
and hence they are not included.

We validate similar program transformations to the previous example: subject to suitable
restrictions on e�ects, it is sound to reuse the result of a duplicated computation, and eliminate
dead computations. Speci�cally, if " has type 〈Y〉� where Y ⊆ {put}, and "′ has type 〈Y′〉�′
where Y′ ⊆ {get}, then the following hold:

" to G . " to ~. # 4ctx " to G . # [~ ↦→G] "′; # �ctx #

The instance on the left does not hold when the e�ect of " is {get}, because we do not allow
reordering of consecutive uses of get. We could instead capture a weaker memory model by
including a signature axiom that allows this reordering; in this case, the program transformation
would be valid. The instance on the left is also not symmetric (so the transformation is not
invertible). This is unlike non-shared state, in which it is symmetric.

4.2 Order-enriched semantics of GCBPV
The goal of this chapter is to prove instances of contextual preorders 4ctx. It is di�cult to
prove these directly so, as in the previous chapter, we develop some extra machinery. Unlike
the previous chapter, here we focus on denotational semantics. This is primarily because
denotational models are easier to reason about than syntactic logical relations.

A common way of proving contextual equivalences is to give an adequate model of the
chosen side-e�ects, so that it su�ces to show that denotations of terms are equal in the model.
In our case, 4ctx is not symmetric, so equality between denotations is not suitable. We therefore
use order-enriched models, which come with partial orders v between denotations.

We have three examples, which need to be modelled in di�erent settings. There are also
other examples of side-e�ects (e.g. local state [88] and probability [37]) that require other

4.2. Order-enriched semantics of GCBPV 69

settings. We aim to provide a general categorical semantics for GCBPV that can be applied
to as many of these as possible. Our semantics is based on adjunction models for CBPV [58],
which we extend with grading and with order-enrichment.1 The order v on morphisms is the
semantic counterpart of the contextual preorder.

We use some order-enriched category theory to describe the semantics (see Appendix A
for background).

4.2.1 Graded adjunctions
The data required for a model of GCBPV closely mirrors the syntax. There are two kinds
of types, and therefore we use two Poset-categories: a value category C and a computation
category D. Value types are interpreted as objects of C, and computation types are interpreted
as objects of D. We use -,., . . . to refer to objects of C and -,., . . . for objects of D.

The key component in each model is the data required to interpret thunk types and returner
types. In ordinary CBPV, there is a single type former F for returner types (because there is no
grading), and in the semantics this is left adjoint to the type former U for thunk types:

C D
�

*

a

(Of course, we actually need a strong adjunction; we add strength below.) We have an adjunction
because for each value of type � we can form a computation of type F� (by returning it), and
any computation Γ, G : � ` " : � can be extended to a computation

Γ, ~ : UF� ` force~ to G . " : �

that satis�es certain properties. To add grading, we note that this is still the case with the
returner type 〈1〉� (i.e. with the unit e�ect). We therefore use the left adjoint � as the
interpretation of 〈1〉�. For returner types annotated with other e�ects, we note that they can be
written using 〈1〉 and the action of the e�ect algebra on computation types (see De�nition 2.7.3),
as 〈Y〉� = 〈〈Y〉〉〈1〉�. Hence the remaining structure we need to interpret the other returner
types is an action Y~− of the preordered monoid of e�ects on the computation category D.

De�nition 4.2.1 Suppose that (E, ≤, ·, 1) is a preordered monoid, and D is a Poset-category.
A strict Poset-action of E on D is a Poset-functor ~ : E × D → D that respects the unit and
multiplication:

1~− = IdD (Y ·Y′)~− = Y~ (Y′~−) J

Here, and throughout this chapter, we treat the preordered monoid as a Poset-category with
set of objects E, and a single morphism from Y to Y′ if Y ≤ Y′ (we write this morphism as Y ≤ Y′).
The ordering on morphisms is equality.

Each strict Poset-action comes in particular with morphisms (Y ≤ Y′)~- from Y~- to
Y′~- whenever Y ≤ Y′. This corresponds to the subtyping 〈〈Y〉〉� <: 〈〈Y′〉〉� .

We call the combination of an adjunction and an action a graded Poset-adjunction. This
de�nition is implicit in [28] (which considers resolutions of graded monads).

De�nition 4.2.2 Suppose that (E, ≤, ·, 1) is a preordered monoid, and that C and D are Poset-
categories. An (E-)graded Poset-adjunction is a triple (�,* , ~) where:

1Though unlike Levy, we do not de�ne adjunction models in terms of locally indexed categories, instead we
use more a more elementary (but less elegant) description.

70 Chapter 4. Noninvertible program transformations

• � : C → D and * : D → C form a Poset-adjunction � a * , with unit [: IdC → * ◦ �
and counit s : � ◦* → IdD.

• ~ : E × D→ D is a strict E-action on D. J

The counit induces an extension operator: every C-morphism 5 : - → *. can be extended
to a C-morphism

* (Y~�-)
* (Y~� 5)
−−−−−−−→ * (Y~� (*.))

* (Y~s)
−−−−−−→ *.

This is similar to the extension of computations in context Γ, G : � to computations in context
Γ, G : UF� mentioned above, except for the extra context Γ. This extension operator is enough
to interpret closed computations " to G . # , but because there is no Γ, it cannot interpret this
computation if it is open. We require a more general extension operator than this, and to de�ne
it we need a strong adjunction. (Strength appears for exactly the same reason as it does for
models of the monadic metalanguage [78].)

De�nition 4.2.3 (Graded strong Poset-adjunction) Suppose that (E, ≤, ·, 1) is a preordered
monoid, C is a cartesian Poset-category, and D is a Poset-category. An graded strong Poset-
adjunction consists of a graded Poset-adjunction (�,* , ~) and a family of morphisms

strY,-,. : - ×* (Y~�.) → * (Y~� (- × .))
indexed by Y ∈ E and -,. ∈ C, such that:

• For each Y, the pair (* (Y~�−), strY) is a strong Poset-functor C→ C.
• The unit [is a strong natural transformation IdC → (* ◦ �, str1).
• For each Y, Y′ the family of morphisms* (Y~s (Y ′~�−)) is a strong natural transformation

(* (Y~�−), strY) ◦ (* (Y′~�−), strY ′) → (* ((Y ·Y′)~�−), strY ·Y ′)

• The strength is natural in Y: if Y ≤ Y′ then

- ×* (Y~�.) * (Y~� (- × .))

- ×* (Y′~�.) * (Y′~� (- × .))

strY,-,.

-×* ((Y≤Y ′)~�.) * ((Y≤Y ′)~� (-×.))

strY ′,-,.

commutes for all -,. . J

The strength enables us to de�ne a more general version of the extension operator above.
Given a C-morphism 5 : / × - → *. , de�ne its extension 5 † : / ×* (Y~�-) → * (Y~.) as

/ ×* (Y~�-)
strY,/,-−−−−−→ * (Y~� (/ × -))

* (Y~� 5)
−−−−−−−→ * (Y~� (*.))

* (Y~s.)
−−−−−−−→ * (Y~.)

In the semantics, we use this extension operator to interpret open computations " to G . # in
typing context Γ. The object / is the interpretation of Γ.

Each graded Poset-adjunction with C = Set or C = Poset forms a graded strong Poset-
adjunction in exactly one way. The strength in both of these cases is given by:

strY,-,. (G, C) = * (Y~ (� (~ ↦→ (G,~)))) C
For C = lCpo, if a strength exists it is also given by this formula, and this formula de�nes a
strength when the functions * (Y~�−) : C(-,.) → D(* (Y~�-),* (Y~�.)) preserve least
upper bounds.2 These facts are useful when de�ning models based on Set, Poset or lCpo.

2This characterization of strengths for Set, Poset and lCpo follows from the fact that tensorial strengths
correspond to enrichments of functors [50]. One can also show that if C is well-pointed, then strengths are uniquely
determined by the formula above.

4.2. Order-enriched semantics of GCBPV 71

4.2.2 Models of GCBPV

We are almost ready to give the de�nition of GCBPV model. We do this formally below
(De�nition 4.2.7), but �rst give an informal description. In addition to the graded adjunction,
we need data to interpret the rest of the type formers. On the value level we have product
and sum types, so we ask for the value category C to be bicartesian, and require distributivity.
For computations we have product types, and so we ask for the computation category D to be
cartesian. Since for types we have 〈〈Y〉〉unit = unit and 〈〈Y〉〉(�1 ×�2) = 〈〈Y〉〉�1 × 〈〈Y〉〉�2 we also
require the action ~ to strictly preserve the cartesian structure of D. In particular, we require

Y~1 = 1 Y~ (- 1 × - 2) = (Y~- 1) × (Y~- 1)

where we write the cartesian structure of D with an underline.
Functions in GCBPV map values to computations, and are computations themselves. To

interpret these we use a Poset-functor - ⇒ − : D→ D for each object - ∈ C, with currying
functions Λ and uncurrying functions Λ−1:

Λ : C(/ × -,*.) � C(/,* (- ⇒ .)) : Λ−1

As for products, we require exponentials to strictly preserve the action, in particular,

Y~ (-⇒.) = -⇒(Y~.)

We also impose an additional requirement on the exponentials - ⇒ −. To explain this we
de�ne a notion of linearity3 for morphisms of C. The de�nition uses the right strength strr

(which is the left strength str with the products reversed):

strrY,-,. B * (Y~� 〈c2, c1〉) ◦ strY,. ,- ◦ 〈c2, c1〉 : * (Y~�-) × . → * (Y~� (- × .))

De�nition 4.2.4 A natural transformation UY : * (Y~-) → * (Y~.) is linear if the following
diagram commutes

* (Y~�* (Y′~-)) * (Y~�* (Y′~.))

* ((Y ·Y′)~-) * ((Y ·Y′)~.)

* (Y~�UY ′)

* (Y~sY ′~-) * (Y~sY ′~.)

UY ·Y ′

for all Y, Y′ ∈ E.
A natural transformation UY : * (Y~-)×/ → * (Y~.) is left-linear if the following diagram

commutes

* (Y~�* (Y′~-)) × / * (Y~� (* (Y′~-) × /)) * (Y~�* (Y′~.))

* ((Y ·Y′)~-) × / * ((Y ·Y′)~.)

* (Y~sY ′~-)×/

strr * (Y~�UY ′)

* (Y~sY ′~.)

UY ·Y ′

for all Y, Y′ ∈ E. J

3The word linear comes from Kock [49]. A similar property for syntax (see Section 4.2.3.5) is also called
linearity by Munch-Maccagnoni [79] (and by Levy [60] for call-by-push-value).

72 Chapter 4. Noninvertible program transformations

È�É ∈ C

ÈunitÉ B 1
È�1 ×�2É B È�1É × È�2É
ÈemptyÉ B 0
È�1 +�2É B È�1É + È�2É
ÈU�É B * È�É

È�É ∈ D

ÈunitÉ B 1�
�1 ×�2

�
B

�
�1

�
×

�
�2

�
È�→ �É B È�É ⇒ È�É
È〈Y〉�É B Y~�È�É

ÈΓÉ ∈ C

È�É B 1
ÈΓ, G : �É B ÈΓÉ × È�É

ÈΓ ` + : �É : ÈΓÉ → È�É

È2É B È2É ◦ 〈〉ÈΓÉ
ÈGÉ B cG

È()É B 〈〉ÈΓÉ
È(+1,+2)É B 〈È+1É, È+2É〉
Èfst+É B c1 ◦ È+É
Èsnd+É B c2 ◦ È+É

Ècase� + of {}É B []È�É ◦ È+É
Èinl+É B inl ◦ È+É
Èinr+É B inr ◦ È+É��case + of

{inl G1.,1
, inr G2.,2}

�� B
©«
[È,1É, È,2É]
◦ dist
◦ 〈id, È+É〉

ª®®¬
Èthunk"É B È"É

ÈΓ ` " : �É : ÈΓÉ → * È�É

È_{}É B � ◦〈〉ÈΓÉ
È_{1. "1, 2. "2}É B � ◦〈È"1É, È"2É〉

È8‘"É B *c8 ◦ È"É (8 ∈ {1, 2})
È_G :�."É B ΛÈ"É
È+ ‘"É B Λ−1È"É ◦ 〈id, È+É〉
Èop+É B ÈopÉ ◦ È+É
È〈+ 〉É B [◦ È+É

È" to G . #É B È#É† ◦ 〈id, È"É〉
ÈcoerceY≤Y ′"É B * ((Y ≤ Y′)~�È�É) ◦ È"É

Èforce+É B È+É

Figure 4.3: Denotational semantics of GCBPV

The intuition is that (left-)linearity means U uses the* (Y~-) argument exactly once, and does
not add any other side-e�ects.

Using the data for exponentials above we de�ne a natural transformation ev for function
application:

evY,-,. B Λ−1id : * (Y~ (- ⇒ .)) × - → * (Y~.)

The extra requirement is that this natural transformation is left-linear. This is equivalent to
requiring Λ−1UY to be left-linear for all linear U .

The remaining data required to interpret GCBPV is an interpretation È1É ∈ C of each base
type 1, an interpretation È2É : 1 → È�É of each constant 2 of type �, and an interpretation
ÈopÉ : carop → * (e�op~�arop) of each operation op.

Using this data, we give the denotational semantics of GCBPV in Figure 4.3. Each value
type � is interpreted as an object È�É is the value category C, and each computation type
� is interpreted as an object È�É of the computation category D. The strict preservation
requirements we impose imply that È〈〈Y〉〉�É = Y~È�É, and so È" to G . #É is well-de�ned.
Typing contexts Γ are interpreted as objects ÈΓÉ ∈ C using the terminal object and binary
products. If (G : �) ∈ Γ then we write cG : ÈΓÉ → È�É for the corresponding projection.

4.2. Order-enriched semantics of GCBPV 73

The interpretation of terms is given on the bottom of Figure 4.3. Values Γ ` + : � are
interpreted as morphisms ÈΓ ` + : �É : ÈΓÉ → È�É in the value category C. Computations
Γ ` " : � are also interpreted in the value category, as morphisms ÈΓ ` " : �É : ÈΓÉ →
* È�É. (Intuitively, we interpret computations as morphisms of C because morphisms in the
computation category D are e�ect-preserving, while computations are not. The interpretation
of a computation " is also not in general linear.) We often omit the typing context and type
from denotations of terms. The two isomorphisms � in Figure 4.3 are the inverses of the
following morphisms:

〈〉* 1 : * 1→ 1 〈*c1,* c2〉 : * (- 1 × - 2) → *- 1 ×*- 2

These inverses exist because* is a right adjoint. In adjunction models, thunk and force are
invisible because computations are interpreted in C. The interpretation of to uses the general
extension operator (−)† de�ned in Section 4.2.1. Computations of returner type are coerced
using (Y ≤ Y′)~ (−).

We collect together all of the data required for the semantics into the notion of GCBPV
structure.

De�nition 4.2.5 (GCBPV structure) Given some GCBPV signature, a structure consists of
• A distributive Poset-category C and a cartesian Poset-category D.
• A Poset-functor - ⇒ − : D→ D for each - ∈ C, together with a family of bijections

Λ : C(/ × -,*.) � C(/,* (- ⇒ .)) : Λ−1

natural in / ∈ C and . ∈ D.
• A graded strong Poset-adjunction (�,* , ~), where � : C→ D and* : D→ C, such that

Y~1 = 1
Y~ (- 1 × - 2) = (Y~- 1) × (Y~- 2) 〈Y~c1, Y~c2〉 = idY~ (- 1×- 2)

Y~ (- ⇒ .) = - ⇒ (Y~.) ev is left-linear

• An object È1É ∈ C for each base type 1.
• A morphism È2É : 1→ È�É for each constant 2 ∈ K�, and a morphism ÈopÉ : ÈcaropÉ →
* (e�op~�ÈaropÉ) for each operation op ∈ Σ. J

Given any such structure, the denotational semantics de�ned in Figure 4.3 satis�es some
useful properties. Recall that by de�nition, each GCBPV inequational theory is required to
satisfy congruence and substitution properties, and also to respect the core axioms given in
Figure 2.13. The denotational semantics satis�es similar properties. In the following lemma, we
interpret well-typed substitutions Γ ` f : Δ, as C-morphisms ÈΓ ` f : ΔÉ : ÈΓÉ → ÈΔÉ, given
by tupling their components.

Lemma 4.2.6 Given any GCBPV structure, the following properties hold:
1. Compositionality:

• If ÈΓ ` + : �É v ÈΓ `, : �É then for term contexts with hole �,

Γ′ ` C[+] : � ∧ Γ′ ` C[,] : � ⇒ ÈΓ ` C[+] : �É v ÈΓ ` C[,] : �É
Γ′ ` C[+] : � ∧ Γ′ ` C[,] : � ⇒

�
Γ′ ` C[+] : �

�
v

�
Γ′ ` C[,] : �

�

74 Chapter 4. Noninvertible program transformations

• If ÈΓ ` " : �É v ÈΓ ` # : �É then for term contexts with hole �,

Γ′ ` C["] : � ∧ Γ′ ` C[#] : � ⇒ ÈΓ ` C["] : �É v ÈΓ ` C[#] : �É
Γ′ ` C["] : � ∧ Γ′ ` C[#] : � ⇒

�
Γ′ ` C["] : �

�
v

�
Γ′ ` C[#] : �

�
2. Substitution: if Γ ` f : Δ then:

Δ ` + : � ⇒ ÈΓ ` + [f] : �É = ÈΔ ` + : �É ◦ ÈΓ ` f : ΔÉ
Δ ` " : � ⇒ ÈΓ ` " [f] : �É = ÈΔ ` " : �É ◦ ÈΓ ` f : ΔÉ

Hence if ÈΓ ` f : ΔÉ v ÈΓ ` f′ : ΔÉ then

ÈΔ ` + : �É v ÈΔ `, : �É ⇒ ÈΓ ` + [f] : �É v ÈΓ `, [f′] : �É
ÈΔ ` " : �É v ÈΔ ` # : �É ⇒ ÈΓ ` " [f] : �É v ÈΓ ` # [f′] : �É

3. Core axioms:
• Values: if Γ ` + : � and Γ `, : �, and + ≡ , is an instance of an axiom in

Figure 2.13, then ÈΓ ` + : �É = ÈΓ `, : �É.
• Computations: if Γ ` " : � and Γ ` # : � , and " ≡ # is an instance of an axiom in

Figure 2.13, then ÈΓ ` " : �É = ÈΓ ` # : �É.

Proof sketch. Each part of this lemma is proved separately.
For compositionality, the proof is by induction on the structure of the term contexts C[]

and C[]. Each case follows immediately from monotonicity (for example of the copairing
operations 〈−,−〉).

For substitution, we �rst show a weakening lemma: there is an evident morphism

ÈΓ, G : �, Γ′É → ÈΓ, Γ′É

and if Γ, Γ′ ` " : � then the interpretation of Γ, G : �, Γ′ ` " : � is equal to

ÈΓ, G : �, Γ′É −→ ÈΓ, Γ′É
ÈΓ,Γ′`" :�É
−−−−−−−−−→ È�É

There is a similar fact for values. We then show the substitution lemma by induction on +
and " , weakening substitutions where necessary. The second part of substitution follows
immediately from the �rst part and monotonicity of ◦.

For the core axioms we go case-by-case. Most follow from the universal properties of the
structure used to interpret each type former. For the axioms that involve substitution we use
the previous part of this lemma. For the axiom _~ :�." to G . # ≡ " to G . _~ :�. # we use
left-linearity of ev. �

This lemma implies that the denotational semantics is sound with respect to the smallest
inequational theory, in which the core axioms are the only axioms. It is not in general sound
with respect to an arbitrary inequational theory. For our three examples in Section 4.1, we
give signature axioms in addition to the core axioms, and de�ne the inequational theory by
closing under re�exivity, transitivity and congruence. The above lemma implies that to check
soundness with respect to an inequational theory de�ned in this way, we need only check the
signature axioms.

We call a structure a model if it is sound with respect to some given inequational theory.

4.2. Order-enriched semantics of GCBPV 75

De�nition 4.2.7 (GCBPV model) A model of some GCBPV inequational theory 4 is a struc-
ture such that the interpretation of terms is sound: if Γ ` + 4 , : � then ÈΓ ` + : �É v
ÈΓ `, : �É, and if Γ ` " 4 # : � then ÈΓ ` " : �É v ÈΓ ` # : �É. J

Each model induces a semantic notion of validity of program transformations: a transformation
is valid in a model if it only replaces " with # when È"É v È#É.

4.2.3 Constructing models
We give various models of GCBPV. First we present the three models we use to verify the
example program transformations in Section 4.1, one each for unde�ned behaviour, nondeter-
minism and shared global state. We then describe how to construct monadic models of GCBPV.
Finally we describe the term model, which we use for adequacy proofs in Section 4.3.

4.2.3.1 Unde�ned behaviour

Our unde�ned behaviour example has the simplest model. We interpret value types as posets
(in the value category C = Poset), and computation types as pointed posets (in the computation
category D = Poset⊥). The least element of each object of Poset⊥ represents unde�ned
behaviour. We use the usual bicartesian structure of C and cartesian structure of D.

For the graded adjunction, the left adjoint sends each poset - to the pointed poset -⊥
obtained by freely adding a least element, and sends each monotone function 5 : - → . to its
strict extension 5⊥ : -⊥ → .⊥ (so 5⊥⊥ B ⊥ and 5⊥ G B G for G ∈ -). The right adjoint is the
forgetful functor, which sends each pointed poset to itself. The unit [- : - → -⊥ maps each
element of - to itself, and the counit s- : (-⊥)⊥ → -⊥ merges the two bottom elements. For
this example, the e�ect algebra is the trivial preordered monoid with underlying set {★}. Hence
the action ★~− is just the identity. Since the value category is Poset, strength is also trivial
in this case: the strength is given as above, and all natural transformations are automatically
strong. With this graded adjunction, we can show that the computation " to G . # eagerly
evaluates " in the semantics:

È" to G . #Éd =

{
⊥ if È"Éd = ⊥
È#É(d, È"Éd) otherwise

In this case, a natural transformation UY : * (Y~-) → * (Y~.) is just a monotone function
U★ : - → . between the pointed posets - and . . Such a natural transformation is linear if
it is strict (i.e. is a morphism in Poset⊥). Similarly, left-linearity just means strict in the left
argument.

The function space - ⇒ . is the set of monotone functions, ordered pointwise. The least
element of the function space is the function that maps every element of - to the least element
of . . Currying and uncurrying are the usual operations on functions. The evaluation map is
given by

ev★,-,. (5 , G) = 5 G

and is clearly left-linear.
The interpretation of the only base type int is just ÈintÉ B {−231, . . . , 231 − 1} (ordered by

equality). Recall that constants 2 ∈ K� are interpreted as morphisms È2É : 1→ È�É. On Poset,
these are just elements È2É ∈ È�É by abuse of notation. For unde�ned behaviour, geq and add
have obvious interpretations (as functions ÈintÉ → ÈintÉ → 2 and ÈintÉ → ÈintÉ → ÈintÉ
respectively). The constant integers are interpreted as È=É B = ∈ ÈintÉ.

76 Chapter 4. Noninvertible program transformations

The operation undef is interpreted as a morphism ÈundefÉ : 1→ 0⊥ (recall that 0 is the
empty poset). For this we take the least element ⊥. Finally, the operation addnsw is interpreted
as a morphism ÈaddnswÉ : ÈintÉ × ÈintÉ → ÈintÉ⊥, which is given by:

ÈaddnswÉ (<,=) B
{
< + = if (< + =) ∈ ÈintÉ
⊥ otherwise

It is easy to see that this interpretation is sound, and hence a model in the sense of De�ni-
tion 4.2.7, by checking the signature axioms. In particular, we have

�
undef�

�
v È"É because

the left-hand side is the least element.
We validate each program transformation " 4ctx # by showing that È"É v È#É. This

is su�cient because the model of unde�ned behaviour is adequate; we prove adequacy in
Section 4.3.2.1. Hence, to validate the example transformations we show

Èaddnsw(+1,+2)É v È〈add(+1,+2)〉É�� addnsw(+1,+2) to G .
let 1 = geq(G,+1) in
#

�� =

�� addnsw(+1,+2) to G .
let 1 = geq(+2, 0) in
#

��
To do this we just use cases on whether the addition over�ows. For the �rst transformation
if the addition does not over�ow then the two sides are equal by de�nition, otherwise the
left-hand side is the least element. The second is similar.

4.2.3.2 Nondeterminism

For our nondeterminism example, we again interpret value types as posets (in the value category
Poset). For computation types we de�ne a new Poset-category D. Recall that a meet-semilattice
is a poset - such that each pair of elements G1, G2 ∈ - has a meet (greatest lower bound) G1uG2,
i.e. an element of G1 u G2 ∈ - that satis�es

∀~ ∈ - . ~ v G1 u G2 ⇔ ~ v G1 ∧ ~ v G2

Objects ofD are pairs of a meet-semilattice�+ and a subset�1 (which is not required to be closed
under meets). We write such an object as (�1 ⊆ �+). Morphisms 5 : (�1 ⊆ �+) → (�1 ⊆ �+)
in D are monotone functions 5 : �+ → �+ that preserve meets (5 (G1 u G2) = 5 G1 u 5 G2), and
such that if G ∈ �1 then 5 G ∈ �1.

The idea is that the elements of�+ are nondeterministic, and elements of�1 are deterministic.
We use the usual bicartesian structure of Poset. The terminal object of D is {★} ⊆ {★} and
the binary product (�1 ⊆ �+) × (�1 ⊆ �+) is (�1 × �1) ⊆ (�+ × �+). The exponential
- ⇒ (�1 ⊆ �+) consists of the meet-semilattice of monotone functions 5 : - → �+. The
subset contains the monotone functions whose images are subsets of �1.

We next de�ne the graded adjunction. The right adjoint* : D→ Poset sends (�1 ⊆ �+) to
�1 (the order on �1 is the restriction of the order on �+), and sends each morphism 5 : (�1 ⊆
�+) → (�1 ⊆ �+) to its restriction to �1 → �1. The monoid action is de�ned for the e�ect +
by:

(+)~ (�1 ⊆ �+) B (�+ ⊆ �+) (+)~ 5 B 5

and on the e�ect 1 it is the identity.
For the left adjoint, recall that binary nondeterminism is traditionally modelled using the

monad P+�n on Set, where P+�n- is the set of nonempty �nite subsets of - . A subset (∈ P+�n-

4.2. Order-enriched semantics of GCBPV 77

is the set of possible results of a computation. Here we also have to take into account the
ordering on elements of - . If G ∈ - is a possible result of a computation and G v G′ then G′
should also be viewed as a possible result. Hence instead of using subsets (∈ P+�n- we use
their upwards closures ↑(B {G′ ∈ - | ∃G ∈ (. G v G′}.

Formally, the left adjoint � : Poset→ D sends each poset - to (�1 ⊆ �+), where

�1 B {↑{G} | G ∈ - } �+ B {↑(| (∈ P+�n- }

and �+ has superset as the order.4 The meet of (1, (2 ∈ �+ is the union (1 ∪ (2. On monotone
functions 5 : - → . , the Poset-functor � is given by

� 5 B _(. ↑{5 G | G ∈ (}

The unit of the adjunction is [- G B ↑{G}. For the counit we note that for any (�1 ⊆ �+) ∈
D each set (′ ∈ P+�n�+ has a meet

.
(′ ∈ �+, and hence if (⊆ �+ is the upwards closure of

some (′ ∈ P+�n�+ then (has a meet
.
(=

.
(′. The counit s (�1⊆�+) : ��1 → (�1 ⊆ �+) is

given by
s (�1⊆�+)(B

/
(

For this graded adjunction, sequencing of computations takes the meet of all possible results:

È" to G . #É =
/

0∈È"É d
È#É(d, 0)

If " is deterministic (has type 〈1〉� for some �), then È"É d = ↑{0} for some 0, and so
È" to G . #É = È#É(d, 0) by monotonicity of È#É.

To complete the model we give the interpretation of flip, which is a function ÈflipÉ : 1→
{↑(| (∈ P+�n{true, false}}. This maps the unique element of 1 to the set {true, false}, so that
the two possible results of flip () are true and false. Under this interpretation we can show that
binary nondeterministic choice takes the meet:

È"1 or"2É d = È"1É d u È"2É d

It is not di�cult to check soundness of the signature axioms (Figure 4.1), and hence that this
data forms a model of the inequational theory for nondeterminism. For example, for the axiom
flip () 4 coerce1≤+ 〈true〉 we have

Èflip ()É d = {true, false} ⊇ {true} = Ècoerce1≤+ 〈true〉É d

We show that this model is adequate in Section 4.3.2.2.
We verify that both of the program transformations given in Section 4.1.2 hold. For reusing

the result of a duplicated computation this means showing

È" to G ." to ~.#É v È" to G .# [~ ↦→G]É

Using the interpretation of to above this inequality becomes/
G∈È"É d

/
~∈È"É d

È#É((d, G), ~) v
/

G∈È"É d
È#É((d, G), G)

4For the left adjoint, �+ is the free meet-semilattice on the poset - . (Similarly, P+�n. ordered by ⊇ is the free
meet-semilattice on the set . .)

78 Chapter 4. Noninvertible program transformations

and this holds, so the left-to-right transformation is valid. If " is deterministic (has type
〈1〉� for some �), then È"É d = ↑{0} for some 0, and the two sides of this inequality are
just È#É((d, 0), 0). So in this case, we have an equality, and the right-to-left direction of the
transformation is also valid.

The other example we give is eliminating a dead computation, which is valid because

È" ; #É d =
/

G∈È"É d
È#É d = È#É d

4.2.3.3 Shared global state

We give a model of shared global state on Poset, in the style of algebraic e�ects [88]. We do not
give a general description of algebraic e�ects on Poset; instead we consider only get and put.
A general description of algebraic models of GCBPV on Poset would be similar to [42, 64, 47],
but adapted to include grading.

We interpret value types as posets (in the value category Poset). The computation cat-
egory is more complicated, and somewhat similar to the computation category we use for
nondeterminism. Objects are roughly posets, together with interpretations of the get and put
operations.

Recall that the set of operations is Σ B {get, put}, and e�ects are subsets Y ⊆ Σ.

De�nition 4.2.8 A graded shared mnemoid5 (�,6, ?) consists of a family of sets (�Y)Y⊆Σ such
that Y ⊆ Y′ implies �Y ⊆ �Y ′ , a partial order v on �Σ, and monotone functions

6 : �Σ ×�Σ → �Σ ?true : �Σ → �Σ ?false : �Σ → �Σ

such that if 0true, 0false ∈ �Y then 6(0true, 0false) ∈ �Y∪{get}, if 0 ∈ �Y then ?1 0 ∈ �Y∪{put}, and
the following axioms hold:

6(?true 0true, ?false 0false) v 6(0true, 0false) ?1 (6(0true, 0false)) v ?1 01
6(6(0true,true, 0true,false), 6(0false,true, 0false,false)) v 6(0true,true, 0false,false)

?11 (?12 0) v ?12 0 6(0, 0) = 0

The computation category GSMnem has graded shared mnemoids as objects. Morphisms
5 : (�,6, ?) → (�′, 6′, ?′) are monotone functions 5 : �Σ → �′Σ such that

5 (6(0true, 0false)) = 6′(5 0true, 5 0false) 5 (?10) = ?′1 (5 0)

and 0 ∈ �Y implies 5 0 ∈ �′Y . Morphisms are ordered pointwise. J

The set �Y contains the interpretations of computations with e�ect Y. The functions provide
the operations: 6(0true, 0false) means get the value 1 of the state and then run 01 , and ?10 means
put the value 1 and then run 0. The axioms are similar to those of the inequational theory in
Figure 4.2.

We use the usual bicartesian structure on Poset. The cartesian structure on GSMnem, and
exponentials, are straightforward. In particular, the family of sets in the product (�,6, ?) ×
(�′, 6′, ?′) is (�Y × �′Y)Y⊆Σ, and the functions are given componentwise. For the exponential
- ⇒ (�,6, ?) we take the set of monotone functions - → �Σ.

5These are based on Melliès’s [72] mnemoids. We adapt the de�nition to shared global state, and also add
grading (given by the subsets). The usual global state monad on a �xed set forms a graded shared mnemoid (just
as it forms a mnenoid); this implies consistency of our axioms.

4.2. Order-enriched semantics of GCBPV 79

For the graded adjunction the right adjoint * : GSMnem → Poset sends (�,6, ?) to �∅,
and morphisms 5 to their restrictions to �∅. The monoid action is given by:

Y~ (�,6, ?) B ((�Y∪Y ′)Y ′⊆Σ, 6, ?) Y~ 5 B 5

and (Y ⊆ Y′)~− is the identity on �Σ.
For the left adjoint, given a poset (-, v-), terms C over - are given by the following formal

grammar, where G ranges over elements of - and 1 over elements of 2 = {true, false}:

C ::= G | get(Ctrue, Cfalse) | put1 C

The term G just returns G ; the term get(Ctrue, Cfalse) gets the value 1 of the state and then runs
the term C1 ; and put1 C puts 1 and then runs the term C . For example, get(putfalse G, puttrue G)
is a term that gets the value of the state, puts its negation, and then returns G . We capture
the required behaviour of these terms using a (non-antisymmetric) preorder E on terms. It is
de�ned as the smallest preorder that is closed under congruence

G v- G′

G E G′
Ctrue E C

′
true Cfalse E C

′
false

get(Ctrue, Cfalse) E get(C ′true, C ′false)
C E C ′ 1 ∈ 2
put1 C E put1 C

′

and under the following six axioms (which should be compared with the shared mnemoid
axioms above):

get(puttrue Ctrue, putfalse Cfalse) E get(Ctrue, Cfalse) put1 (get(Ctrue, Cfalse)) E put1 C1
get(get(Ctrue,true , Ctrue,false), get(Cfalse,true , Cfalse,false)) E get(Ctrue,true , Cfalse,false)

put11 (put12 C) E put12 C get(C, C) E C C E get(C, C)

The intersection of E and its converse D is an equivalence relation on computations. We
quotient by this equivalence relation, so that E induces a partial order on equivalence classes
[C] of computations C . (We do not know of a desciption that does not involve a quotient.) From
this point onwards, we always consider equivalence classes, and suppress the square brackets
in the notation.

We construct a graded shared mnemoid �- B (�,6, ?) as follows: �Y is the set of equiva-
lence classes of terms C over - that contain only the operations in Y. The functions 6 and ?1
are straightforward:

6(Ctrue, Cfalse) B get(Ctrue, Cfalse) ?1 C B put1 C

This de�nes the left adjoint on objects. To de�ne it on morphisms, we �rst de�ne the interpre-
tations of terms in graded shared mnemoids (�.6, ?). Given a term C over - , and a monotone
function d : - → �Σ, we de�ne IÈCÉd ∈ �Σ by:

IÈGÉd B d G IÈget(Ctrue, Cfalse)Éd B 6(IÈCtrueÉd,IÈCfalseÉd) IÈput1 CÉd B ?1 (IÈCÉd)

(This is well-de�ned and monotone by the axioms required for graded shared mnemoids.)
Any monotone function 5 : - → . can be viewed as a monotone function 5 : - → �Σ
where �Σ is the set of equivalence classes of terms over . , and so we de�ne � 5 B IÈ−É5 .
The unit of the graded adjunction maps each G to the trivial computation G . The counit
s (�,6,?) : ��∅ → (�,6, ?) is given by s (�,6,?) B IÈ−Éid.

The constants are interpreted as follows:

ÈgetÉ★ B (get(true, false)) ÈputÉ1 B (put1 ★)

80 Chapter 4. Noninvertible program transformations

This de�nes a model of the inequational theory for shared global state, in which

È" to G . #Éd B IÈÈ"ÉdÉ(0 ↦→ È#É(d, 0))

We show adequacy in Section 4.3.2.3.
Finally, we verify that the example transformations in Section 4.1.3 are valid in this model.

For reusing the result of a duplicated computation we show

È" to G . " to ~. #É v È" to G . # [~ ↦→G]É

for computations " of type 〈Y〉� with Y ⊆ {put}. Given any d ∈ ÈΓÉ, the term È"Éd has
the form put11 (put12 (· · · (put1= 0) · · ·)) for some 11, . . . , 1= ∈ 2 and 0 ∈ È�É, because of the
restriction on the e�ect Y. By expanding the interpretations of the two computations, the goal
becomes

?11 (· · · (?1= (?11 (· · · (?1= (È#É(d, (0, 0)))) · · ·))) · · ·) v ?11 (· · · (?1= (È#É(d, (0, 0)))) · · ·)

If = = 0 then this holds automatically; if = > 0 then we can show by induction on = that

?11 (· · · (?1= (?10)) · · ·) v ?10

for all 0, 1, using the axiom ?1 ′ (?1 ′′0′) v ?1 ′′0′, and instantiate this to get the inequality we
need.

For eliminating a dead computation we show

È"′; # ′É = È# ′É

for computations "′ of type 〈Y′〉�′ where Y′ ⊆ {get}. This uses a similar induction, except that
we use the axiom 6(0, 0) = 0.

4.2.3.4 Monadic models

The three models above su�ce for our examples. We additionally give a general source of
models. It is well-known that monads can be used to model various side-e�ects, and strong
monads are used for models of the monadic metalanguage [78]. Monads can also be used as
models for CBPV by taking the adjunction to be the Eilenberg-Moore resolution, as shown by
Levy [57, Chapter 12]. Here we generalize the notion of monadic model of CBPV to the graded,
Poset-enriched case. This allows to use previous monadic models of side-e�ects as models of
GCBPV. The construction in this chapter is a relatively straightforward generalization, and the
proofs are almost identical.

Monadic models of GCBPV are based on Katsumata’s [45] graded monads. We again need
tensorial strengths (to interpret open terms) and, in our case, need Poset-enrichment. Hence
we use graded strong Poset-monads. In the following de�nition, C should be thought of as the
value category of a model of GCBPV.

De�nition 4.2.9 Suppose that (E, ≤, ·, 1) is a preordered monoid and C is a cartesian Poset-
category. A (E-)graded strong Poset-monad6 (), str, [, `) on C consists of:

• A strong Poset-functor ()Y, strY) on C for each Y ∈ E.
• A strong natural transformation) (Y ≤ Y′) : ()Y, strY) → ()Y′, strY ′) for each Y ≤ Y′ ∈ E.
• A strong natural transformation [: IdC → ()1, str1) from the identity strong Poset-

functor.

4.2. Order-enriched semantics of GCBPV 81

• A strong natural transformation `Y,Y ′ : ()Y, strY) ◦ ()Y′, strY ′) → () (Y ·Y′), strY ·Y ′) for each
Y, Y′ ∈ E.

Such that:
•) is functorial:) (Y ≤ Y) = id)Y and if Y ≤ Y′ ≤ Y′′ then) (Y ≤ Y′′) =) (Y′ ≤ Y′′) ◦) (Y ≤ Y′).
• ` is natural in Y and Y′: if Y1 ≤ Y2 and Y′1 ≤ Y′2 then the following diagrams commute

)Y1 ◦)Y′)Y2 ◦)Y′

) (Y1 ·Y′)) (Y2 ·Y′)

() (Y1≤Y2)))Y ′

`Y1,Y ′ `Y2,Y ′

) (Y1 ·Y ′≤Y2 ·Y ′)

)Y ◦)Y′1)Y ◦)Y′2

) (Y ·Y′1)) (Y ·Y′2)

)Y () (Y ′1≤Y ′2))

`Y,Y ′1
`Y,Y ′2

) (Y ·Y ′1≤Y ·Y ′2)

• The (graded) monad laws hold: the following diagrams commute

)Y

) 1 ◦)Y)Y)Y ◦) 1

)Y[[)Y

`1,Y `Y,1

)Y ◦)Y′ ◦)Y′′) (Y ·Y′) ◦)Y′′

)Y ◦) (Y′ ·Y′′)) (Y ·Y′ ·Y′′)

`Y,Y ′,)Y ′′

)Y`Y ′,Y ′′ `Y ·Y ′,Y ′′

`Y,Y ′ ·Y ′′ J

Graded strong Poset-functors can be used as models of our graded version of the monadic
metalanguage (GMM in Section 2.5). The Poset-functors)Y are used to interpret the type
constructors 〈Y〉. The strong natural transformations) (Y ≤ Y′) are used for coercions. The unit
[is used to interpret pure computations, and the multiplication ` is used for sequencing of
computations.

If) is a graded strong Poset-monad then it forms a functor E → [C,C] (where as usual
we view E as a category). The strength is trivial in many cases in the same way that it is for
adjunctions. If C = Set or C = Poset, there is always a unique strength, and every natural
transformation is strong. If C = lCpo the strength is unique if it exists, and it does exist if) Y
preserves least upper bounds of morphisms for each Y.

It is well-known that every adjunction induces a monad, and there is a analogous fact in
our situation:

Lemma 4.2.10 Suppose that (�,* , ~) is a graded strong Poset-adjunction with � : C → D.
De�ne) : E → [C,C] by:

)Y B * (Y~�−)) (Y ≤ Y′) B * ((Y ≤ Y′)~�−)

Then) forms a graded strong Poset-monad. Each strength strY is the strength of the adjunction,
the unit [is the unit of the adjunction, and the multiplication is given by:

`Y,Y ′,- B * (Y~sY ′~-) : * (Y~� (* (Y′~�-))) → * ((Y ·Y′)~�-) J

It is possible to continue in this direction and show that each GCBPV structure induces most of
a GMM structure (the data required to interpret the graded monadic metalanguage (Section 2.5),
which includes a graded strong Poset-monad; the only missing part is that we do not quite

6Similar to the non-enriched case, graded strong Poset-monads are just lax monoidal functors E → [C,C]B ,
where the preordered monoid E is viewed as a thin monoidal category, and [C,C]B is the monoidal category
of strong Poset-functors on C, with composition as the tensor product. Graded strong Poset-monads can be
equivalently presented as Kleisli triples, which have morphisms (�=) : (- ⇒)Y ′.) → ()Y- ⇒) (Y ·Y ′).).

82 Chapter 4. Noninvertible program transformations

have exponentials on C). This should not be surprising: we mentioned in Section 2.7.3 that we
can translate most of GMM into GCBPV (by interpreting the graded monad 〈Y〉− as U 〈Y〉−).

In this section we go in the other direction, and construct models of GCBPV from models
of GMM. Given a graded strong Poset-monad on C, we construct a graded strong Poset-
adjunction. We use C as the value category of the model, so the �rst step is to construct the
computation category D.

De�nition 4.2.11 (Graded algebra [76, 28]) Suppose that) : E → [C,C] is a graded strong
Poset-monad. A) -algebra is a pair (�, 0) of a functor � : E → C and a natural transformation

0Y,Y ′ :)Y (�Y′) → �(Y ·Y′)

such that the following diagrams commute for all Y, Y′, Y′′:

�Y) 1(�Y)

�Y

[

01,Y

)Y ()Y′(�Y′′)))Y (�(Y′ ·Y′′))

) (Y ·Y′) (�Y′′) �(Y ·Y′ ·Y′′)

)Y0

` 0

0

We call the functor � the carrier of the algebra.
A homomorphism from (�, 0) to (�′, 0′) is a natural transformation ℎ : �→ �′ such that

)Y (�Y′))Y (�′Y′)

�(Y ·Y′) �′(Y ·Y′)

)Yℎ

0 0′

ℎ

commutes.
The Eilenberg-Moore category) -Alg of the graded monad) has) -algebras as objects and

graded algebra homomorphisms as morphisms. It is a Poset-category: ℎ v ℎ′ if ℎY v ℎ′Y for all
Y. J

(This de�nition does not actually require strength, but we assume strength throughout this
section for consistency.)

We take) -Alg as the computation category D, and construct a graded adjunction

C) -Alg

�

Y~−

*

a

The right adjoint* is the forgetful Poset-functor, which is given by

* (�, 0) B �1 *ℎ B ℎ1

The left adjoint � maps each object - to the free) -algebra on - :

� - B () (−)-, `) (� 5)Y B) Y 5

So the carrier of � - on the e�ect Y is) Y - . The action Y~− multiplies by the e�ect Y: given a
) -algebra (�, 0), the) -algebra Y~ (�, 0) is (�,1), where:

� Y′ B �(Y ·Y′) �(Y′ ≤ Y′′) B �(Y ·Y′ ≤ Y ·Y′′) 1Y ′,Y ′′ B 0Y ′,Y ·Y ′′

4.2. Order-enriched semantics of GCBPV 83

This de�nes the action on objects. On homomorphisms ℎ : (�, 0) → (�′, 0′), the homomor-
phism Y~ℎ : Y~ (�, 0) → Y~ (�′, 0′) is given by

(Y~ℎ)Y ′ B ℎY ·Y ′

and if Y ≤ Y′, then the homomorphism (Y ≤ Y′)~ (�, 0) : Y~ (�, 0) → Y′~ (�, 0) is given by:

((Y ≤ Y′)~ (�, 0))Y ′′ B �(Y ·Y′′ ≤ Y′ ·Y′′)

Finally, the unit of the graded adjunction is just the unit [of the monad. The counit is given by

(s (�,0))Y B 01,Y :) 1(�Y) → �Y

and the strength is just the strength of the monad.
The data that we construct here satis�es * (Y~�−) =)Y. If we apply Lemma 4.2.10 to it

then we recover the graded monad we started with. Showing this construction does give a
graded strong Poset-adjunction is straightforward.

Lemma 4.2.12 Given any graded strong Poset-monad, the construction above de�nes a graded
strong Poset-adjunction. J

We still have to construct the rest of the data required for a model, in particular, we need the
computation category) -Alg to be cartesian, and also require exponentials. We can construct
these out of similar structure on C.

Lemma 4.2.13 Suppose that) : E → [C,C] is a graded strong Poset-monad on a cartesian
closed Poset-category C. Then:

1. The terminal object 1 of) -Alg is the unique) -algebra with the constantly-1 functor as
carrier, and satis�es Y~1 = 1.

2. The binary product of (�1, 01) and (�2, 02) is the) -algebra with carrier �1 × �2 and
natural transformation

)Y (�1Y
′ ×�2Y

′)
〈)Yc1,)Yc2〉−−−−−−−−→)Y (�1Y

′) ×)Y (�2Y
′)

01,Y,Y ′×02,Y,Y ′−−−−−−−−−→ �1(Y ·Y′) ×�2(Y ·Y′)

together with c8 : �1Y ×�2Y → �8Y as the 8th projection. It satis�es

Y~ ((�1, 01)×(�2, 02)) = (Y~ (�1, 01))×(Y~ (�2, 02)) 〈Y~c1, Y~c2〉 = idY~ ((�1,01)×(�2,02))

3. The exponential - ⇒ (�, 0) is the) -algebra with carrier - ⇒ � and natural transfor-
mation

)Y (- ⇒ �Y′)
Λ(ev◦strr)
−−−−−−−→ - ⇒)Y (�Y′)

-⇒0Y,Y ′−−−−−−→ - ⇒ �(Y ·Y′)
with currying given by currying for exponentials in C. It satis�es

Y~ (- ⇒ (�, 0)) = - ⇒ (Y~ (�, 0)) ev is left-linear J

The proof is essentially the same as for the non-graded, non-enriched case.
To give a GCBPV structure, it therefore su�ces to give:
• A bicartesian closed Poset-category C.
• A graded strong Poset-monad) on C.
• An object È1É ∈ C for each base type 1.

84 Chapter 4. Noninvertible program transformations

• A morphism È2É : 1→ È�É for each constant 2 ∈ K� and a morphism ÈopÉ :
�
arop

�
→

)Y
�
carop

�
for each operation op ∈ Σ.

The amount of data required and number of diagrams to check in this de�nition can be large
(for Gi�ord-style e�ect algebras, it is exponential in the number of operations). We end this
section by giving a lemma that allows us to reduce the amount of e�ort required to specify
monadic models.

A graded strong monad structure consists of the same data as a graded strong Poset-monad,
but none of the laws.

De�nition 4.2.14 Suppose that (E, ≤, ·, 1) is a preordered monoid and C is a cartesian Poset-
category. A graded strong monad structure on C consists of:

• For each Y ∈ E: an object)Y- ∈ C for each - ∈ C, a morphism)Y5 :)Y- →)Y. for
each 5 : - → . , and a morphism strY,-,. : - ×)Y. →)Y (- × .) for each -,. ∈ C.

• A morphism () (Y ≤ Y′))- :)Y- →)Y′- for each Y ≤ Y′ ∈ E and - ∈ C.
• A morphism [- : - →) 1- for each - ∈ C.
• A morphism `Y,Y ′,- :)Y ()Y′-) →) (Y ·Y′)- for each Y, Y′ ∈ E and - ∈ C. J

Each graded strong monad structure either is or is not a graded strong Poset-monad. We show
that such a structure is a graded strong Poset-monad if it forms a grading of a strong Poset-
monad (, which means that it comes with morphisms<Y,- :)Y- → (- . These morphisms
allow us to view computations in)Y- as computations in (. They are required to preserve the
structure (multiplication, etc.), and also to be full monomorphisms:

De�nition 4.2.15 (Meseguer [74]) A morphism < : - → . in a Poset-category is a full
monomorphism if< ◦ 5 v< ◦ 6 implies 5 v 6 for all 5 , 6 : . → / . J

Each full monomorphism is in particular a monomorphism (< ◦ 5 =< ◦6⇒ 5 = 6). In Set the
full monomorphisms are the injections, in Poset they are the monotone functions such that
<G v<~ ⇒ G v ~.

De�nition 4.2.16 Suppose that (E, ≤, ·, 1) is a preordered monoid, C is a cartesian Poset-
category and that (is a strong Poset-monad on C. A grading of (consists of a graded strong
monad structure) on C together with a full monomorphism

<Y,- :)Y- → (-

for each Y ∈ E and - ∈ C, such that the following diagrams commute:

)Y-)Y.

(- (.

)Y5

<Y,- <Y,.

(5

- ×)Y.)Y (- × .)

- × (. ((- × .)

strY,-,.

-×<Y,. <Y,-×.

str-,.

)Y-

)Y′- (-

<Y,-() (Y≤Y ′))-

<Y ′,-

-

) 1- (-

[-
[-

<1,-

)Y ()Y′-) (()Y′-) (((-)

) (Y ·Y′)- (-

<Y,)Y ′-

`Y,Y ′,-

(<Y ′,-

`-

<Y ·Y ′,-

J

4.2. Order-enriched semantics of GCBPV 85

The lemma we use to reduce the amount of e�ort required to specify graded strong Poset-
monads is as follows.

Lemma 4.2.17 Suppose that (E, ≤, ·, 1) is a preordered monoid, C is a cartesian Poset-category,
and (is a strong Poset-monad on C. The graded monad structure) of any grading of (is a
graded strong Poset-monad.

Proof. We reduce each of the requirements in the de�nition of graded strong Poset-monad to
the corresponding requirement on (by composing with<, and then using the diagrams in the
de�nition of grading. This su�ces because< is a full monomorphism. We do not give all of
the cases since they are all similar to each other, we just give a few representative examples.

We must show that each)Y forms a Poset-functor. Monotonicity holds because if 5 v 6
then:

<Y,. ◦)Y5 = (5 ◦<Y,- v (6 ◦<Y,- = <Y,. ◦)Y6

Composition is preserved because:

<Y,/ ◦)Y6 ◦)Y5 = (6 ◦ (5 ◦<Y,- = ((6 ◦ 5) ◦<Y,- = <Y,/ ◦)Y (6 ◦ 5)

The associativity law for the strength holds because of the following diagram chase

(- × .) ×)Y/)Y ((- × .) × /)

(- × .) × (/ (((- × .) × /))Y (- × (. × /))

- × (. ×)Y/) - × (. × (/) - × ((. × /) ((- × (. × /))

- ×)Y (. × /))Y (- × (. × /))

assoc

strY,-×.,/

(-×.)×<Y,/
)Yassoc

<Y,(-×.)×/

assoc

str-×.,/

(assoc <Y,-×(.×/)

-×strY,. ,/

-×(.×<Y,/) -×str.,/ str-,.×/

strY,-,.×/

-×<Y,.×/
<Y,-×(.×/)

where the centre is the associativity law for the strength of (, and other parts of the diagram
are from the de�nition of grading.

The left- and right-unit laws hold because of the following diagram chase

)Y- (-)Y-

(()Y-) (((-) (((-))Y ((-)

) 1()Y-))Y- (-)Y-)Y () 1-)

<Y,-

[)Y-

[)Y- [(- ([-

<Y,-

)Y[-

)Y[-
(<Y,-

`- `-

<Y,(-

`1,Y,-

<Y,)Y-

<Y,- <Y,-

)Y<1,-

`Y,1,-

The centre is the left- and right-unit laws for (; the other parts are diagrams from the de�nition
of grading (other than the pentagon on the bottom-right, which combines two of them). �

To further reduce the amount of work required to construct graded monads, we could also
attempt to construct gradings from monads. One method of doing this is given for Gi�ord-style
e�ect algebras by Kammar and McDermott [41].

86 Chapter 4. Noninvertible program transformations

4.2.3.5 Term model

The last model we describe is the term model of GCBPV, which is a purely syntactic model, for
example, the morphisms of the value category are (equivalence classes of) GCBPV values. Terms
are interpreted essentially as themselves. We do not use this to model any of our examples, and
it is not itself useful for proving the validity of program transformations. However, it is useful
for showing that models (such as the examples we give above) are adequate. In Section 4.3 we
use the term model to prove adequacy.

Recall that for any given inequational theory 4 we write ≡ for the intersection of 4 and its
converse. For each typing context Γ and value type �, this is an equivalence relation on closed
values of type � in context Γ, and similarly for computation types.

We �rst de�ne the value category C_ . Objects are value types �. Morphisms from � to �
are equivalence classes of values G : � ` + : �. We write [G : � ` + : �], or just [+], for such a
morphism. The ordering on morphisms is 4, The identity on � is [G], and the composition of
[+] and [,] is [+ [G ↦→,]].

The computation category D_ is more di�cult because contexts contain only value types,
and because we need to be able to de�ne the action ~. First we de�ne a notion of linearity for
computations, similar to linearity for natural transformations (De�nition 4.2.4).

De�nition 4.2.18 A family ("Y)Y∈E of computations

~ : U (〈〈Y〉〉�) ` "Y : 〈〈Y〉〉�

is natural if

~ : U (〈〈Y〉〉�) ` coerce〈〈Y〉〉�<:〈〈Y ′〉〉� "Y ≡ "Y ′ [~ ↦→coerceU 〈〈Y〉〉�<:U 〈〈Y ′〉〉� ~] : 〈〈Y′〉〉�

for each Y ≤ Y′ ∈ E, and is linear if

I : U (〈Y〉(U (〈〈Y′〉〉�))) ` force I to ~."Y ′ ≡ "Y ·Y ′ [~ ↦→ thunk (force I toF. forceF)] : 〈〈Y ·Y′〉〉�

for each Y, Y′ ∈ E. J

(This de�nition of linearity is based on the one given by Munch-Maccagnoni [79] and Levy
[60], but here we need natural families of computations because of the e�ect system.) Objects
of the computation category D_ are computation types � . A morphism from � to � is a family
(["Y])Y∈E of equivalence classes of computations

~ : U (〈〈Y〉〉�) ` "Y : 〈〈Y〉〉�

such that ("Y)Y∈E is natural and linear. The order on morphisms is

(["Y])Y∈E v ([# Y])Y∈E ⇔ ∀Y ∈ E . "Y 4 # Y

We sometimes leave the e�ect Y implicit and write [~ : U� ` " : �], or just ["], for these
morphisms. The identity on � at Y is [~ : U (〈〈Y〉〉�) ` force~ : 〈〈Y〉〉�] and the composition of
[~ : U�2 ` " : �3] and [~ : U�1 ` # : �2], for each e�ect, is [~ : U�1 ` " [~ ↦→ thunk#] : �3].

For every morphism in the computation category that we de�ne, each of the equivalence
classes of terms is the same up to typing annotations. They can therefore be thought of as
single terms that satisfy ~ : U� ` " : � and, by replacing typing annotations, can be typed as
~ : U (〈〈Y〉〉�) ` "Y : 〈〈Y〉〉� . They are essentially polymorphic in the e�ect Y. Of course, this is
not the case for every computation (just as not every computation is linear), but this is not a
problem because computations are interpreted as morphisms in the value category.

4.2. Order-enriched semantics of GCBPV 87

Bicartesian structure of C_:

Terminal object unit 〈〉� B [()]
Binary products �1 ×�2 c1 B [fstG] c2 B [sndG]

Initial object empty []� B [case� G of {}]
Binary coproducts �1 +�2 inl B [inl�2G] inr B [inr�1G]

Cartesian structure of D_:

Terminal object unit 〈〉� B [_{}]
Binary products �1 ×�2 c1 B [1‘force~] c2 B [2‘force~]

Exponentials:

(�⇒ �) B (�→ �) (�⇒ ["]) B [_I :�." [~ ↦→ thunk (I‘force~)]]
Λ[+] B [thunk (_I :�. force (+ [G ↦→ (G, I)]))]

Graded strong Poset-adjunction:

* : D_ → C_ *� B U� * [~ : U� ` " : �′] B [G : U� ` thunk" [~ ↦→G] : U�′]
� : C_ → D_ �� B 〈1〉� � [G : � ` + : �] B [~ : U 〈Y〉� ` force~ to G . 〈+ 〉 : 〈Y〉�]

Y′~�B 〈〈Y′〉〉� (Y′ ≤ Y′′)~�B [coerce〈〈Y ·Y ′〉〉�<:〈〈Y ·Y ′〉〉� (force~)] Y′~ (["Y])Y∈EB (["Y ·Y ′])Y∈E

[� B [thunk 〈G〉] s� B [force~ to I. force I]
strY,�,� B [thunk (force (fstG) to I. 〈(I, sndG)〉)]

Base types, constants and operations:

È1É B 1 È2É B [2] ÈopÉ B [thunk (opG)]

Figure 4.4: The GCBPV term model

The remaining structure of the term model is de�ned in Figure 4.4. The interesting part is
the de�nition of the graded strong Poset-adjunction. In the de�nition of the right adjoint *
on morphisms, only the equivalence class for the e�ect 1 is used (similar to the right adjoint
in monadic models (Section 4.2.3.4)). The de�nition of the action ~ is where it is important
that we have natural families of computations as morphisms of D_ rather than just individual
computations. In particular, the de�nition of Y~− on morphisms reindexes the family given
(this is why it is the only de�nition in which we make the indices explicit). Naturality of the
counit s follows from linearity of morphisms in D_ .

The term model is in fact a model, as the following lemma shows.

Lemma 4.2.19 Given any inequational theory, the data given above forms a GCBPV structure
in which the interpretation of terms satis�es

Γ ` + 4, : � ⇔ È+É v È, É Γ ` " 4 # : � ⇔ È"É v È#É

Hence this GCBPV structure is a GCBPV model.

88 Chapter 4. Noninvertible program transformations

Proof sketch. Showing that this data forms a GCBPV structure just requires checking each of
the requirements in turn. All are easy to check using the core axioms of inequational theories.

The fact about the interpretations of terms holds because terms are interpreted essentially
as themselves. Formally, for each typing context Γ, there is a substitution fΓ such that

G : ÈΓÉ ` fΓ : Γ ÈΓ ` + : �É = [+ [fΓ]] ÈΓ ` " : �É = [thunk" [fΓ]]

There is also a substitution f−1Γ that behaves as an inverse to fΓ . It satis�es

Γ ` f−1Γ : (G : ÈΓÉ) + [fΓ] [f−1Γ] ≡ + " [fΓ] [f−1Γ] ≡ "

Hence on computations " we have:

" 4 "′

⇒ thunk" [fΓ] 4 thunk" [fΓ]
⇒ È"É v È"′É

È"É v È"′É
⇒ thunk" [fΓ] 4 thunk" [fΓ]
⇒ force thunk" [fΓ] [f−1Γ] 4 force thunk" [fΓ] [f−1Γ]
⇒ " v "′

Values are similar. �

This lemma actually shows that the term model is complete as well as sound. Completeness
is the crucial property of the term model: it allows us to use term model to show adequacy
of our other models (Section 4.3 shows how to do this). Moreover, the fact that the syntax
of GCBPV forms a model shows that we have not included too many requirements in the
de�nition of model. The de�nition exactly matches the inequational theory in the following
sense:

Corollary 4.2.20 Given any inequational theory:
1. ÈΓ ` + : �É v ÈΓ `, : �É for every model of 4 if and only if Γ ` + 4, : �.
2. ÈΓ ` " : �É v ÈΓ ` # : �É for every model of 4 if and only if Γ ` " 4 # : � . J

4.3 Relating syntax and semantics
The previous sections describe examples of program transformations we would like to perform
by conjecturing instances " 4ctx # of the contextual preorder, and also show for each of these
instances that È"É v È#É. To prove the validity of the program transformations, we show
that our example models are adequate:

De�nition 4.3.1 (Adequacy) A model of some GCBPV inequational theory is adequate if
both of the following hold:

• (Values) ÈΓ ` + : �É v ÈΓ `, : �É implies Γ ` + 4ctx, : �.
• (Computations) ÈΓ ` " : �É v ÈΓ ` # : �É implies Γ ` " 4ctx # : � . J

Adequacy can be formulated in terms of the more general problem of abstraction between
models of GCBPV.

De�nition 4.3.2 (Abstraction) Suppose thatM1 andM2 are models of the same inequational
theory. We say thatM2 abstractsM1 if for all ground types� , e�ects Y and closed computations
", # : 〈Y〉� we have

M1È"É v M1È#É ⇒ M2È"É v M2È#É J

4.3. Relating syntax and semantics 89

Adequacy is a special case of abstraction because of the following lemma.

Lemma 4.3.3 A modelM of some inequational theory is adequate if and only if the term
model (Section 4.2.3.5) abstractsM.

Proof. Since the term model is complete (Lemma 4.2.19), it abstractsM if and only if for all
ground types � , e�ects Y and closed computations ", # : 〈Y〉� we have

MÈ"É v MÈ#É ⇒ " 4 #

so it su�ces to show that this property is equivalent to adequacy.
Suppose that this property holds and thatMÈ+É v MÈ, É for well-typed values+ ,, . By

compositionality (Lemma 4.2.6 (1)) we haveM
�
C[+]

�
v M

�
C[,]

�
. So if C[+] and C[,]

satisfy the conditions on " and # we have C[+] 4 C[,]. Hence + 4ctx , . Similarly for
computations.

IfM is adequate andMÈ"É v MÈ#É then " 4ctx # , which implies " 4 # by applying
the de�nition of the contextual preorder to the term context �. �

We describe a method for proving instances of abstraction, and then show that our example
models are adequate using Lemma 4.3.3.

4.3.1 Logical relations and abstraction
To prove abstraction between models, we use logical relations. We give a general categorical
description of logical relations for GCBPV that can be used to state su�cient conditions for
abstraction to hold. This is based on the work of Hermida [36] and Katsumata [44], adapted
to our Poset-enriched models. This description of logical relations is more general than the
one we gave in Section 3.1: instead of covering just binary relations between terms, our new
de�nition covers relations of other arities (e.g. unary relations, and relations of varying arity),
and are not restricted to relating terms (they can relate denotations).

These relations are formulated in terms of functors ? : RC → C from an (ordinary) category
RC into (the underlying ordinary category of) a Poset-category C. Here C is either the value
or computation category of a model of GCBPV (we actually require two such functors: one for
the value category and one for the computation category). An object % ∈ RC should be thought
of as a unary predicate on ?% ∈ C, and a morphism ¤5 : % → & as a witness that ? ¤5 : ?% → ?&

is truth-preserving. We assume that the functor ? is faithful (i.e. for all ¤5 , ¤6 : % → & if ? ¤5 = ? ¤6
then ¤5 = ¤6), which implies such witnesses are unique. We say that an object % ∈ RC is above
- ∈ C if ?% = - , and for 5 : ?% → ?& we write 5 : % ¤→& to mean there is some ¤5 such that
? ¤5 = 5 (i.e. 5 is truth-preserving).

The general idea is to lift the structure of some GCBPV model (in Poset-categories C and D)
to categories RC and RD of relations, and hence construct a new logical-relations (LR) model (we
de�ne LR model below). In the LR model, value types� are interpreted as relations RÈ�É ∈ RC
and computation types � are interpreted as relations RÈ�É ∈ RD.

The next de�nition captures much of the required structure. It is essentially the same as a
de�nition given by Ma and Reynolds [65].

De�nition 4.3.4 Suppose that C is a cartesian Poset-category and ? : RC → C is a functor. A
lifting of the cartesian structure of C consists of:

• An RC-object ¤1 above 1, such that for each % , we have 〈〉?% : % ¤→ ¤1.
• For each %1, %2, an RC-object %1 ¤× %2 above ?%1 × ?%2 such that c1 : %1 ¤× %2 ¤→ %1,
c2 : %1 ¤×%2 ¤→%2, and for each %, 51, 52 if 51 : & ¤→%1 and 52 : & ¤→%2 then 〈51, 52〉 : & ¤→%1 ¤×%2.

90 Chapter 4. Noninvertible program transformations

If C is bicartesian, a lifting of the bicartesian structure additionally consists of:
• An RC-object ¤0 above 0, such that for each % , we have []?% : ¤0 ¤→ % .
• For each %1, %2, an RC-object %1 ¤+ %2 above ?%1 + ?%2 such that inl : %1 ¤→ %1 ¤+ %2,
inr : %2 ¤→%1 ¤+%2, and for each %, 51, 52 if 51 : %1 ¤→& and 52 : %2 ¤→& then [51, 52] : %1 ¤+%2 ¤→& .

Finally, if C is distributive, a lifting of the distributive structure is a lifting of the bicartesian
structure such that dist?%,?&,?' : ?% ¤× (?& ¤+ ?') ¤→ (?% ¤× ?&) ¤+ (?% ¤× ?') for all %,&, '. J

Example 4.3.5 For Poset, we de�ne the category Pred as follows. Objects % ⊆- are pairs of a
poset - and an arbitrary set % of elements of - ; we call these predicates. The predicate % ⊆-
is considered to be true on elements of % , and false on the other elements of - . Morphisms
5 : (% ⊆-) → (& ⊆.) are monotone functions 5 : - → . such that 5 G ∈ & for all G ∈ % .
There is a functor ? : Pred → Poset that sends (% ⊆ -) to - and 5 to itself. In this case,
5 : (% ⊆-) ¤→ (& ⊆.) holds i� G ∈ % implies 5 G ∈ & for all G . We lift the bicartesian structure
of Poset as follows:

¤1 B {★} ⊆ 1 (%1 ⊆ -1) ¤× (%2 ⊆ -2) B (%1 × %2) ⊆ (-1 × -2)
¤0 B ∅⊆ 0 (%1 ⊆ -1) ¤+ (%2 ⊆ -2) B (%1 + %2) ⊆ (-1 + -2) J

Given a faithful functor ? : RC → C we Poset-enrich RC in the following way: if ¤5 , ¤6 : % →
& are morphisms in RC then ¤5 v ¤6 if ? ¤5 v ? ¤6 (this is a partial order because 5 is faithful). Any
lifting of the cartesian (or bicartesian) structure on C induces a cartesian (bicartesian) structure
on RC: we use the objects and witnesses required in the de�nition of lifting (e.g. the product of
%1 and %2 is %1 ¤× %2, where each projection ¤c8 : %1 ¤× %2 → %8 is the witness of c8 : %1 ¤× %2 ¤→ %8).

We also require liftings of certain Poset-functors.

De�nition 4.3.6 Suppose that ? : RC → C and @ : RD → D are functors. A lifting of a
Poset-functor � : C→ D consists of an object ¤�% ∈ RD that satis�es @(¤�%) = � (?%) for each
% ∈ RC, such that for each 5 if 5 : % ¤→& then �5 : ¤�% ¤→ ¤�& . J

The data required for a lifting of a Poset-functor� : C→ D forms a Poset-functor ¤� : RC → RD
such that � ◦ ? = @ ◦ ¤� .

In the following de�nitions, we suppose we are given some modelM of GCBPV with value
category C and computation category D. To form an LR model we need to be able to lift the
graded adjunction.

De�nition 4.3.7 Suppose that ? : RC → C and @ : RD → D are functors, and that RC has
an object %1 ¤× %2 such that ? (%1 ¤× %2) = ?%1 × ?%2 for each pair of objects %1, %2 ∈ RC. A
lifting of the graded strong Poset-adjunction (�,* , ~) consists of liftings of the Poset-functors
� : C→ D,* : D→ C and Y~− : D→ D for each Y ∈ E, such that

• For each Y, Y′ we have (Y ·Y′) ¤~− = Y ¤~ (Y′ ¤~−), and 1 ¤~− is the identity.
• For each Y, %,& we have strY,?%,?& : % ¤× ¤* (Y ¤~ ¤�&) ¤→ ¤* (Y ¤~ ¤� (% ¤×&)).
• For each Y, Y′, & , if Y ≤ Y′ then (Y ≤ Y′)~@& : (Y ¤~&) ¤→ (Y′ ¤~&).
• For each % we have [?% : % ¤→ ¤* ¤�% .
• For each & we have s@& : ¤� ¤*& ¤→& . J

Each lifting of (�,* , ~) determines a graded strong Poset-adjunction (¤�, ¤* , ¤~) on D, where
each of the required morphisms is given by a witness. In general, the correct choice of lifting
depends on the speci�c e�ects being modelled, though some general techniques for constructing

4.3. Relating syntax and semantics 91

liftings of monads (in the non-enriched case) exist [32, 43, 46]. We also expect that a version of
the free lifting (Section 3.1.1) could be developed for graded adjunctions (this would be similar
to the monadic version given by Kammar and McDermott [41]). We do not use these general
techniques, but instead construct liftings speci�c to our examples (see Section 4.3.2).

Recall from Section 3.1 that the crucial part of the de�nition of a logical relation is its
de�nition on returner types. Since left adjoints are unique, the de�nition on returner types is
uniquely determined by the right adjoint in this case. The crucial part of the de�nition here is
the choice of RD.

We collect the data required to form an LR model R in the following de�nition. (We
writeMÈ−É for interpretations in the base modelM, and RÈ−É for interpretations in the
logical-relations model R.)

De�nition 4.3.8 A logical-relations (LR) model above the modelM consists of
• Categories RC and RD and functors ? : RC → C and @ : RD → D, together with liftings

of the distributive structure of C and the cartesian structure of D.
• For each % ∈ RC, a lifting % ¤⇒− : RD → RD of the Poset-functor ?% ⇒ − : D→ D, such

that for all 5 , 5 ′ if 5 : ' ¤× % ¤→ ¤*& then Λ5 : ' ¤→ ¤* (% ¤⇒&) and if 5 ′ : ' ¤→ ¤* (% ¤⇒&)
then Λ−15 ′ : ' ¤× % ¤→ ¤*& .

• A lifting of the graded strong Poset-adjunction.
• A RC-object RÈ1É aboveMÈ1É for each base type 1.

such thatMÈ2É : ¤1 ¤→ RÈ�É for each constant 2 ∈ K� and

MÈopÉ : R
�
carop

�
¤→ ¤* (e�op ¤~ ¤� (R

�
arop

�
))

for each operation op ∈ Σ. J

Soundness of any such model follows from the de�nition of the order on morphisms in RC and
RD and soundness of the base modelM.

As usual, the logical relation satis�es a fundamental lemma, which states that interpretations
of terms preserve relations.

Lemma 4.3.9 (Fundamental) If R is an LR model overM then
1. If Γ ` + : � thenMÈ+É : RÈΓÉ ¤→ RÈ�É.
2. If Γ ` " : � thenMÈ"É : RÈΓÉ ¤→ ¤* (RÈ�É).

Proof. By a trivial induction, the interpretations RÈ+É and RÈ"É in the LR model satisfy
? (RÈ+É) =MÈ+É and ? (RÈ"É) =MÈ"É, and hence are the required witnesses. �

To prove abstraction, we need to relate two models. Given two Poset-categories C1 and
C2, de�ne C1 × C2 as the Poset-category in which objects are pairs (-1, -2) with -1 ∈ C1 and
-2 ∈ C2, and morphisms (51, 52) are similarly pairs of morphisms (ordered componentwise).
Given models M1 (with value category C1 and computation category D1) and M2 (with
value category C2 and computation category D2), we de�ne their product M1 × M2 as the
model with value category C1 × C2 and computation category D1 × D2, where each part of
the structure is given by pairing the structure inM1 andM2. The product model satis�es
(M1 ×M2)È−É = (M1È−É,M2È−É).

To relateM1 toM2, we consider binary functors ? : RC1×C2 → C1 ×C2, in which an object
' ∈ RC1×C2 above (-1, -2) relates -1 to -2. A key part of the proof of abstraction is to show
that certain relations are monotone:

92 Chapter 4. Noninvertible program transformations

De�nition 4.3.10 Suppose that C1 and C2 are Poset-categories and ? : RC1×C2 → C1 ×C2 is a
faithful functor. An object ' ∈ D is monotone if whenever (51, 52) : ¤1 ¤→ ' and (61, 62) : ¤1 ¤→ ',

51 v 61 ⇒ 52 v 62 J

Note the similarity with the implication in the de�nition of abstraction (De�nition 4.3.2). The
relations ¤1 and ¤0 are monotone (the latter because we assume distributivity7), and if '1, '2 are
monotone then so is '1 ¤×'2 (if these relations exist). We say that monotone relations are closed
under coproducts if '1 ¤+ '2 is monotone for monotone '1, '2 (this does not hold in general).

Example 4.3.11 The functor BRel → Poset × Poset, where BRel is similar to Pred except
that objects are binary relations ' ⊆ -1 × -2, could be used to relate two models on the value
category Poset. In this case, monotonicity of ' just means that if (01, 02), (11, 12) ∈ ' then
01 v 11 implies 02 v 12. J

Using this de�nition of monotonicity of relations, we give su�cient conditions for one
model of GCBPV to abstract another. This is the key lemma that allows us to prove abstraction.
We then use it to prove adequacy of our example models.

Lemma 4.3.12 (Abstraction) Suppose thatM1 andM2 are models of the same inequational
theory. If there exists an LR model R above M1 × M2 such that each RÈ1É is monotone,
¤* (Y ¤~ ¤�') is monotone for each e�ect Y and monotone ', and monotone relations in RC are
closed under coproducts, thenM2 abstractsM1.

Proof. An easy induction on ground types � shows that each RÈ�É is monotone, and hence
so is ¤* (RÈ〈Y〉�É) = ¤* (Y ¤~RÈ�É). By the fundamental lemma (Lemma 4.3.9), if ", # : 〈Y〉�
are closed computations then

(M1È"É,M2È"É), (M1È#É,M2È#É) : ¤1 ¤→ RÈ〈Y〉�É

and the result follows from monotonicity. �

4.3.2 Examples

We now show that the models we use for each of our three examples are adequate, by using
Lemma 4.3.12 to show that each example modelM abstracts the term model.

We therefore need three LR models, one for each of our example models. Recall that each
example model uses the value category Poset, and the value category of the term model is C_ .
Also recall that we write Term

�
and Term

�
for the sets of equivalence classes of closed values

and computations (we also omit square brackets around equivalence classes in this section).
We use a common construction for RPoset×C_ :

• Objects are triples (-,�, ') where - is a poset, � is a value type, and ' ⊆ - × Term
�

is
a relation.

• Morphisms (5 ,+) : (-,�, ') → (., �, '′) are pairs of a morphism 5 : - → . in Poset
and a morphism, : �→ � in C_ , such that if (G, #) ∈ ' then (5 G,, [G ↦→+]) ∈ '′.

7To show that ¤0 is monotone, we use the fact that distributivity of binary coproducts implies [15, Proposition
3.4] the initial object is strict (all morphisms into 0 are isomorphisms), so any two morphisms 1→ 0 are equal.

4.3. Relating syntax and semantics 93

We have a functor RPoset×C_ → Poset × C_ that sends (-,�, ') to (-,�), and is the identity
on morphisms. For the lifting of the bicartesian structure, we take the bicartesian structure of
Poset and C_ , together with the following relations:

¤1 B {(★, ())} '1 ¤× '2 B {(G,+) | (c1G, fst+) ∈ '1 ∧ (c2G, snd+) ∈ '2}
¤0 B ∅ '1 ¤+ '2 B {(inl G, inl+) | (G,+) ∈ '1} ∪ {(inr G, inr+) | (G,+) ∈ '2}

Note in particular that RÈboolÉ = {(true, true), (false, false)}, and that (-,�, ') is monotone
(De�nition 4.3.10) if G v G′ implies + 4 + ′ for all (G,+), (G′,+ ′) ∈ '. Monotone relations are
closed under coproducts in this case, so we have one of the requirements of the abstraction
lemma (Lemma 4.3.12).

Each of our examples has a di�erent computation category, and hence we use di�erent
categories of relations on computations in each case. We go through each example in turn.

4.3.2.1 Unde�ned behaviour

For unde�ned behaviour, recall that we use the trivial e�ect algebra, and hence morphisms in
the computation category D_ are linear (De�nition 4.2.18) equivalence classes of computations
~ : U� ` # : � We de�ne RPoset⊥×D_ by:

• Objects (-,�, ') consist of a pointed poset - , a computation type � , and a relation
' ⊆ - × Term

�
, such that (⊥, undef�) ∈ '.

• Morphisms (5 , #) : (-,�, ') → (., �, '′) are pairs of a morphism 5 : - → . in Poset⊥
and a morphism # : � → � in D_ , such that if (G,") ∈ ' then (5 G, # [~ ↦→ thunk"]) ∈
'′.

The crucial part of this de�nition is that ⊥ is required to be related to undef� . This ensures the
counit lifts.

The functor RPoset⊥×D_ → Poset⊥ × D_ forgets the relation (maps (-,�, ') to (-,�) and
(5 , #) to itself). The cartesian structure on RPoset⊥×D_ , and exponentials, are given by the
corresponding structures in the underlying models and the relations

'1 B {(★, _{})} '1 ¤× '2 B {(G,") | (c1G, 1‘") ∈ '1 ∧ (c2G, 2‘") ∈ '2}
' ¤⇒ '′ B {(5 , ") | ∀(G,+) ∈ '. (5 G,+ ‘") ∈ '′}

To lift the graded adjunction, we de�ne ¤* (-,�, '1) B (-,U�, '′1) and ¤� (-,�, '2) B
(-⊥, 〈★〉�, '′2) where

'′1 B {(G, thunk") | (G,") ∈ '1} '′2 B {(G, 〈+ 〉) | (G,+) ∈ '2} ∪ {(⊥, undef 〈★〉�)}

The idea behind the de�nition of the left adjoint ¤� is that each computation of returner type,
when executed, will either return some value + , or have unde�ned behaviour. The lifting of
the action ~ is trivial. To complete the LR model we de�ne the interpretation of the base type
int to have relation {(=, =) | = ∈ ÈintÉ}. The constants add and geq lift because of the axioms
of the inequational theory that specify their behaviour. Similarly for the operation addnsw. The
operation undef lifts because the computation type 〈★〉empty is interpreted as the relation
{(⊥, undef ())}. We therefore have a LR model that we can use to relate our model of unde�ned
behaviour to the term model.

To apply the abstraction lemma (Lemma 4.3.12), we just need to check that RÈintÉ is
monotone, which is trivial, and that ¤* (¤�') is monotone for monotone '. For the latter, suppose
that (G,") and (G′, "′) are in

{(G, 〈+ 〉) | (G,+) ∈ '} ∪ {(⊥, undef�)}

94 Chapter 4. Noninvertible program transformations

and G v G′. Then if (G,") = (G, 〈+ 〉) for (G,+) ∈ ' we have (G′, ") = (G′, 〈+ ′〉) with (G′,+ ′) ∈
' (because G′ ≠ ⊥), so " = 〈+ 〉 4 〈+ ′〉 = "′ because ' is monotone. If (G,") = (⊥, undef�)
then we have " 4 "′ as one of the axioms of the inequational theory. So the abstraction
lemma tells us the our model of unde�ned behaviour is adequate, and hence that the example
program transformations we give in Section 4.1.1 are valid instances of the contextual preorder.

4.3.2.2 Nondeterminism

Recall that for nondeterminism we use the e�ects 1 ≤ +. We de�ne the computation category
RD×D_ of the logical relations by:

• Objects (-,�, ') consist of an object - = (-1 ⊆ -+) ∈ D (i.e. a meet-semilattice -+ with
a subset -1), a computation type � , and a family of relations ('Y ⊆ -Y × Term〈〈Y〉〉�)Y∈{1,+},
such that (G,") ∈ '1 implies (G, coerce�<:〈〈+〉〉� ") ∈ '+, and (G1, "1), (G2, "2) ∈ '+
implies (G1 u G2, "1 or"2) ∈ '+.

• Morphisms (5 , #) : (-,�, ') → (., �, '′) are pairs of a morphism 5 : - → . in D and a
morphism # : � → � in D_ , such that (G,") ∈ 'Y implies (5 G, # Y [~ ↦→ thunk"]) ∈ '′Y
for Y ∈ {1, +}.

The relation '1 relates deterministic computations (of type �), and '+ relates nondeterministic
computations (of type 〈〈+〉〉� . The condition that meets are related ensures that the counit of
the graded adjunction lifts. The functor RD×D_ → D × D_ forgets the relation (maps (-,�, ')
to (-,�) and (5 , #) to itself). The cartesian structure on RD×D_ , and exponentials, are de�ned
in the same way as for unde�ned behaviour (on each e�ect Y).

To lift the graded adjunction, we de�ne ¤* (-,�, ') B (-1,U�, '′) where '′ is de�ned in
terms of the relation on deterministic computations:

'′ B {(G, thunk") | (=,") ∈ '1}

The lifting of the left adjoint is ¤� (-,�,)) B (�-, 〈1〉�,) ′), where

) ′1 B {(↑{G}, 〈+ 〉) | (G,+) ∈) }
) ′+ B {(↑{G1, . . . , G=}, coerce1≤+ 〈+1〉 or · · · or coerce1≤+ 〈+=〉) | ∀8 . (G8,+8) ∈) }

In this de�nition, the order in which the computations+8 appear in the nondeterministic choice
is irrelevant because or is commutative (and we consider computations up to ≡). Similarly,
duplicates and bracketing are irrelevant because of idempotence and associativity. For the
lifting of the monoid action, 1~− is the identity, and for (+)~− we map the family (RY)Y∈{1,+}
to (R+)Y∈{1,+} (forgetting the relation on deterministic computations). This data forms an LR
model.

To apply the abstraction lemma (Lemma 4.3.12) it su�ces to show that the left adjoint
preserves monotonicity of relations. We sketch the key part of this proof, which is showing
that if) above is monotone, and ((,"), ((′, "′) ∈) ′+ and (⊇ (′, then " 4 "′. Because of the
de�nition of) ′+, there are lists of pairs (G8,+8) and (G′8 ,+ ′8) in) such that:

(= ↑{G1, . . . , G<} " ≡ coerce1≤+〈+1〉 or · · · or coerce1≤+〈+<〉
(′ = ↑{G′1, . . . , G′=} "′ ≡ coerce1≤+〈+ ′1〉 or · · · or coerce1≤+〈+ ′=〉

Now (⊇ (′ implies that for each 8 there is some q8 such that Gq8 v G′8 . Monotonicity of)
implies +q8 4 + ′8 . Hence we have the following, where the �rst instance of 4 follows from
"1 or"2 4 " 9 (as well as commutativity, associativity and idempotence of or).

" 4 coerce1≤+〈+q1〉 or · · · or coerce1≤+〈+q=〉 4 "′

4.4. Relating call-by-value and call-by-name, semantically 95

4.3.2.3 Shared global state

For shared global state we use a Gi�ord-style e�ect algebra, so that e�ects are subsets Y ⊆
{get, put}, and objects of the computation category GSMnem are graded shared mnemoids.
We de�ne the computation category RGSMnem×D_ of the LR model by:

• Objects (-,�, ') consist of a graded shared mnemoid - (we write -Y for the individual
sets, and 6 and ? for the get and put functions), a computation type � , and a family of
relations ('Y ⊆ -Y × Term〈〈Y〉〉�)Y⊆{get,put}, such that:

– If (G,") ∈ 'Y and Y ⊆ Y′ then (G, coerce〈〈Y〉〉�<:〈〈Y ′〉〉� ") ∈ 'Y ′ .
– If (Gtrue, "true), (Gfalse, "false) ∈ 'Y then

(6(Gtrue, Gfalse), get () to 1. if 1 then"true else"false) ∈ 'Y∪{get}

– If (G,") ∈ 'Y and 1 ∈ {true, false} then (?1G, put1 to _. ") ∈ 'Y∪{put}.
• Morphisms (5 , #) : (-,�, ') → (., �, '′) are pairs of a morphism 5 : - → . in
GSMnem and a morphism # : � → � in D_ , such that (G,") ∈ 'Y implies (5 G, # Y [~ ↦→
thunk"]) ∈ '′Y for Y ⊆ {get, put}.

This is very similar to the corresponding category for our nondeterminism example; much of
the rest of the structure is also very similar, including the cartesian structure of RGSMnem×D_
and exponentials. The relation 'Y relates computations with e�ect Y, and we require relations to
be closed under the get and put operations so that the counit lifts. The functor RGSMnem×D_ →
GSMnem × D_ maps each object (-,�, ') to (-,�) and each morphism (5 , #) to itself.

We lift the right adjoint by de�ning ¤* (-,�, ') B (-∅,U�, '′) where

'′ B {(G, thunk") | (G,") ∈ '∅}

The lifting of the monoid action is Y ¤~ (-,�, ') B ((-Y ′∪Y)Y ′⊆{get,put}, 〈〈Y〉〉�, ('Y ′∪Y)Y ′⊆{get,put}).
Finally, for the lifting of the left adjoint suppose that - is a poset, � is a value type, and
' ⊆ - × Term

�
. We take ¤� (-,�, ') = (�-, 〈∅〉�, '′), where each relation '′Y is de�ned

inductively by the following rules:

(G,+) ∈ '
(G, coerce∅≤Y 〈+ 〉) ∈ '′Y

(C, ") ∈ '′Y (1,+) ∈ RÈboolÉ
(put1 C, put+ ; ") ∈ '′Y

if put ∈ Y

(Ctrue, "false), (Cfalse, "false) ∈ '′Y
(get(Ctrue, Cfalse), get () to 1. if 1 then"true else"false) ∈ '′Y

if get ∈ Y

This de�nition is based on the free lifting from Section 3.1.1.
This de�nes an LR model that satis�es all of the requirements of the abstraction lemma.

Hence our model of shared global state is adequate, and we have veri�ed all of our example
program transformations.

4.4 Relating call-by-value and call-by-name,
semantically

The �nal contribution of this chapter is to redevelop our syntax-based reasoning principle for
relating call-by-value and call-by-name evaluation (Chapter 3) using the denotational semantics.
Working inside the semantics makes it easier to apply our reasoning principle.

96 Chapter 4. Noninvertible program transformations

qg,Y : �YÈgÉvY → ÈgÉ
n
Y

qunit,Y B id : �Y1→ �Y1
qbool,Y B id : �Y2→ �Y2
qg→g ′,Y B s ◦ �Y (Λ(*qg ′,Y ◦ ev† ◦ (id ×kg,Y))) : �Y (* (ÈgÉvY ⇒ �YÈg′ÉvY)) → * ÈgÉnY ⇒Èg′É

n
Y

kg,Y : * ÈgÉnY → * (�YÈgÉvY)
kunit,Y B id : * (�Y1) → * (�Y1)
kbool,Y B id : * (�Y2) → * (�Y2)
kg→g ′,Y B [Y ◦ Λ(kg ′,Y ◦ ev ◦ (id × (*qg,Y ◦ [Y)))

: * (* ÈgÉnY ⇒ Èg′É
n
Y) → * (�Y (* (ÈgÉvY ⇒ �YÈg′ÉvY)))

Figure 4.5: Semantic morphisms q from call-by-value to Levy-style call-by-name andk from
Levy-style call-by-name to call-by-value

Recall that in Chapter 3 we restrict to Gi�ord-style e�ect algebras, so that e�ects are subsets
Y of some �xed set Σ of operations. We impose the same restriction in this section. Section 3.3
de�nes maps

Γ ` " : 〈Y〉Lg MvY ↦→ Γ ` Φg,Y" : Lg MnY Γ ` # : Lg MnY ↦→ Γ ` Ψg,Y# : 〈Y〉Lg MvY
between call-by-value and Levy-style call-by-name computations (with e�ect Y), and shows
that they form Galois connections under certain circumstances. In this section we show that
the interpretations of these maps in models satisfying certain conditions (which we state later)
form Galois connections.

De�nition 4.4.1 Suppose that - and . are posets. A Galois connection (q,k) from - to . is a
pair of monotone functions

q : - → . k : . → -

such that for all G ∈ - and ~ ∈ . ,

q G v ~ ⇔ G v k ~ J

Figure 4.5 de�nes semantic analogues of Φg,Y and Ψg,Y . We use some extra notation: ÈgÉvY
is ÈLg MvYÉ (i.e. the interpretation of the call-by-value translation of the type g , with the e�ect
annotation Y), and similarly ÈgÉnY is ÈLg MnY É. We also de�ne �Y to be Y~�−, so that È〈Y〉�É =
�YÈ�É, and de�ne [Y,- : - → * (�Y-) as * ((∅ ≤ Y)~-) ◦ [- (using ∅ ⊆ Y). The �gure uses
the extension operator (−)† de�ned in Section 4.2.1, and the natural transformation ev from
Section 4.2.2. The maps between call-by-value and call-by-name in the semantics are morphisms
qg,Y : �YÈgÉvY → ÈgÉ

n
Y in the computation category D and kg,Y : * ÈgÉnY → * (�YÈgÉvY) in the

value category C. The de�nition relies on our assumption that the e�ect algebra is Gi�ord-style
(which implies the multiplication is idempotent and Y~ÈgÉnY = ÈgÉ

n
Y).

Using composition, the morphisms qg,Y andkg,Y induce functions between posets of mor-
phisms (for each - ∈ C):

qg,Y ◦ − : C(-, (�YÈgÉvY)) → C(-,* ÈgÉnY) kg,Y ◦ − : C(-,* ÈgÉnY) → C(-,* (�YÈgÉvY))

These are the interpretations of Φ and Ψ in the following sense.

4.4. Relating call-by-value and call-by-name, semantically 97

Lemma 4.4.2 If Γ ` " : 〈Y〉Lg MvY then ÈΦg,Y"É = *qg,Y ◦ È"É, and if Γ ` # : Lg MnY then
ÈΨg,Y#É = kg,Y ◦ È#É. J

Our goal is to show that the pair (*qg,Y ◦ −,kg,Y ◦ −) is a Galois connection for each g . For
the same reason as in Section 3.3, we cannot expect this to hold in every case; it will only hold
if enough computations are thunkable. We de�ned thunkable for syntax in De�nition 3.3.2; we
now de�ne thunkable for semantics.

De�nition 4.4.3 (Thunkable) A morphism 5 : - → * (�Y.) in C is thunkable if

* (�Y[Y,.) ◦ 5 v [Y,* �Y. ◦ 5

An e�ect Y is thunkable if* (�Y[Y,/) v [Y,* �Y/ for each / ∈ C. J

Note that an e�ect Y is thunkable if and only if for all -,. , all morphisms 5 : - → * (�Y.)
are thunkable. This de�nition is based on the one given by Führmann [27], adapted to order-
enriched models.8

An example of a side-e�ect that is thunkable under this de�nition is unde�ned behaviour
(and the reasoning principle we give below can be used to show that, if side-e�ects are restricted
to unde�ned behaviour, call-by-value can be replaced with call-by-name). Nondeterministic
choice as we present it above (in which we can statically make nondeterministic choices) is not
thunkable, but it is if we reverse all of the orders on morphisms. This means we can use the
reasoning principle to replace call-by-name with call-by-value, but not the reverse, if we allow
nondeterministic choices to be made statically.

Assuming the e�ect Y is thunkable is enough to show we have a Galois connection in the
semantics (this theorem is a semantic version of Theorem 3.3.3).

Theorem 4.4.4 If the e�ect Y is thunkable, then for every source-language type g and ob-
ject - ∈ C, the pair (*qg,Y ◦ −,kg,Y ◦ −) is a Galois connection from C(-,* (�YÈgÉvY)) to
C(-,* ÈgÉnY). J

Recall that in Section 3.4 we state our reasoning principle that relates call-by-value and
call-by-name on open terms by composing the call-by-name translation with our maps between
evaluation orders, to obtain a computation with the same typing as the call-by-value translation:

LΓMvY −→ LΓMnY
L4 MnY−−−→ Lg MnY −→ 〈Y〉Lg MvY

We de�ned this formally by giving a substitution Φ̂Γ,Y from terms in call-by-name contexts LΓMnY
to terms in call-by-value contexts LΓMvY . The composition is then the term Ψg,Y

(
L4 MnY [Φ̂Γ,Y]

)
.

Since in this section we reason using the denotational semantics, we can now say what
this means inside models of GCBPV. The interpretation of the substitution Φ̂Γ,Y is a morphism
q̂Γ,Y : ÈΓÉvY → ÈΓÉ

n
Y , which is de�ned as follows (recall that � is the empty typing context).

q̂�,Y B id : 1→ 1 q̂ (Γ,G :g),Y B q̂Γ,Y × (*qg,Y ◦ [Y) : ÈΓÉvY × ÈgÉ
v
Y → ÈΓÉ

n
Y ×* ÈgÉ

n
Y

The interpretations of the computations we wish to relate are the two sides of the inequality
given as the following diagram. Assuming the model is adequate, to show that the two terms

8The (directed) de�nition of thunkable also appears in another form: an e�ect Y is thunkable if and only if
* ◦ �Y forms a Kock-Zöberlein monad [51].

98 Chapter 4. Noninvertible program transformations

are related by the contextual preorder it therefore su�ces to show that this inequality holds.

ÈΓÉvY ÈΓÉnY

*
(
�YÈgÉvY

)
* ÈgÉnY

È4ÉvY

q̂Γ,Y

È4ÉnY

kg,Y

v

Again we can show this is the case directly using the properties of Galois connections (see also
Lemma 3.4.1).

Lemma 4.4.5 Suppose that (*qg ′,Y ◦−,kg ′,Y ◦−) is a Galois connection from C(-,* (�YÈg′ÉvY))
to C(-,* Èg′ÉnY) for each g′. If Γ ` 4 : g and >?B 4 ⊆ Y then

È4ÉvY v kg,Y ◦ È4ÉnY ◦ q̂Γ,Y J

We use this lemma to show the semantic version of our reasoning principle for relating
call-by-value and Levy-style call-by-name (see also Theorem 3.4.2):

Theorem 4.4.6 (Call-by-value and call-by-name) Suppose we given some GCBPV inequa-
tional theory containing a Gi�ord-style e�ect algebra, and an adequate model of it in which
the e�ect Y is thunkable. If Γ ` 4 : g and >?B 4 ⊆ Y then

L4 MvY 4ctx Ψg,Y
(
L4 MnY [Φ̂Γ,Y]

)
Proof. By Theorem 4.4.4, the maps between call-by-value and call-by-name computations form
Galois connections. Hence we can apply Lemma 4.4.5, which tells us that

È4ÉvY v kg,Y ◦ È4ÉnY ◦ q̂Γ,Y
The result follows from adequacy. �

4.5 Related work
E�ect-dependent transformations There is a long line of work on using denotational
semantics to verify the correctness of e�ect-dependent program transformations, for example
by Benton and Buchlovsky [5], Benton and Kennedy [8], Benton et al. [10, 9], Birkedal et al.
[13]. Here we di�er in two major ways. We focus on giving a general framework (somewhat
similar to Kammar and Plotkin [42]) that incorporates several side-e�ects with little e�ort, and
instantiate it for examples. Second, we focus on noninvertible transformations, which are often
ignored in previous work. (For example, they are not mentioned at all in [11] but are brie�y
considered in [6].)

Inequations and order-enriched semantics The inequations and orders we use are in-
duced by considering the possible behaviours of computations. Hoare and He [38] emphasize a
similar idea to this in the setting of process calculus.

Previous work on order-enriched semantics (such as Fiore [26]) has concentrated mainly
on �xed points and recursive types, using partiality as the order (the least element represents
nontermination). Goncharov and Schröder [30] also incorporate other side-e�ects, but again
use partiality for the order on morphisms. They also use a more general notion of order-
enrichment, where only certain sets of morphisms are required to be partially ordered, allowing
e.g. C = Set to be used with a non-trivial order. We do not use this approach, because it is
unclear how to extend it to a higher-order language (Goncharov and Schröder consider only
�rst-order).

4.6. Summary 99

Relating syntax and semantics To prove adequacy we rely heavily on the �brational
view of logical relations started by Hermida [36]. We also based our presentation somewhat
on Katsumata [44], who relates models of a monadic language similar to GMM. We obtain
adequacy as a direct consequence of the fundamental lemma. Plotkin and Power [87] and
Kammar et al. [40] instead prove termination �rst, then obtain adequacy as a corollary. We
expect our technique for proving adequacy to work even for languages with nontermination.

4.6 Summary
This chapter presents a general denotational semantics for GCBPV, and uses it to prove the
validity e�ect-dependent program transformations. This improves on Chapter 3, in which
we reasoned inside the syntax. Denotational models makes the proofs less cumbersome. We
include a discussion of various sources of models. In particular, we discuss monadic models to
allow us use previous monadic models of side-e�ects, such as local state [88, 40] and probability
[37], as the basis of models of GCBPV. We also include a general logical-relations-based method
for relating models of GCBPV, including proofs of adequacy.

We are careful to ensure that we allow noninvertible transformations, by using contextual
preorders and order-enriched models. This is important because there are various applications
that give rise to noninvertible transformations, as our examples show.

Chapter 5

Call-by-need and extended
call-by-push-value

We have developed a framework for reasoning about program transformations that supports call-
by-value, Moggi-style call-by-name and Levy-style call-by-name. Another common evaluation
order is call-by-need (which is sometimes also referred to as “lazy evaluation” when data
constructors defer evaluation of arguments until the data structure is traversed). So far we have
said nothing about call-by-need, and in fact CBPV (and GCBPV) do not enable us to reason
about call-by-need.

An intuitive reason is that call-by-need has “action at a distance” in that reduction of
one subterm causes reduction of all other subterms that originated as copies during variable
substitution. Indeed call-by-need is often framed using mutable stores (graph reduction [100],
or reducing a thunk which is accessed by multiple pointers [53]). CBPV does not allow these
to be encoded.

This chapter presents extended call-by-push-value (ECBPV), a calculus similar to CBPV,
but which can capture call-by-need reduction in addition to call-by-value and call-by-name.
Speci�cally, ECBPV adds an extra primitive" need G . # which runs # , with" being evaluated
the �rst time G is used. On subsequent uses of G , the result of the �rst run is returned immedi-
ately. The term " is evaluated at most once. We give the syntax and type system of ECBPV,
together with an equational theory that expresses when terms are considered equal. We then
give a compositional translation from a lambda calculus (speci�cally our source language in
Section 2.2) into ECBPV for call-by-need reduction.

Initially we extend ordinary CBPV, which does not track the e�ects of computations in the
type system. As we will see, support for call-by-need (and action at a distance more generally)
makes tracking e�ects inside the type system more di�cult, so we postpone the discussion of
grading until the end of the chapter.

ECBPV can be used to reason about call-by-need and all of the other evaluation orders
captured by CBPV. Hence we can consider equivalences between call-by-need and other
evaluation orders. For example, if there are no side-e�ects at all in the source language1 then
call-by-need, call-by-value and call-by-name should be semantically equivalent. If the only
e�ect is nondeterminism, then need and value (but not name) are equivalent. If the only e�ect
is nontermination then need and name (but not value) are equivalent. We show that ECBPV
can be used to prove such equivalences by proving the latter. We do this using a technique
similar to the one we used in Chapter 3 for call-by-value and call-by-name. The main di�erence

1Without an e�ect system we have to restrict the side-e�ects of the entire source language. With an e�ect
system we can restrict individual expressions.

101

102 Chapter 5. Call-by-need and extended call-by-push-value

is that we rely on Kripke logical relations of varying arity [39], which generalize ordinary logical
relations.

This chapter makes the following contributions:
• We describe extended call-by-push-value, a version of CBPV containing an extra construct

that adds support for call-by-need. We give its syntax, type system, and equational theory
(Section 5.1).

• We describe a call-by-need translation from our source language into ECBPV (Section 5.2).

• We show that, if the source language has nontermination as the only side-e�ect, then
call-by-need and Moggi-style call-by-name are equivalent (Section 5.3).

• We re�ne the type system of ECBPV so that its types also carry e�ect information
(Section 5.4). This allows equivalences between evaluation orders to be exploited, both
at ECBPV and at source level, without a whole-language restriction on side-e�ects.

5.1 Extended call-by-push-value
We describe an extension to call-by-push-value with support for call-by-need. The primary
di�erence between ordinary CBPV and ECBPV is the addition of a primitive that allows
computations to be added to the environment so that they are evaluated only the �rst time
they are used. Before describing this change, we take a closer look at how CBPV supports
call-by-value and call-by-name.

Recall that CBPV strati�es terms into values, which do not have side-e�ects, and computa-
tions, which might. Evaluation order is irrelevant for values, so we are only concerned with
how computations are sequenced. There is exactly one primitive that causes the evaluation of
more than one computation, which is " to G . # . This behaves in the same way as it does in
GCBPV. The evaluation order is �xed: " is always eagerly evaluated. This construct can be
used to implement call-by-value as in Figure 2.15: to apply a function, eagerly evaluate the
argument and then evaluate the body of the function.

Thunks let us implement call-by-name in CBPV: arguments to functions are thunked
computations. Arguments are used by forcing them, so that the computation is evaluated every
time the argument is used. E�ectively, we simulate a construct " name G . # , which evaluates
" each time the variable G is used by # , rather than eagerly evaluating. (The variable G is
underlined here to indicate that it refers to a computation rather than a value: uses of it may
have side-e�ects.)

To support call-by-need, extended call-by-push-value adds another construct " need G . # .
This runs the computation # , with the computation " being evaluated the �rst time G is used.
On subsequent uses of G , the result of the �rst run is returned immediately. The computation
" is evaluated at most once. This new construct adds the “action at a distance” missing from
ordinary CBPV.

We observe that adding general mutable references to call-by-push-value would allow
call-by-need to be encoded. However, reasoning about evaluation order would be di�cult, and
so we do not take this option.

5.1.1 Syntax

The syntax of extended call-by-push-value is as follows. The highlighted parts are new in
this chapter. The rest of the syntax is similar to CBPV and GCBPV. The type constructor F

5.1. Extended call-by-push-value 103

corresponds to 〈Y〉 in GCBPV (without the grading by the e�ect Y). There are no coercions
because of the lack of grading.

�, � F 1 + ,, F 2 | G
| unit | ()
| �1 ×�2 | (+1,+2) | fst+ | snd+
| empty | case� + of {}
| �1 +�2 | inl�2+ | inr�1+ | case + of {inl G1.,1, inr G2.,2}
| U� | thunk"

�,� F unit ", # F _{}
| �1 ×�2 | _{1. "1, 2. "2} | 1‘" | 2‘"
| �→ � | _G :�." | + ‘"
| F� | op+ | 〈+ 〉 | " to G . #

| force+ | G | " need G . #

We assume two sets of variables: value variables G,~, . . . (which are the same as the
variables in GCBPV) and computation variables G,~, While ordinary CBPV does not include
computation variables, they do not of themselves add any expressive power to it. The ability to
express call-by-need in ECBPV comes from the need construct used to bind them.2

The primary new construct is " need G . # . This term evaluates # . The �rst time G is
evaluated (due to a use of G inside #) it behaves the same as the computation " . If " returns
a value + then subsequent uses of G behave the same as 〈+ 〉. Hence only the �rst use of G
will evaluate " . If G is not used then " is not evaluated at all. The computation variable G
bound inside the term is primarily used by eagerly sequencing it with other computations. For
example,

" need G . G to ~. G to I. 〈(~, I)〉
uses G twice: once where the result is bound to ~, and once where the result is bound to I. Only
the �rst of these uses will evaluate " , so this term has the same semantics as " to G . 〈(G, G)〉.
The term " need G . 〈()〉 does not evaluate " at all, and has the same semantics as 〈()〉.

With the addition of need it is not in general possible to statically determine the order in
which computations are executed. Uses of computation variables are given statically, but not
all of these actually evaluate the corresponding computation dynamically. The set of uses of
computation variables that actually cause e�ects depends on run-time behaviour. This will be
important when describing the e�ect system in Section 5.4.

Typing contexts Γ are ordered lists mapping value variables to value types �, and com-
putation variables to computation types of the form F�. The restriction to F� is due to the
fact that the only construct that binds computation variables is need, and this only sequences
computations of returner type. Allowing computation variables to be associated with other
forms of computation type in typing contexts is therefore unnecessary. Ground types are value
types that do not contain thunks:

� F 1 | unit | �1 ×�2 | empty | �1 +�2

The syntax is parameterized by a notion of signature identical to the one for GCBPV
(De�nition 2.7.1), except for the omission of the e�ects Y.

2Computation variables are not strictly required to support call-by-need (since we can use G : U (F�) instead
of G : F�), but they simplify reasoning about evaluation order, and therefore we choose to include them.

104 Chapter 5. Call-by-need and extended call-by-push-value

De�nition 5.1.1 A ECBPV signature consists of the following data:
• A set B of base types.
• A family of pairwise disjoint sets K� of constants of type �, indexed by value types �.
• A set Σ of operations.
• For each operation op ∈ Σ, ground types carop and arop, respectively called the coarity

and arity of op. J

(Recall from De�nition 2.7.1 that the coarity is the type of the argument of the operation, and
the arity is the type of the result, not the other way around.)

The type system of extended call-by-push-value is a minor extension of the type system of
ordinary call-by-push-value: we add one typing rule for each of the two new constructs. The
rules are given in Figure 5.1. We again write the value typing judgment as Γ ` + : � and the
computation typing judgment as Γ ` " : � , and follow our usual convention: rules that add a
new variable to the typing context implicitly require freshness.

ECBPV admits a substitution lemma similar to the one for GCBPV (Lemma 2.7.2). Substitu-
tions f are given by the following grammar:

f F � | f, G ↦→+ | f, G ↦→"

where � is the empty substitution. The typing judgment Γ ` f : Δ for substitutions means in
the context Γ the terms in f have the types given in the context Δ. It is de�ned as follows:

Γ ` � : �
Γ ` f : Δ Γ ` + : �

Γ ` (f, G ↦→+) : (Δ, G : �)
Γ ` f : Δ Γ ` " : F�

Γ ` (f, G ↦→") : (Δ, G : F�)

We write + [f] and " [f] for the (capture-avoiding) applications of the substitution f to the
value term + and to the computation term " , and G ↦→ + and G ↦→ " for the obvious
substitutions that are identities on all other variables. The substitution lemma for ECBPV is:

Lemma 5.1.2 (Substitution) Suppose that Γ ` f : Δ.
1. (Values) If Δ ` + : � then Γ ` + [f] : �.
2. (Computations) If Δ ` " : � then Γ ` " [f] : � . J

We de�ne the call-by-name construct mentioned above as syntactic sugar for other CBPV
primitives:

" name G . # B thunk" ‘ _~. # [G ↦→ force~]
where ~ is not free in # .

5.1.2 Inequational theories for ECBPV
The behaviour of need is captured by the core axioms for ECBPV inequational theories, which
are listed in Figure 5.2. Each of these axioms is symmetric and holds when both sides of the
equation have suitable types. For example, the second axiom of the third group (" need G . # ≡
) holds only if G is not free in # .

For the core axioms to capture call-by-need, we might expect computation terms that are not
of the form 〈+ 〉 to never be duplicated, since they should not be evaluated more than once. There
are two exceptions to this rule. Such terms can be duplicated in the axioms that duplicate value
terms (such as the V-laws for sum types). In this case, the syntax ensures such terms are thunked.

5.1. Extended call-by-push-value 105

Γ ` + : �

Γ ` 2 : �
if 2 ∈ K�

Γ ` G : �
if (G : �) ∈ Γ

Γ ` () : unit

Γ ` +1 : �1 Γ ` +2 : �2

Γ ` (+1,+2) : �1 ×�2

Γ ` + : �1 ×�2

Γ ` fst+ : �1

Γ ` + : �1 ×�2

Γ ` snd+ : �2

Γ ` + : empty

Γ ` case� + of {} : �

Γ ` + : �1

Γ ` inl�2+ : �1 +�2

Γ ` + : �2

Γ ` inr�1+ : �1 +�2

Γ ` + : �1 +�2 Γ, G1 : �1 `,1 : � Γ, G2 : �2 `,2 : �
Γ ` case + of {inl G1.,1, inr G2.,2} : �

Γ ` " : �
Γ ` thunk" : U�

Γ ` " : �

Γ ` _{} : unit
Γ ` "1 : �1 Γ ` "2 : �2

Γ ` _{1. "1, 2. "2} : �1 ×�2

Γ ` " : �1 ×�2

Γ ` 1‘" : �1

Γ ` " : �1 ×�2

Γ ` 2‘" : �2

Γ, G : � ` " : �
Γ ` _G :�." : �→ �

Γ ` + : � Γ ` " : �→ �

Γ ` + ‘" : �

Γ ` + : carop
Γ ` op+ : F arop

Γ ` + : �
Γ ` 〈+ 〉 : F�

Γ ` " : F� Γ, G : � ` # : �
Γ ` " to G . # : �

Γ ` + : U�
Γ ` force+ : �

Γ ` G : F�
if (G : F�) ∈ Γ

Γ ` " : F� Γ, G : F� ` # : �
Γ ` " need G . # : �

Figure 5.1: Extended call-by-push-value typing rules

106 Chapter 5. Call-by-need and extended call-by-push-value

fst (+1,+2) ≡ +1

case inl�2+ of
{inl G1.,1
, inr G2.,2}

≡ ,1 [G1 ↦→+]

1 ‘ _{1. "1, 2. "2} ≡ "1

+ ‘ _G :�." ≡ " [G ↦→+]
force (thunk") ≡ "

snd (+1,+2) ≡ +2

case inr�1+ of
{inl G1.,1
, inr G2.,2}

≡ ,2 [G2 ↦→+]

2 ‘ _{1. "1, 2. "2} ≡ "2

〈+ 〉 to G . " ≡ " [G ↦→+]
〈+ 〉 need G . " ≡ " [G ↦→ 〈+ 〉]

V-law
s

+ ≡ ()
+ ≡ case�, of {}
+ ≡ thunk (force+)

" ≡ _{}
" ≡ _G :�. G ‘"

+ ≡ (fst+ , snd+)

+ [G ↦→,] ≡
case, of
{inl ~1.+ [G ↦→ inl�2~1]
, inr~2.+ [G ↦→ inr�1~2]}

" ≡ _{1. 1‘", 2. 2‘"}
" ≡ " to G . 〈G〉

[-law
s

" need G . G to ~. # ≡ " to ~. # [G ↦→ 〈~〉]
" need G . # ≡ #

_{1. " to G . #1, 2. " to G . #2} ≡ " to G . _{1. #1, 2. #2}
_~ :�." to G . # ≡ " to G . _~ :�. #

_{1. " need G . #1, 2. " need G . #2} ≡ " need G . _{1. #1, 2. #2}
_~ :�." need G . # ≡ " need G . _~ :�. #

"1 to G . "2 need ~."3 ≡ "2 need ~."1 to G . "3

("1 to G . "2) to ~."3 ≡ "1 to G . "2 to ~."3

("1 need G . "2) to ~."3 ≡ "1 need G . "2 to ~."3

("1 need G . "2) need ~."3 ≡ "1 need G . "2 need ~."3

Sequencing
law

s

Figure 5.2: Core axioms of ECBPV inequational theories

The duplication is acceptable because we should allow these terms to be executed once in each
separate execution of a computation (and separate executions arise from duplication of thunks).
Only duplication within a single execution of a computation is problematic. Computations can
also be duplicated across both elements of a pair _{1. "1, 2. "2}. This is also correct, because
only one component of a pair can be used within a single computation (without thunking),
so the side-e�ects will still not happen twice. (There is a similar consideration for functions,
which can only be applied once.) The other axioms never duplicate need-bound computations
that might have e�ects.

We have seen the majority of the core axioms before: they are the same as the ones for
GCBPV and CBPV (see Section 2.7.2). Only the axioms involving need are new; these are
highlighted. The V-law for need parallels the usual V-law for to: it gives the behaviour of
computation terms that return values without having any side-e�ects. The interesting axioms
are those in the third group of Figure 5.2, which we call sequencing axioms.

5.1. Extended call-by-push-value 107

The �rst sequencing axiom is the crucial one. It states that if a computation will next
evaluate G , where G is a computation variable bound to " , then this is the same as evaluating
" , and then using the result for subsequent uses of G . It implies that

" need G . G ≡ " need G . G to ~. 〈~〉 ([law for returner types)
≡ " to ~. 〈~〉
≡ " ([law for returner types)

The second sequencing axiom does garbage collection [68]: if a computation bound by need
is not used (because the variable does not appear), then the binding can be dropped. This
equation implies, for example, that

"1 need G1. "2 need G2. · · ·"= need G= . 〈()〉 ≡ 〈()〉

The next �ve sequencing axioms (two from CBPV and three new) state that binding a
computation with to or need commutes with the remaining forms of computation terms. These
allow to and need to be moved to the outside of other constructs except thunks. The �nal three
axioms (one from CBPV and two new) capture associativity involving need and to. Note that
associativity between di�erent evaluation orders is not necessarily valid. In particular, we do
not have

("1 to G . "2) need ~."3 ≡ "1 to G . ("2 need G . "3)

(The �rst term might not evaluate "1, the second always does.) This is usually the case when
evaluation orders are mixed [79].

These �nal eight axioms allow computation terms to be placed in normal forms where
bindings of computations are on the outside. (Compare this with the translation of source-
language answers in Section 5.2.)

An inequational theory again consists of two judgment forms, one for values and one for
computations:

Γ ` + 4, : � Γ ` " 4 # : �

We require inequational theories to be closed under congruence, so de�ne term contexts C[]
(value terms with a single hole) and C[] (computation terms with a single hole):

C[] F � | (C[],+2) | (+1, C[]) | fstC[] | sndC[] | case� C[] of {}
| inl�2C[] | inr�1C[] | case C[] of {inl G1.,1, inr G2.,2}
| case + of {inl G1. C[], inr G2.,2} | case + of {inl G1.,1, inr G2. C[]}
| thunkC[]

C[] F � | _{1. "1, 2. C[]} | _{1. C[], 2. "2} | 1‘C[] | 2‘C[] | _G :�. C[] | C[]‘" | + ‘C[]
| opC[] | 〈C[]〉 | C[] to G . # | " to G . C[] | forceC[]
| C[] need G . # | " need G . C[]

We also require closure under substitution, so de�ne a judgment

Γ ` f 4 f′ : Δ

on well-typed substitutions componentwise, using both judgments of the inequational the-
ory. The de�nition of ECBPV inequational theory is similar to the de�nition for GCBPV
(De�nition 2.7.4):

108 Chapter 5. Call-by-need and extended call-by-push-value

De�nition 5.1.3 (Inequational theory) An inequational theory consists of a ECBPV signa-
ture and two judgments

Γ ` + 4, : � Γ ` " 4 # : �
such that:

• Preorder:
– Values: if Γ ` + : � then Γ ` + 4 + : �, and if Γ ` +1 4 +2 : � and Γ ` +2 4 +3 : �

then Γ ` +1 4 +3 : �.
– Computations: if Γ ` " : � then Γ ` " 4 " : � , and if Γ ` "1 4 "2 : � and

Γ ` "2 4 "3 : � then Γ ` "1 4 "3 : � .
• Congruence: if Γ ` + 4, : � then for term contexts with hole �

Γ′ ` C[+] : � ∧ Γ′ ` C[,] : � ⇒ Γ′ ` C[+] 4 C[,] : �
Γ′ ` C[+] : � ∧ Γ′ ` C[,] : � ⇒ Γ′ ` C[+] 4 C[,] : �

If Γ ` " 4 # : � then for term contexts with hole �

Γ′ ` C["] : � ∧ Γ′ ` C[#] : � ⇒ Γ′ ` C["] 4 C[#] : �
Γ′ ` C["] : � ∧ Γ′ ` C[#] : � ⇒ Γ′ ` C["] 4 C[#] : �

• Substitution: If Γ ` f 4 f′ : Δ then

Δ ` + 4, : � ⇒ Γ ` + [f] 4, [f′] : �
Δ ` " 4 # : � ⇒ Γ ` " [f] 4 # [f′] : �

• Core axioms:
– Values: if Γ`+ : � and Γ`, : �, and+ ≡, is an instance of an axiom in Figure 5.2,

then Γ ` + 4, : � and Γ `, 4 + : �.
– Computations: if Γ ` " : � and Γ ` # : � , and " ≡ # is an instance of an axiom in

Figure 5.2, then Γ ` " 4 # : � and Γ ` # 4 " : � . J

To specify an inequational theory, one gives a collection of signature axioms and then closes
under the core axioms, re�exivity, transitivity and congruence. The signature axioms may
involve to (e.g. Figure 2.14), but we do not expect any examples to require signature axioms
involving need, because the behaviour of need is completely characterized by the sequencing
axioms.

We de�ne the contextual preorder in the usual way (recall that � is the empty typing
context).

De�nition 5.1.4 (Contextual preorder) The contextual preorder consists of two judgment
forms.

1. Between value terms: Γ `+ 4ctx, : � if Γ `+ : �, Γ `, : �, and for all ground types�
and term contexts C[] with hole � such that � ` C[+] : F� and � ` C[,] : F� we have

� ` C[+] 4 C[,] : F�

2. Between computation terms: Γ ` " 4ctx # : � if Γ ` " : � , Γ ` # : � , and for all ground
types � and term contexts C[] with hole � such that � ` C["] : F� and � ` C[#] : F�
we have

� ` C["] 4 C[#] : F� J

5.2. Call-by-need translation 109

Evaluation contexts E[] F � | op E[] | if E[] then 42 else 43 | E[] 42
| (_G :g . E[G]) E′[] | (_G :g . E[]) 42

Values E F true | false | _G :g . 4
Answers 0 F E | (_G :g . 0) 4

if true then 42 else 43
need
 42

if false then 42 else 43
need
 43

4
need
 4′

E[4] need E[4′]

(_G :g . E[G]) E need
 (_G :g . E[E]) E (_G :g . 0) 41 42

need
 (_G :g . 0 42) 41

(_G :g . E[G]) ((_~ :g′. 0) 4) need
 (_~ :g′. (_G :g . E[G]) 0) 4

Figure 5.3: Call-by-need operational semantics

5.2 Call-by-need translation

Our goal with ECBPV is to use it to reason about call-by-need evaluation. To do this, we give a
call-by-need translation from our source language (Section 2.2) into ECBPV.

Most of the translation is similar to the Moggi-style call-by-name translation in Figure 2.16.
The critical di�erence is how functions are dealt with. We encode call-by-need functions as
terms of the form

_G′ :UF�. (forceG′) need G . "

where G′ is not free in " . This is an ECBPV function that accepts a thunk as an argument.
The thunk is added to the context, and the body of the function is executed. The �rst time the
argument is used (via G), the computation inside the thunk is evaluated. Subsequent uses do
not evaluate the computation again.

Before de�ning the translation we give a call-by-need operational semantics for our source
language, based on Ariola and Felleisen’s [3]. The only di�erences between our source language
and Ariola and Felleisen’s calculus are the addition of booleans, operations, and a type system.
It is likely that we can translate other call-by-need calculi, such as those of Launchbury [53]
and Maraist et al. [68]. Call-by-need small-step reductions are written 4 need

 4′; this is de�ned
in Figure 5.3.

The call-by-need semantics needs some auxiliary de�nitions. An evaluation context E[]
is a source-language expression with a single hole �, picked from the grammar given in the
�gure. (There is only one kind of reduction context and one kind of hole because the syntax of
the source language is not strati�ed into values and computations.) The hole in an evaluation
context indicates where reduction is currently taking place: it says which part of the expression
is currently needed. We write E[4] for the expression in which the hole is replaced with 4 . A
(source-language) value is the result of a computation (the word value should not be confused
with the value terms of ECBPV. An answer is a value in some environment, which maps
variables to expressions. Answers can be thought of as closures. The environment is encoded
in an answer using application and lambda abstraction: the answer (_G : g . 0) 4 means the
answer 0 where the environment maps G to 4 . Encoding environments in this way makes
the translation slightly simpler than if we had used a Launchbury-style [53] call-by-need
language with explicit environments. In the latter case, the translation would need to encode

110 Chapter 5. Call-by-need and extended call-by-push-value

LunitM B unit
LboolM B unit + unit

Lg → g′M B U (U (F Lg M) → F Lg′M)

L � M B �
LΓ, G : g M B LΓM, G : F Lg M

LΓ ` G : g M B G

LΓ ` 4 : caropM = "

LΓ ` op 4 : aropM = " to G . opG LΓ ` () : unitM B 〈()〉

LΓ ` true : boolM B 〈inlunit ()〉 LΓ ` false : boolM B 〈inrunit ()〉

LΓ ` 41 : boolM = "1 LΓ ` 42 : g M = "2 LΓ ` 43 : g M = "3

LΓ ` if 41 then 42 else 43 : g M B "1 to G . case G of {inl _. "2, inr _. "3}

LΓ, G : g ` 4 : g′M = "

LΓ ` _G :g . 4 : g → g′M B 〈thunk (_G′ :U (F Lg M) . forceG′ need G . ")〉

LΓ ` 41 : g → g′M = "1 LΓ ` 42 : g M = "2

LΓ ` 41 42 : g′M B "1 to 5 . (thunk"2) ‘ (force 5)

Figure 5.4: Call-by-need translation of call-by-need types (top left), contexts (top right), and
expressions into ECBPV.

the environments; here they are already encoded inside expressions. Answers are terminal
computations: they do not reduce.

The two axioms for reducing if-expressions are obvious. The congruence rule only allows
reducing the expression that is needed by the computation. The axiom on the bottom left of
Figure 5.3 is the most important: it states that if the subexpression currently being evaluated is
a variable G , and the environment maps G to a source-language value E , then that use of G can be
replaced with E . Note that E[E] may contain other uses of G ; the replacement only occurs when
the value is actually needed. This axiom roughly corresponds to the �rst sequencing axiom in
Figure 5.2. The two axioms on the bottom right of Figure 5.3 rearrange the environment into a
standard form. Both have a syntactic restriction to answers so that each expression has at most
one reduct (this restriction is not needed to ensure that need

 captures call-by-need).
The call-by-need translation from the source language to ECBPV is de�ned in Figure 5.4. We

assume that each operation op in the source-language signature is also included in the ECBPV
signature, and that if g and g′ are respectively the coarity and arity of op in the source-language
signature then Lg Mneed and Lg′Mneed are the coarity and arity in the ECBPV signature.

The translation of types is the same as the Moggi-style call-by-name translation in Fig-
ure 2.16 (ignoring the grading), so types g are translated into value types Lg Mneed. (We omit the
superscript in the �gure.) On function types g → g′, we use ECBPV function types that receive
thunks of computations as arguments (the argument is not evaluated before the function is
applied). The call-by-need translation di�ers only on typing contexts and expressions (since
there is no sube�ecting, we do not have to be careful about the distinction between typing
derivations and well-typed expressions).

Source-language typing contexts Γ are translated into ECBPV typing contexts LΓMneed,

5.2. Call-by-need translation 111

containing computations that return values. The computations in the context are all bound
using need. An expression Γ ` 4 : g is translated to a computation L4 Mneed that returns Lg Mneed
in the context LΓMneed. The key case is the translation of lambdas. These become computations
that immediately return a thunk of a function. The function places the computation given as
an argument onto the context using need, so that it is evaluated at most once, before executing
the body. The remainder of the cases are similar to the Moggi-style call-by-name translation.

Under the call-by-need translation, the expression (_G :g . 41) 42 is translated into a term
that executes the computation L41Mneed, and executes L42Mneed only when needed. This is the
case because, by the V rules for thunks, functions, and returner types:

L (_G :g . 41) 42Mneed ≡ L42Mneed need G . L41Mneed

As a consequence, translations of answers are particularly simple: they have the following
form (up to ≡):

"1 need G1. "2 need G2. · · ·"= need G= . 〈+ 〉

which intuitively means the value + in the environment mapping each G8 to "8 .
The call-by-need translation produces ECBPV computations of the correct type.

Lemma 5.2.1 If Γ ` 4 : g then LΓMneed ` L4 Mneed : F Lg Mneed. J

We prove that the call-by-need translation is sound: if 4 need
 4′ then L4 Mneed ≡ L4′Mneed. To

do this, we �rst look at translations of evaluation contexts. The following lemma says the
translation captures the idea that the hole in an evaluation context corresponds to the term
being evaluated.

Lemma 5.2.2 De�ne, for each evaluation context E[], the term context LE[]Mneed by:

L�Mneed B 〈�〉
Lop E[]Mneed B LE[]Mneed to G . opG

Lif E[] then 42 else 43Mneed B LE[]Mneed to G . case G of
{inl _. thunk L42Mneed

, inr _. thunk L43Mneed}
LE[] 42Mneed B LE[]Mneed to I. thunk L42Mneed ‘ force I

L (_G :g . E[G]) E′[]Mneed B LE′[]Mneed need G . LE[G]Mneed

L (_G. E[]) 42Mneed B L42Mneed need G . LE[]Mneed

For each expression 4 we have:

LE[4]Mneed ≡ L4 Mneed to ~. LE[]Mneed [~]

(where ~ is fresh). J

This lemma omits the typing of expressions for presentational purposes. Soundness is now
easy to show:

Theorem 5.2.3 (Soundness) If 4 and 4′ are closed, well-typed source-language expressions
then 4 need

 4′ implies L4 Mneed ≡ L4′Mneed. J

112 Chapter 5. Call-by-need and extended call-by-push-value

5.3 Equivalence between call-by-name and call-by-need
Extended call-by-push-value can be used to prove equivalences between evaluation orders.
In this section we prove a classic example: if the only side-e�ect is nontermination, then
call-by-name is equivalent to call-by-need. We do this in two stages.

First, we show that call-by-name is equivalent to call-by-need within ECBPV. Speci�cally,
we show that

" name G . # �ctx " need G . #

(Recall that " name G . # is syntactic sugar for thunk" ‘ _~. # [G ↦→ force~].)
Second, an important corollary is that the meta-level reduction strategies are equivalent.

We show that the call-by-need translation in Section 5.2 and the Moggi-style call-by-name
translation in Figure 2.16 (ignoring grading) give contextually equivalent ECBPV terms. We
expect the Levy-style translation in Figure 2.17 to work equally well, except that we would
have to de�ne a more complicated Galois connection between the two evaluation orders (see
Chapter 3).

To model nontermination being the sole source-language e�ect, we choose the ECBPV
signature with no constants or base types, and a single operation:

Operation op Coarity carop Arity arop
diverge unit empty

We expect our proofs to work with general �xed-point operators, but for simplicity we do not
consider this here. The operation enables us to de�ne a diverging computation Ω� of each
computation type � , using the eliminator of the empty type:

Ω� B diverge () to G . case
�
G of {}

We use the smallest inequational theory with this signature. This inequational theory is
symmetric. We do not need any signature axioms to characterize nontermination; the core
axioms are su�cient. For example, associativity of to and the [-law for empty imply

ΩF� to G . " ≡ Ω�

So diverging as part of a larger computation causes the entire computation to diverge.
We �rst show that

" name G . # �ctx " need G . #

As we did in Chapter 3 we use logical relations to get a strong enough inductive hypothesis
for the proof to go through. However, unlike the usual case, it does not su�ce to relate closed
terms. To see why, consider a closed term " of the form

ΩF� need G . #1 to ~. #2

If we relate only closed terms, then we do not learn anything about #1 itself (since G may be
free in it). We could attempt to proceed by considering the closed term ΩF� need G . #1. For
example, if this returns a value + then G cannot have been evaluated and " should have the
same behaviour as ΩF� need G . #2 [~ ↦→+]. However, we get stuck when proving the last step.
This is only a problem because ΩF� is a nonterminating computation: every closed, terminating
computation of returner type has the form 〈+ 〉 (up to ≡), and when these are bound using need
we can eliminate the binding using the equation

〈+ 〉 need G . #1 to ~. #2 ≡ (#1 to ~. #2) [G ↦→ 〈+ 〉]

5.3. Equivalence between call-by-name and call-by-need 113

The solution is to relate terms that may have free computation variables (we do not have to
consider free value variables). The free computation variables should be thought of as referring
to nonterminating computations, because we can remove the bindings of variables that refer to
terminating computations. We relate open terms using Kripke logical relations of varying arity,
which were introduced by Jung and Tiuryn [39] to study lambda de�nability.

We need a number of de�nitions �rst. We de�ne TermΓ
�

as the set of equivalence classes
(up to ≡) of terms of value type � in context Γ, and similarly de�ne TermΓ

�
for computation

types:
TermΓ

� B {[+]≡ | Γ ` + : �} TermΓ
�
B {["]≡ | Γ ` " : �}

A computation-type context Δ is an ECBPV typing context that contains only computation
variables G . In this section Δ ranges over computation-type contexts only, Γ ranges over
arbitrary typing contexts. Variables in computation-type contexts refer to nonterminating
computations for the proof of contextual equivalence. A computation-type context Δ′ weakens
another context Δ, written Δ′ ⊲ Δ, whenever Δ is a sublist of Δ′. Formally, this relation is
generated by the following rules:

� ⊲ �
Δ′ ⊲ Δ

Δ′, G : F� ⊲ Δ, G : F�
Δ′ ⊲ Δ

Δ′, G : F� ⊲ Δ

The type system of ECBPV admits a weakening lemma, so if Δ′ ⊲Δ we can weaken any Δ`+ : �
to get Δ′ ` + : �, and similarly for computations.

A Kripke relation is a family of binary relations indexed by computation-type contexts that
respects weakening of terms:

De�nition 5.3.1 (Kripke relation) A Kripke relation ' over a value type � (respectively
a computation type �) is a family of relations 'Δ ⊆ TermΔ

�
× TermΔ

�
(respectively 'Δ ⊆

TermΔ
�
× TermΔ

�
) indexed by computation-type contexts Δ such that whenever Δ′ ⊲ Δ, we have

" ∈ 'Δ implies " ∈ 'Δ′ (where " is weakened). J

We consider binary relations on equivalence classes of terms because we want to relate pairs
of terms up to ≡, as we did in Chapter 3 (to prove contextual equivalence).

First we observe that, because computation variables are bound to nonterminating compu-
tations, some computations can easily be seen to diverge:

De�nition 5.3.2 A computation Δ ` " : � is trivially diverging if

" ≡ #1 to G . #2

for some value type �, computation #1 ∈ {G | (G : F�) ∈ Δ} ∪ {ΩF�} and computation
Γ, G : F� ` #2 : � . J

If " is trivially diverging then we cannot necessarily show " ≡ Ω� because #1 might be G .
However, we can show this once we bind all of the variables in the computation context Δ
to nonterminating computations. We need the Kripke relations we de�ne over computation
terms to be closed under divergence. (For the rest of this section, we omit the square brackets
around equivalence classes.)

De�nition 5.3.3 A Kripke relation ' over a computation type � is closed under divergence if
it is transitive and each of the following holds:

1. If Δ ` " : � and Δ ` "′ : � are trivially diverging, then (","′) ∈ 'Δ.

114 Chapter 5. Call-by-need and extended call-by-push-value

RÈunitÉΔ B Termunit × Termunit

RÈ�1 ×�2ÉΔ B {(+ ,+ ′) | (fst+ , fst+ ′) ∈ RÈ�1ÉΔ ∧ (snd+ , snd+ ′) ∈ RÈ�2ÉΔ}
RÈemptyÉΔ B ∅
RÈ�1 +�2ÉΔ B {(inl�2+ , inl�2+

′) | (+ ,+ ′) ∈ RÈ�1ÉΔ}∪
{(inr�1+ , inr�1+

′) | (+ ,+ ′) ∈ RÈ�2ÉΔ}
RÈU�ÉΔ B {(+ ,+ ′) | (force+ , force+ ′) ∈ RÈ�ÉΔ}

RÈF�É B the smallest closed-under-divergence Kripke relation such that
(+ ,+ ′) ∈ RÈ�ÉΔ ⇒ (〈+ 〉, 〈+ ′〉) ∈ RÈF�ÉΔ

RÈunitÉΔ B Termunit × Termunit

R
�
�1 ×�2

�Δ
B {(","′) | (1‘", 1‘"′) ∈ R

�
�1

�Δ ∧ (2‘", 2‘"′) ∈ R�
�2

�Δ}
RÈ�→ �ÉΔ B {(","′) | ∀Δ′⊲Δ, (+ ,+ ′) ∈ RÈ�ÉΔ

′
. (+ ‘",+ ′‘"′) ∈ RÈ�ÉΔ

′
}

Figure 5.5: Kripke logical relation for ECBPV with nontermination

2. If Δ `" : F� and Δ `"′ : F� are trivially diverging, and (#, # ′) ∈ 'Δ,~:F�, then all four
of the following pairs are in 'Δ:

(" need ~. #, "′ need ~. # ′) (# [~ ↦→"], # ′[~ ↦→"′])
(# [~ ↦→"], "′ need ~. # ′) (" need ~. #, # ′[~ ↦→"′]) J

This de�nition works because all of the trivially diverging computations are interchangeable in
the semantics. The second part of the de�nition is the most important. Since we are showing
that need is contextually equivalent to substitution, we want these to be related; this justi�es
the two pairs at the bottom of the de�nition. We have to consider computation variables in the
de�nition (inside trivially diverging computations) only because of our use of Kripke logical
relations. For ordinary logical relations, there would be no free variables to consider.

The key part of the proof of contextual equivalence is the de�nition of the Kripke logical
relation RÈ−É, which is a family of relations indexed by value and computation types. It is
de�ned in Figure 5.5 by induction on the structure of the types. In the �gure, we again omit
square brackets around equivalence classes.

The de�nition on most of the type formers is standard, and similar to the equations required
to hold for GCBPV logical relations (Figure 3.1). For returner types, we want any pair of
computations that return related values to be related. We also want the relation to be closed
under divergence, in order to show the fundamental lemma (below) for to and need. We
therefore de�ne RÈF�É as the smallest such Kripke relation. For function types, we require as
usual that related arguments are sent to related results. For this to de�ne a Kripke relation,
we have to quantify over all computation-type contexts Δ′ that weaken Δ, because of the
contravariance of the argument. The computations " and "′ are weakened so that they are in
the context Δ′.

The relations we de�ne are Kripke relations. Using the sequencing axioms of ECBPV
inequational theories, and the V- and [-laws for computation types, we can show that RÈ�É is
closed under divergence for each computation type � . These facts are important for the proof
of the fundamental lemma.

5.3. Equivalence between call-by-name and call-by-need 115

We de�ne sets SubstΔΓ of equivalence classes of substitutions (where ≡ is given component-
wise on substitutions), and extend the logical relation by de�ning RÈΓÉΔ ⊆ SubstΔΓ × SubstΔΓ :

SubstΔΓ B {[f]≡ | Δ ` f : Γ}
RÈ�ÉΔ B {(�,�)}

RÈΓ, G : �ÉΔ B {((f, G ↦→+), (f′, G ↦→+ ′)) | (f, f′) ∈ RÈΓÉΔ ∧ (+ ,+ ′) ∈ RÈ�ÉΔ}
RÈΓ, G : F�ÉΔ B {((f, G ↦→"), (f′, G ↦→"′)) | (f, f′) ∈ RÈΓÉΔ ∧ (","′) ∈ RÈF�ÉΔ}

As usual, the logical relations satisfy a fundamental lemma.

Lemma 5.3.4 (Fundamental) Suppose that (f, f′) ∈ RÈΓÉΔ.
1. (Values) If Γ ` + : � then (+ [f],+ [f′]) ∈ RÈ�ÉΔ.
2. (Computations) If Γ ` " : � then (" [f], " [f′]) ∈ RÈ�ÉΔ.

Proof. By induction on the structure of the terms. For two of the cases we use lemmas given in
the appendix: Lemma B.3.3 for need and Lemma B.3.4 for to. For computation variables we
use the assumption about f and f′. For the operation undef, we use the fact that undef () is
trivially diverging. The rest of the cases are standard. �

We also have the following two facts about the logical relation. The �rst roughly is that
name is related to need by the logical relation, and is true because of the additional pairs that
are related in the de�nition of closed-under-divergence (De�nition 5.3.3).

Lemma 5.3.5 For all computation terms Γ ` " : F� and Γ, G : F� ` # : � , if (f, f′) ∈ RÈΓÉΔ
then

((# [G ↦→"]) [f], (" need G . #) [f′]) ∈ RÈ�ÉΔ

Proof. Apply the fundamental lemma (Lemma 5.3.4) to " , and then use Lemma B.3.5. �

The second fact is that related terms are contextually equivalent (similar to Lemma 3.1.5).

Lemma 5.3.6
1. For all value terms Γ ` + : � and Γ ` + ′ : �, if (+ [f],+ ′[f′]) ∈ RÈ�ÉΔ for all (f, f′) ∈
RÈΓÉΔ then

Γ ` + �ctx +
′ : �

2. For all computation terms Γ ` " : � and Γ ` "′ : � , if (" [f], "′[f′]) ∈ RÈ�ÉΔ for all
(f, f′) ∈ RÈΓÉΔ then

Γ ` " �ctx "
′ : �

Proof. The logical relation is closed under congruence (placing terms in contexts C[] and C[])
by a similar proof to the fundamental lemma (Lemma 5.3.4). Hence it su�ces to show that if
#, # ′ : F� are closed computations, with � a ground type, then (#, # ′) ∈ RÈF�É� implies
≡ # ′. This is proved in the appendix as Corollary B.3.9. �

This gives us enough to prove the internal equivalence between call-by-name and call-by-
need:

Theorem 5.3.7 For all computation terms Γ ` " : F� and Γ, G : F� ` # : � , we have

Γ ` " name G . # �ctx " need G . # : �

116 Chapter 5. Call-by-need and extended call-by-push-value

Proof. Apply Lemma 5.3.5 to show that the two computations are related to each other, and
then apply Lemma 5.3.6 to obtain the contextual equivalence. �

We now move on to the meta-level equivalence. Suppose we are given a (possibly open)
source-language expression Γ ` 4 : g . Recall that the call-by-need translation uses a context
containing computation variables (i.e. LΓMneed) and the call-by-name translation uses a context
containing value variables, which map to thunks of computations. We have two ECBPV
computation terms of type F Lg M in context LΓMneed: one is just L4 Mneed, the other is the call-
by-name translation L4 Mmoggi (de�ned in Section 2.4) with all of its variables substituted with
thunked computations. The theorem then states that these are contextually equivalent.

Theorem 5.3.8 (Equivalence between call-by-name and call-by-need) If 4 is a source-
language expression that satis�es G1 : g1, . . . , G= : g= ` 4 : g′ then

L4 Mmoggi [G1 ↦→ thunkG1, . . . , G= ↦→ thunkG=] �ctx L4 Mneed

Proof. By induction on the typing derivation of 4 . The interesting case is lambda abstrac-
tion, where we use the internal equivalence between call-by-name and call-by-need above
(Theorem 5.3.7). �

5.4 An e�ect system for extended call-by-push-value
The equivalence between call-by-name and call-by-need in the previous section is predicated
on the only side-e�ect in the language being nontermination. We discuss how to relax this
restriction so that only subterms need to be restricted to nontermination and the language
itself have other side-e�ects.

Call-by-need makes it di�cult to statically estimate e�ects. Computation variables bound
using need might have e�ects on their �rst use, but on subsequent uses do not. Hence to
precisely determine the e�ects of a term, we must track which variables have been previously
used.

McDermott and Mycroft [69] show how to achieve this for a call-by-need e�ect system,
and we expect that this technique can be adapted to ECBPV. Here we take a simpler approach.
By slightly restricting the e�ect algebras we consider, we remove the need to track variable
usage information, while still ensuring the e�ect information is not an underestimate (an
underestimate would enable incorrect transformations). This can reduce the precision of the
e�ect information obtained, but for our use case (determining equivalences between evaluation
orders) this is not an issue, since we primarily care about which side-e�ects are used (rather
than e.g. how many times they are used).

If we do not track usage information and assume any use of a variable may have side-e�ects,
we might misestimate the e�ect of a call-by-need computation variable evaluated for a second
time (whose true e�ect is 1). To ensure this misestimate is an overestimate, we require that the
e�ect algebra is pointed.

De�nition 5.4.1 (Pointed preordered monoid) A preordered monoid (E, ≤, ·, 1) is pointed
if for all Y ∈ E we have 1 ≤ Y. J

Many of our examples of e�ect algebras are pointed, including Gi�ord-style e�ect algebras
(Example 2.1.2).

In our example, where we wish to establish whether the e�ects of an expression are restricted
to nontermination, we use the two-element preorder {Ω ≤ >} with join for sequencing and Ω

5.4. An e�ect system for extended call-by-push-value 117

Γ ` + : �
Γ ` 〈+ 〉 : 〈1〉�

Γ ` " : 〈Y〉� Γ, G : � ` # : �
Γ ` " to G . # : 〈〈Y〉〉�

Γ ` " : 〈Y〉� Γ, G : 〈Y〉� ` # : �
Γ ` " need G . # : � Γ ` G : 〈Y〉�

if (G : 〈Y〉�) ∈ Γ

Γ ` " : 〈Y〉�
Γ ` coerceY≤Y ′" : 〈Y′〉�

if Y ≤ Y′

Figure 5.6: E�ect system modi�cations to ECBPV

as the unit 1. The e�ect Ω means side-e�ects restricted to (at most) nontermination, and >
means unrestricted side-e�ects. Thus we would enable the equivalence between call-by-name
and call-by-need when the e�ect is Ω, and not when it is >. This e�ect algebra is pointed.

The e�ect system is similar to GCBPV. The syntax is a minor modi�cation of the syntax
for ECBPV in Section 5.1. We grade the returner types F� so that they have the form 〈Y〉�,
where Y ∈ E. The grammar of types is therefore identical to the one for GCBPV:

�, � F unit | �1 ×�2 | �→ � | 〈Y〉�

Typing contexts still assign returner types to computation variables, but they now also have
e�ects:

Γ F � | Γ, G : � | Γ, G : 〈Y〉�
We need to be able to overapproximate e�ects, and therefore add explicit subtyping to the
grammar of ECBPV terms:

", # F _{} | _{1. "1, 2. "2} | 1‘" | 2‘" | _G :�." | + ‘"
| op+ | 〈+ 〉 | " to G . # | coerceY≤Y ′" | force+ | G | " need G . #

The syntax of value types and value terms is generated by the same grammar as before (in
Section 5.1). The ECBPV e�ect system is also parameterized by the same notion of signature as
for GCBPV (De�nition 2.7.1).

We de�ne the action of the preordered monoid of e�ects on computation types as for
GCBPV:

〈〈Y〉〉unit B unit 〈〈Y〉〉(�1 ×�2) B 〈〈Y〉〉�1 × 〈〈Y〉〉�2
〈〈Y〉〉(�→ �) B �→ 〈〈Y〉〉� 〈〈Y〉〉(〈Y′〉�) B 〈Y ·Y′〉�

The typing judgments have exactly the same form as before (except for the new syntax of
types). The majority of the typing rules, including all of the rules for values, are also unchanged.

The only rules we change are those for computation variables, returning values, to and
need, which are replaced with the �rst four rules in Figure 5.6. We also add a sube�ecting
rule, which is the last rule of the �gure. The rules for return, to and coerce are the same as the
GCBPV rules.

We also have to change the inequational theory to add axioms for coerce (e.g. transitivity
and commutativity with to), and also need to add coercions to the axiom

" need G . G to ~. # ≡ " to ~. # [G ↦→ 〈~〉]

118 Chapter 5. Call-by-need and extended call-by-push-value

replacing it with

" need G . G to ~. # ≡ " to ~. # [G ↦→coerce1≤Y 〈~〉]

where Y is the e�ect of " . This works because the e�ect algebra is pointed, so we have 1 ≤ Y.

5.4.1 Exploiting e�ect-dependent equivalences
Our primary goal in adding an e�ect system to ECBPV is to exploit (local, e�ect-justi�ed)
equivalences between evaluation orders even without a whole-language restriction on e�ects.
We sketch how to do this for our example.

When proving the equivalence between call-by-name and call-by-need in Section 5.3 we
assumed that the only operation in the language was diverge. To relax this restriction, we use
the e�ect algebra with preorder {Ω ≤ >} described above, and assign the e�ect Ω to diverge.
We can include other e�ectful operations (e.g. raise, put), and give them the e�ect >. The
statement of the internal (object-level) equivalence becomes:

If Γ ` " : 〈Ω〉� and Γ, G : 〈Ω〉� ` # : � then

Γ ` " name G . # �ctx " need G . # : �

The premise restricts the e�ect of " to Ω so that nontermination is its only possible side-e�ect,
but # is allowed to have any e�ect.

To prove this equivalence, we need a logical relation for the e�ect system, which means
we have to de�ne a Kripke relation RÈ〈Y〉�É for each e�ect Y. For RÈ〈Ω〉�É we use the same
de�nition as before (the de�nition of RÈF�É). The de�nition of RÈ〈>〉�É depends on the
speci�c other e�ects included (we could adapt the free lifting in Section 3.1.1).

To state and prove a meta-level equivalence for a source language that includes other
side-e�ects, we need to de�ne a call-by-need e�ect system for the source language. This would
just be the same as the Moggi-style call-by-name e�ect system in Section 2.4, which is sound
for call-by-need for pointed e�ect algebras. The call-by-need translation of types is then the
same as the call-by-name translation of types. Just as for the object-level equivalence, the
statement of the meta-level equivalence requires the source-language expression to have the
e�ect Ω. We omit the details here.

5.5 Related work
Reasoning about call-by-need The majority of work on reasoning about call-by-need
source languages has concentrated on operational semantics based on environments [53],
graphs [100, 96], and answers [4, 3, 17, 68]. However, these do not compare call-by-need with
other evaluation orders. The only type-based analysis of a lazy source language we know of
apart from McDermott and Mycroft’s e�ect system [69] is Turner et al.’s [97] (and its extension
[101]).

Polarized type theories (e.g. Zeilberger [102]) stratify types into several kinds (like values
and computations in CBPV) to capture multiple evaluation orders. Downen and Ariola [20, 21]
recently described how to capture call-by-need using polarity. They take a di�erent approach
to ours, by stratifying the syntax according to evaluation order, rather than whether terms
might have e�ects. This means they have three kinds of type (call-by-value, call-by-need, and
call-by-name), resulting in a more complex language than ours. In their language, information
about evaluation order can be deduced from types, in ours it cannot (the call-by-need and

5.6. Summary 119

call-by-name translations of types are identical). They also do not apply their language to
reasoning about the di�erences between evaluation orders, which was the primary motivation
for ECBPV. It is not clear whether their language can also be used for this purpose.

Multiple evaluation orders can also be captured in a Moggi-style language by using joinads
instead of monads [83]. There may be some joinad structure implicit in extended call-by-push-
value.

Logical relations Kripke logical relations have previously been applied to the problems of
lambda de�nability [39] and normalization [2, 25]. Previous proofs of contextual equivalence
relate only closed terms. We were forced to relate open terms because of the need construct.

Reasoning about e�ects using logical relations often runs into a di�culty in ensuring the
relations are closed under sequencing of computations. We are able to work around this due
to our speci�c choice of e�ects. It is possible that considering other e�ects would require a
technique such as Lindley and Stark’s leapfrog method [62, 61].

5.6 Summary
We have described extended call-by-push-value, a calculus that can be used for reasoning about
several evaluation orders. In particular, ECBPV supports call-by-need via the addition of the
construct " need G . # . This allows us to prove that call-by-name and call-by-need reduction
are equivalent if nontermination is the only e�ect in the source language, both inside the
language itself, and on the meta-level. We proved the latter by giving a translation from our
source language into ECBPV that captures call-by-need reduction. We also de�ned an e�ect
system for ECBPV. The e�ect system statically bounds the side-e�ects of terms, allowing us
to validate equivalences between evaluation orders without restricting the entire language to
particular e�ects. We end this chapter with a description of some possible future work.

Other equivalences between evaluation orders We have proved one example of an equiv-
alence between evaluation orders using ECBPV, but there are others that we might also expect
to hold. For example, we would expect call-by-need and call-by-value to be equivalent if
the e�ects are restricted to nondeterminism, allocating state, and reading from state (but not
writing). It should be possible to use ECBPV to prove these by de�ning suitable logical relations.
More generally, it might be possible to characterize when particular equivalences hold in terms
of the algebraic properties of the e�ects we restrict to, and give a reasoning principle similar to
the one we derived in Chapter 3.

Denotational semantics In Chapter 4 we emphasized the use of denotational semantics for
proving the validity of program transformations. Developing an ECBPV denotational semantics
would enable us to reason about ECBPV program transformations in this way. Composing the
denotational semantics with the call-by-need translation would also result in a call-by-need
denotational semantics for the source language.

Some potential approaches to describing the denotational semantics of ECBPV are Maraist
et al.’s [67] translation into an a�ne calculus, combined with a semantics of linear logic [71],
and also continuation-passing-style translations [82]. None of these consider side-e�ects
however.

Chapter 6

Conclusions

This thesis develops a general framework for proving the validity of e�ect-dependent program
transformations. We include an intermediate language in which such transformations can
be stated (graded call-by-push-value, de�ned in Section 2.7), a way to use this intermediate
language to reason about a source language (translations into GCBPV in Section 2.7.3), and
machinery for proving the instances of contextual preorders (logical relations and order-
enriched categorical semantics in Section 3.1 and Chapter 4).

Our framework supports various evaluation orders. The side-e�ects of programs depend
on the evaluation order used. Hence, to discuss e�ect-dependent transformations for some
evaluation order it is desirable to construct an e�ect system that is bespoke to that evaluation
order. It is well-known that we can do this for call-by-value; Chapter 2, we show how to do this
for two forms of call-by-name (Moggi-style call-by-name and Levy-style). We also describe
GCBPV, which augments Levy’s call-by-push-value with an e�ect system that generalises all of
these. We can therefore use the framework to prove the validity of e�ect-dependent program
transformations for source languages with any of these evaluation orders. This extends previous
work, which primarily supports only call-by-value.

We then applied the framework to program transformations that change the evaluation
order used inside programs. We proved two versions of a novel reasoning principle that
relates call-by-value and call-by-name evaluation in the presence of side-e�ects: one syntactic
(Chapter 3) and one semantic (Section 4.4). The reasoning principle arises because of the
existence of certain Galois connections between call-by-value and call-by-name computations.
We expect that our approach to relating evaluation orders will work more generally: we
can relate two evaluation orders by translating into a single intermediate language and then
de�ning similar Galois connections.

Chapter 4 deals with noninvertible program transformations. These have mostly been
neglected in previous work, which tends to consider only symmetric transformations. We gave
several examples, including for unde�ned behaviour, nondeterminism and concurrency, and
showed how to use our framework to validate them. These justify our use of order-enrichment
in the denotational semantics of GCBPV. We argue that order-enrichment is crucial for a
general framework for formal reasoning about program transformations.

Finally, we added call-by-need to our framework. Call-by-need is more di�cult to reason
about than call-by-value or call-by-name because it involves action at a distance. In Chapter 5
we developed ECBPV, which extends CBPV with primitives that allow it to capture call-by-need
evaluation. We then discussed how to use ECBPV to reason about call-by-need. In particular,
we showed that call-by-name and call-by-need are equivalent when side-e�ects are limited to
nontermination. It turns out that ordinary logical relations do not su�ce to do this, and so we
used Kripke logical relations of varying arity.

121

122 Chapter 6. Conclusions

6.1 Future work
There are many possible directions for future work. Some are obvious extensions of the
contributions of this thesis, others are open questions that should be solved to continue with
the aims of this thesis. We highlight just a few here.

Relating evaluation orders We have given two relationships between evaluation orders:
a general reasoning principle for call-by-value and Levy-style call-by-name in Chapter 3
and Section 4.4, and one instance of a relationship between call-by-need and Moggi-style
call-by-name in Section 5.3. An obvious question is whether we can develop the latter into
a more general reasoning principle that relies only on axiomatic properties of side-e�ects. It
would also be interesting to formulate reasoning principles for other pairs of evaluation orders.
In particular, it should be possible to give a reasoning principle that relates the two forms of
call-by-name.

Other side-e�ects We have considered a small number of example side-e�ects, such as
global state, nondeterminism, nontermination and unde�ned behaviour. There are many other
examples of side-e�ects that it should be possible to apply our framework to, such as local
state [88, 40] and probabilistic choice. Incorporating e�ect handlers [86] into our framework is
another obvious next step.

Semantics of call-by-need Throughout Chapter 4 we emphasized the (well-known) advan-
tages of denotational semantics for formal reasoning about program transformations, but when
adding call-by-need in Chapter 5 we did not consider denotational semantics at all. Deno-
tational semantics for call-by-need (in the presence of arbitrary side-e�ects) is still an open
problem, and it is not clear what a model of ECBPV would look like. Our use of Kripke logical
relations of varying arity suggests we might be able to model call-by-need in (Poset-)categories
of the form [Ctx,C], where Ctx is the category of typing contexts and weakenings, but we
have not pursued this.

How should models be graded? In Chapter 4 we construct a number of graded adjunc-
tions that we use as models of GCBPV. A question we might ask is which graded adjunctions
are useful as models. For example, we might expect each of the sube�ecting morphisms
(Y ≤ Y′)~ (−) : Y~ (−) → Y′~ (−) to be a full monomorphism (De�nition 4.2.15), which corre-
sponds to coerceY≤Y ′" 4 coerceY≤Y ′ # ⇒ " 4 # in the syntax. (This is the case for all of
our examples.) There are graded adjunctions that do not have this property, but it is not clear
whether any of them are useful for models. Are there any other properties we would expect to
hold for all side-e�ects? Constructing graded adjunctions also takes a lot of work, so it would
be useful to �nd a general technique for doing this. Kammar and McDermott [41] consider
such a technique for constructing graded monads for Gi�ord-style e�ect algebras.

Intermediate languages for program reasoning We have presented GCBPV as an inter-
mediate language that is useful for formal reasoning about programs. In particular, we chose to
base our intermediate language on CBPV partly because we can easily verify the correctness
of program transformations in CBPV. However, we do not claim that GCBPV is the best
possible intermediate language. More work is needed to settle the question of what the best
language is. If we are proving the validity of compiler optimizations then we might want to

6.2. Final remarks 123

�nd an intermediate language that can be used both for formal reasoning and for applying
optimizations inside a compiler. There may be a tension between these two applications.

Practical e�ect systems There are very few instances of e�ect systems being used in
practice, and this thesis does not consider practical use of grading. One way to use e�ect
systems as a way to do e�ect-dependent optimizations inside a compiler would be to have the
compiler infer the e�ects of terms (rather than exposing the e�ect system to the programmer).
This would require e�ect inference, and to do inference we would probably want to include
e�ect polymorphism. Extending GCBPV (and related machinery, such as the denotational
semantics), with e�ect polymorphism, and then describing how to do e�ect inference on it,
would be interesting future work.

6.2 Final remarks

There are several key aspects of the approach used throughout this thesis that are worth
highlighting here.

The �rst is our use of a common intermediate language for stating and proving the validity
of program transformations, inspired by compiler design. Intermediate languages are useful
because they allow us to prove general results about program transformations. When relating
call-by-value and call-by-name in Chapter 3 and Section 4.4 we obtained a reasoning principle
that is not speci�c to the choice of side-e�ects in the language. This was aided partly by our use
of inequational theories for specifying the behaviour of side-e�ects (rather than e.g. operational
semantics). The structure of the translations into the intermediate language guided us in doing
this. Our results about the relationship between call-by-value and call-by-name, and between
call-by-name and call-by-need (Section 5.3) are also about open terms. We can relate open
terms because we use intermediate languages that capture all of these evaluation orders.

The intermediate languages approach also allows us to ignore considerations about the
design of source languages. We chose to base our intermediate languages on CBPV. Whether
CBPV is good for writing programs is irrelevant, as long as there are suitable translations from
source languages. On the other hand, the design of CBPV makes it is easy to reason about.
Crucially, there are no choices to make about evaluation order in CBPV. We therefore get
a separation of concerns: the translations from the source language specify the evaluation
order but are independent of the choice of side-e�ects, and the semantics of the intermediate
language speci�es the behaviour of the side-e�ects, but is independent of the evaluation order.
This was particularly helpful in Chapter 4, where we barely had to consider evaluation orders.

Finally, the intermediate language can include features that may not be useful in source
languages. Call-by-name might be an example of this: even if we do not want to use call-
by-name in an e�ectful source language, we might still want to replace call-by-value with
call-by-name as an optimization inside the intermediate language.

Another important aspect of our approach is the use of grading to specify restrictions on
side-e�ects. This is crucial for considering e�ect-dependent program transformations without
restricting the side-e�ects that can appear in the language itself. It allows us to consider
languages with a variety of e�ects (I/O, mutable state, nontermination, nondeterminism,
probabilistic choice, etc.) even though most transformations are only correct for subterms that
do not use most of them. Another advantage of grading is that we can use it to obtain stable
semantics [16], where side-e�ects can be added without changing the denotations of existing
programs.

124 Chapter 6. Conclusions

We also emphasize the use of axiomatic properties of side-e�ects (such as thunkable e�ects
in Chapter 3), which we used to give general reasoning principles for program transformations.

These aspects of our approach, especially our use of intermediate languages, may turn out
to be helpful more widely in program semantics.

Bibliography

[1] Martín Abadi, Anindya Banerjee, Nevin Heintze, and Jon G. Riecke. 1999. A Core
Calculus of Dependency. In Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. ACM, 147–160. https://doi.org/10.1145/
292540.292555

[2] Thorsten Altenkirch, Martin Hofmann, and Thomas Streicher. 1995. Categorical Recon-
struction of a Reduction Free Normalization Proof. Lecture Notes in Computer Science
953, 182–199. https://doi.org/10.1007/3-540-60164-3_27

[3] Zena M. Ariola and Matthias Felleisen. 1997. The call-by-need lambda calculus. Journal
of functional programming 7, 3, 265–301.

[4] Zena M. Ariola, John Maraist, Martin Odersky, Matthias Felleisen, and Philip Wadler.
1995. A Call-by-need Lambda Calculus. In Proceedings of the 22nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. ACM, 233–246. http:
//doi.acm.org/10.1145/199448.199507

[5] Nick Benton and Peter Buchlovsky. 2007. Semantics of an E�ect Analysis for Exceptions.
In Proceedings of the 2007 ACM SIGPLAN InternationalWorkshop on Types in Languages De-
sign and Implementation. ACM, 15–26. https://doi.org/10.1145/1190315.1190320

[6] Nick Benton, Martin Hofmann, and Vivek Nigam. 2016. E�ect-dependent Transfor-
mations for Concurrent Programs. In Proceedings of the 18th International Sympo-
sium on Principles and Practice of Declarative Programming. ACM, 188–201. https:
//doi.org/10.1145/2967973.2968602

[7] Nick Benton, John Hughes, and Eugenio Moggi. 2002. Monads and E�ects. In Applied
Semantics. Springer, 42–122. http://dl.acm.org/citation.cfm?id=647424.725798

[8] Nick Benton and Andrew Kennedy. 1999. Monads, E�ects and Transformations. Elec-
tronic Notes in Theoretical Computer Science 26, 3–20. https://doi.org/10.1016/
S1571-0661(05)80280-4

[9] Nick Benton, Andrew Kennedy, Lennart Beringer, and Martin Hofmann. 2009. Rela-
tional Semantics for E�ect-based Program Transformations: Higher-order Store. In
Proceedings of the 11th ACM SIGPLAN Conference on Principles and Practice of Declarative
Programming. ACM, 301–312. https://doi.org/10.1145/1599410.1599447

[10] Nick Benton, Andrew Kennedy, Martin Hofmann, and Lennart Beringer. 2006. Reading,
Writing and Relations: Towards Extensional Semantics for E�ect Analyses. In Proceedings
of the 4th Asian Conference on Programming Languages and Systems. Springer, 114–130.
https://doi.org/10.1007/11924661_7

125

https://doi.org/10.1145/292540.292555
https://doi.org/10.1145/292540.292555
https://doi.org/10.1007/3-540-60164-3_27
http://doi.acm.org/10.1145/199448.199507
http://doi.acm.org/10.1145/199448.199507
https://doi.org/10.1145/1190315.1190320
https://doi.org/10.1145/2967973.2968602
https://doi.org/10.1145/2967973.2968602
http://dl.acm.org/citation.cfm?id=647424.725798
https://doi.org/10.1016/S1571-0661(05)80280-4
https://doi.org/10.1016/S1571-0661(05)80280-4
https://doi.org/10.1145/1599410.1599447
https://doi.org/10.1007/11924661_7

126 Bibliography

[11] Nick Benton, Andrew Kennedy, Martin Hofmann, and Vivek Nigam. 2016. Counting
Successes: E�ects and Transformations for Non-deterministic Programs. In A List of
Successes That Can Change the World: Essays Dedicated to Philip Wadler on the Occasion
of His 60th Birthday, Sam Lindley, Conor McBride, Phil Trinder, and Don Sannella (Eds.).
Springer, 56–72. https://doi.org/10.1007/978-3-319-30936-1_3

[12] Nick Benton, Andrew Kennedy, and George Russell. 1998. Compiling Standard ML to
Java Bytecodes. In Proceedings of the Third ACM SIGPLAN International Conference on
Functional Programming. ACM, 129–140. https://doi.org/10.1145/289423.289435

[13] Lars Birkedal, Filip Sieczkowski, and Jacob Thamsborg. 2012. A Concurrent Logical
Relation. In 26th International Workshop/21st Annual Conference of the EACSL (Leibniz
International Proceedings in Informatics), Patrick Cégielski and Arnaud Durand (Eds.),
Vol. 16. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 107–121. https://doi.
org/10.4230/LIPIcs.CSL.2012.107

[14] Anna Bucalo, Carsten Führmann, and Alex Simpson. 2003. An equational notion of
lifting monad. Theoretical Computer Science 294, 1, 31–60. https://doi.org/10.1016/
S0304-3975(01)00243-2

[15] Aurelio Carboni, Stephen Lack, and R.F.C. Walters. 1993. Introduction to extensive and
distributive categories. Journal of Pure and Applied Algebra 84, 2, 145–158. https:
//doi.org/10.1016/0022-4049(93)90035-R

[16] Robert Cartwright and Matthias Felleisen. 1994. Extensible Denotational Language Speci-
�cations. In Proceedings of the International Conference on Theoretical Aspects of Computer
Software. Springer, 244–272. http://dl.acm.org/citation.cfm?id=645868.668496

[17] Stephen Chang and Matthias Felleisen. 2012. The call-by-need lambda calculus, revisited.
In Proceedings of the 21st European Conference on Programming Languages and Systems.
Springer, 128–147. http://dx.doi.org/10.1007/978-3-642-28869-2_7

[18] Pierre-Louis Curien and Hugo Herbelin. 2000. The Duality of Computation. In Proceedings
of the Fifth ACM SIGPLAN International Conference on Functional Programming. ACM,
233–243. https://doi.org/10.1145/351240.351262

[19] Marco Devesas Campos and Paul Blain Levy. 2018. A Syntactic View of Computational
Adequacy. In Foundations of Software Science and Computation Structures, Christel Baier
and Ugo Dal Lago (Eds.). Springer, 71–87.

[20] Paul Downen and Zena M. Ariola. 2018. Beyond Polarity: Towards a Multi-Discipline
Intermediate Language with Sharing. In 27th EACSL Annual Conference on Computer
Science Logic. 21:1–21:23. https://doi.org/10.4230/LIPIcs.CSL.2018.21

[21] Paul Downen and Zena M. Ariola. 2019. Compiling With Classical Connectives. arXiv
e-prints, Article 1907.13227.

[22] Anatolij Dvurečenskij and Sylvia Pulmannová. 2000. New trends in quantum structures.
Mathematics and its Applications, Vol. 516. Kluwer Academic Publishers.

[23] Andrzej Filinski. 1989. Declarative Continuations and Categorical Duality. Master’s thesis.
University of Copenhagen.

https://doi.org/10.1007/978-3-319-30936-1_3
https://doi.org/10.1145/289423.289435
https://doi.org/10.4230/LIPIcs.CSL.2012.107
https://doi.org/10.4230/LIPIcs.CSL.2012.107
https://doi.org/10.1016/S0304-3975(01)00243-2
https://doi.org/10.1016/S0304-3975(01)00243-2
https://doi.org/10.1016/0022-4049(93)90035-R
https://doi.org/10.1016/0022-4049(93)90035-R
http://dl.acm.org/citation.cfm?id=645868.668496
http://dx.doi.org/10.1007/978-3-642-28869-2_7
https://doi.org/10.1145/351240.351262
https://doi.org/10.4230/LIPIcs.CSL.2018.21

Bibliography 127

[24] Andrzej Filinski. 1996. Controlling E�ects. Ph.D. Dissertation. Carnegie Mellon University.

[25] Marcelo Fiore. 2002. Semantic Analysis of Normalisation by Evaluation for Typed Lambda
Calculus. In Proceedings of the 4th ACM SIGPLAN International Conference on Principles
and Practice of Declarative Programming. ACM, 26–37. https://doi.org/10.1145/
571157.571161

[26] Marcelo Pablo Fiore. 1996. Axiomatic Domain Theory in Categories of Partial Maps.
Cambridge University Press.

[27] Carsten Führmann. 1999. Direct models of the computational lambda-calculus. Electronic
Notes in Theoretical Computer Science 20, 245–292.

[28] Soichiro Fujii, Shin-ya Katsumata, and Paul-André Melliès. 2016. Towards a Formal
Theory of Graded Monads. In Foundations of Software Science and Computation Structures,
Bart Jacobs and Christof Löding (Eds.). Springer, 513–530.

[29] Marco Gaboardi, Shin-ya Katsumata, Dominic Orchard, Flavien Breuvart, and Tarmo
Uustalu. 2016. Combining E�ects and Coe�ects via Grading. In Proceedings of the 21st
ACM SIGPLAN International Conference on Functional Programming. ACM, 476–489.
https://doi.org/10.1145/2951913.2951939

[30] Sergey Goncharov and Lutz Schröder. 2013. A Relatively Complete Generic Hoare Logic
for Order-Enriched E�ects. In Proceedings of the 28th Annual ACM/IEEE Symposium on
Logic in Computer Science. IEEE Computer Society, 273–282. https://doi.org/10.
1109/LICS.2013.33

[31] Colin S. Gordon. 2017. A Generic Approach to Flow-Sensitive Polymorphic E�ects. In
31st European Conference on Object-Oriented Programming, Peter Müller (Ed.), Vol. 74.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 13:1–13:31. https://doi.org/10.
4230/LIPIcs.ECOOP.2017.13

[32] Jean Goubault-Larrecq, Slawomir Lasota, and David Nowak. 2002. Logical Relations for
Monadic Types. In Computer Science Logic, Julian Brad�eld (Ed.). Springer, 553–568.

[33] Jennifer Hackett and Graham Hutton. 2019. Call-by-need is Clairvoyant Call-by-value.
Proceedings of the ACM Programming Languages 3, Article 114, 23 pages. https://doi.
org/10.1145/3341718

[34] John Hatcli� and Olivier Danvy. 1997. Thunks and the _-calculus. Journal of Functional
Programming 7, 3, 303–319. https://doi.org/10.1017/S0956796897002748

[35] John Mark Hatcli�. 1995. The structure of continuation-passing styles. Ph.D. Dissertation.
Kansas State University.

[36] Claudio Hermida. 1993. Fibrations, Logical Predicates and Indeterminates. Ph.D. Disserta-
tion. University of Edinburgh.

[37] Chris Heunen, Ohad Kammar, Sam Staton, and Hongseok Yang. 2017. A convenient
category for higher-order probability theory. In Proceedings of the 32nd Annual IEEE
Symposium on Logic in Computer Science. IEEE Computer Society Press, 1–12. https:
//doi.org/10.1109/LICS.2017.8005137

[38] C.A.R. Hoare and He Jifeng. 1998. Unifying Theories of Programming. Prentice Hall.

https://doi.org/10.1145/571157.571161
https://doi.org/10.1145/571157.571161
https://doi.org/10.1145/2951913.2951939
https://doi.org/10.1109/LICS.2013.33
https://doi.org/10.1109/LICS.2013.33
https://doi.org/10.4230/LIPIcs.ECOOP.2017.13
https://doi.org/10.4230/LIPIcs.ECOOP.2017.13
https://doi.org/10.1145/3341718
https://doi.org/10.1145/3341718
https://doi.org/10.1017/S0956796897002748
https://doi.org/10.1109/LICS.2017.8005137
https://doi.org/10.1109/LICS.2017.8005137

128 Bibliography

[39] Achim Jung and Jerzy Tiuryn. 1993. A New Characterization of Lambda De�nability. In
Proceedings of the International Conference on Typed Lambda Calculi and Applications.
Springer, 245–257. http://dl.acm.org/citation.cfm?id=645891.671429

[40] Ohad Kammar, Paul B. Levy, Sean K. Moss, and Sam Staton. 2017. A monad for full
ground reference cells. In Proceedings of the 32nd Annual ACM/IEEE Symposium on Logic
in Computer Science. IEEE Press, 49:1–49:12. http://dl.acm.org/citation.cfm?id=
3329995.3330044

[41] Ohad Kammar and Dylan McDermott. 2018. Factorisation Systems for Logical Relations
and Monadic Lifting in Type-and-e�ect System Semantics. Electronic Notes in Theoretical
Computer Science 341, 239 – 260. https://doi.org/10.1016/j.entcs.2018.11.012
Proceedings of the Thirty-Fourth Conference on the Mathematical Foundations of Pro-
gramming Semantics (MFPS XXXIV).

[42] Ohad Kammar and Gordon D. Plotkin. 2012. Algebraic Foundations for E�ect-dependent
Optimisations. In Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. ACM, 349–360. https://doi.org/10.1145/
2103656.2103698

[43] Shin-ya Katsumata. 2005. A Semantic Formulation of >>-lifting and Logical Predicates
for Computational Metalanguage. In Proceedings of the 19th International Conference on
Computer Science Logic. Springer, 87–102. https://doi.org/10.1007/11538363_8

[44] Shin-ya Katsumata. 2013. Relating Computational E�ects by >>-lifting. Inf. Comput.
222, 228–246. https://doi.org/10.1016/j.ic.2012.10.014

[45] Shin-ya Katsumata. 2014. Parametric E�ect Monads and Semantics of E�ect Systems. In
Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. ACM, 633–645. https://doi.org/10.1145/2535838.2535846

[46] Shin-ya Katsumata and Tetsuya Sato. 2015. Codensity Liftings of Monads. In 6th Con-
ference on Algebra and Coalgebra in Computer Science, Lawrence S. Moss and Pawel
Sobocinski (Eds.), Vol. 35. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 156–170.
https://doi.org/10.4230/LIPIcs.CALCO.2015.156

[47] G.M. Kelly and A.J. Power. 1993. Adjunctions whose counits are coequalizers, and
presentations of �nitary enriched monads. Journal of Pure and Applied Algebra 89, 1, 163
– 179. https://doi.org/10.1016/0022-4049(93)90092-8

[48] Max Kelly. 1982. Basic concepts of enriched category theory. Cambridge University Press.

[49] Anders Kock. 1971. Bilinearity and cartesian closed monads. Math. Scand. 29, 2, 161–174.
https://doi.org/10.7146/math.scand.a-11042

[50] Anders Kock. 1972. Strong functors and monoidal monads. Archiv der Mathematik 23,
113–120.

[51] Anders Kock. 1995. Monads for which structures are adjoint to units. Journal of Pure
and Applied Algebra 104, 1, 41–59.

[52] Jakov Kučan. 1998. Retraction Approach to CPS Transform. Higher-Order and Symbolic
Computation 11, 2, 145–175. https://doi.org/10.1023/A:1010012532463

http://dl.acm.org/citation.cfm?id=645891.671429
http://dl.acm.org/citation.cfm?id=3329995.3330044
http://dl.acm.org/citation.cfm?id=3329995.3330044
https://doi.org/10.1016/j.entcs.2018.11.012
https://doi.org/10.1145/2103656.2103698
https://doi.org/10.1145/2103656.2103698
https://doi.org/10.1007/11538363_8
https://doi.org/10.1016/j.ic.2012.10.014
https://doi.org/10.1145/2535838.2535846
https://doi.org/10.4230/LIPIcs.CALCO.2015.156
https://doi.org/10.1016/0022-4049(93)90092-8
https://doi.org/10.7146/math.scand.a-11042
https://doi.org/10.1023/A:1010012532463

Bibliography 129

[53] John Launchbury. 1993. A Natural Semantics for Lazy Evaluation. In Proceedings of the
20th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. ACM,
144–154. https://doi.org/10.1145/158511.158618

[54] Julia L. Lawall and Olivier Danvy. 1993. Separating Stages in the Continuation-passing
Style Transformation. In Proceedings of the 20th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. ACM, 124–136. https://doi.org/10.1145/
158511.158613

[55] Juneyoung Lee, Yoonseung Kim, Youngju Song, Chung-Kil Hur, Sanjoy Das, David
Majnemer, John Regehr, and Nuno P. Lopes. 2017. Taming Unde�ned Behavior in LLVM.
In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design
and Implementation. ACM, 633–647. https://doi.org/10.1145/3062341.3062343

[56] Paul Blain Levy. 1999. Call-by-Push-Value: A Subsuming Paradigm. In Typed Lambda
Calculi and Applications, Jean-Yves Girard (Ed.). Springer, 228–243. https://doi.org/
10.1007/3-540-48959-2_17

[57] Paul Blain Levy. 2001. Call-by-push-value. Ph.D. Dissertation. Queen Mary, University
of London, UK.

[58] Paul Blain Levy. 2003. Adjunction Models For Call-By-Push-Value With Stacks. Elec-
tronic Notes in Theoretical Computer Science 69, 248–271. https://doi.org/10.1016/
S1571-0661(04)80568-1 CTCS’02, Category Theory and Computer Science.

[59] Paul Blain Levy. 2006. Call-by-push-value: Decomposing call-by-value and call-by-name.
Higher-Order and Symbolic Computation 19, 4, 377–414. https://doi.org/10.1007/
s10990-006-0480-6

[60] Paul Blain Levy. 2017. Contextual Isomorphisms. In Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages. ACM, 400–414. https://doi.org/
10.1145/3009837.3009898

[61] Sam Lindley. 2005. Normalisation by Evaluation in the Compilation of Typed Functional
Programming Languages. Ph.D. Dissertation. University of Edinburgh, UK.

[62] Sam Lindley and Ian Stark. 2005. Reducibility and >>-lifting for Computation Types. In
Proceedings of the 7th International Conference on Typed Lambda Calculi and Applications.
Springer, 262–277. https://doi.org/10.1007/11417170_20

[63] J. M. Lucassen and D. K. Gi�ord. 1988. Polymorphic E�ect Systems. In Proceedings of the
15th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. ACM,
47–57. https://doi.org/10.1145/73560.73564

[64] Christoph Lüth and Neil Ghani. 1997. Monads and modular term rewriting. In Category
Theory and Computer Science, Eugenio Moggi and Giuseppe Rosolini (Eds.). Springer,
69–86.

[65] QingMing Ma and John C. Reynolds. 1992. Types, abstraction, and parametric polymor-
phism, part 2. In Mathematical Foundations of Programming Semantics, Stephen Brookes,
Michael Main, Austin Melton, Michael Mislove, and David Schmidt (Eds.). Springer,
1–40.

https://doi.org/10.1145/158511.158618
https://doi.org/10.1145/158511.158613
https://doi.org/10.1145/158511.158613
https://doi.org/10.1145/3062341.3062343
https://doi.org/10.1007/3-540-48959-2_17
https://doi.org/10.1007/3-540-48959-2_17
https://doi.org/10.1016/S1571-0661(04)80568-1
https://doi.org/10.1016/S1571-0661(04)80568-1
https://doi.org/10.1007/s10990-006-0480-6
https://doi.org/10.1007/s10990-006-0480-6
https://doi.org/10.1145/3009837.3009898
https://doi.org/10.1145/3009837.3009898
https://doi.org/10.1007/11417170_20
https://doi.org/10.1145/73560.73564

130 Bibliography

[66] Saunders Mac Lane. 1998. Categories for the working mathematician (second ed.).
Springer.

[67] John Maraist, Martin Odersky, David N. Turner, and Philip Wadler. 1995. Call-by-Name,
Call-by-Value, Call-by-Need, and the Linear Lambda Calculus, In Proceedings of the
Eleventh Annual Mathematical Foundations of Programming Semantics Conference.
Electronic Notes in Theoretical Computer Science, 370–392.

[68] John Maraist, Martin Odersky, and Philip Wadler. 1998. The call-by-need lambda cal-
culus. Journal of Functional Programming 8, 3, 275–317. https://doi.org/10.1017/
S0956796898003037

[69] Dylan McDermott and Alan Mycroft. 2018. Call-by-need e�ects via coe�ects. Open
Computer Science 8, 93–108. https://doi.org/10.1515/comp-2018-0009

[70] Dylan McDermott and Alan Mycroft. 2019. Extended Call-by-Push-Value: Reasoning
About E�ectful Programs and Evaluation Order. In Programming Languages and Systems,
Luís Caires (Ed.). Springer, 235–262.

[71] Paul-André Melliès. 2009. Categorical semantics of linear logic. In Interactive Models of
Computation and Program Behaviour, Panoramas et Synthèses 27, Société Mathématique
de France.

[72] Paul-André Melliès. 2010. Segal Condition Meets Computational E�ects. In 25th Annual
IEEE Symposium on Logic in Computer Science. 150–159. https://doi.org/10.1109/
LICS.2010.46

[73] A Melton, D A Schmidt, and G E Strecker. 1986. Galois Connections and Computer
Science Applications. In Proceedings of a Tutorial and Workshop on Category Theory and
Computer Programming. Springer, 299–312. http://dl.acm.org/citation.cfm?id=
20081.20099

[74] José Meseguer. 1980. Varieties of chain-complete algebras. Journal of Pure and Applied
Algebra 19, 347–383. https://doi.org/10.1016/0022-4049(80)90106-1

[75] Albert R. Meyer and Mitchell Wand. 1985. Continuation semantics in typed lambda-
calculi. In Logics of Programs, Rohit Parikh (Ed.). Springer, 219–224.

[76] Stefan Milius, Dirk Pattinson, and Lutz Schröder. 2015. Generic Trace Semantics
and Graded Monads. In 6th Conference on Algebra and Coalgebra in Computer Sci-
ence, Lawrence S. Moss and Pawel Sobocinski (Eds.), Vol. 35. Schloss Dagstuhl–Leibniz-
Zentrum für Informatik, 253–269. https://doi.org/10.4230/LIPIcs.CALCO.2015.
253

[77] Eugenio Moggi. 1989. Computational lambda-calculus and monads. In Proceedings of
the Fourth Annual Symposium on Logic in Computer Science. IEEE Press, 14–23. http:
//dl.acm.org/citation.cfm?id=77350.77353

[78] Eugenio Moggi. 1991. Notions of Computation and Monads. Inf. Comput. 93, 1, 55–92.
https://doi.org/10.1016/0890-5401(91)90052-4

[79] Guillaume Munch-Maccagnoni. 2014. Models of a Non-associative Composition. In
Foundations of Software Science and Computation Structures, Anca Muscholl (Ed.). Springer,
396–410.

https://doi.org/10.1017/S0956796898003037
https://doi.org/10.1017/S0956796898003037
https://doi.org/10.1515/comp-2018-0009
https://doi.org/10.1109/LICS.2010.46
https://doi.org/10.1109/LICS.2010.46
http://dl.acm.org/citation.cfm?id=20081.20099
http://dl.acm.org/citation.cfm?id=20081.20099
https://doi.org/10.1016/0022-4049(80)90106-1
https://doi.org/10.4230/LIPIcs.CALCO.2015.253
https://doi.org/10.4230/LIPIcs.CALCO.2015.253
http://dl.acm.org/citation.cfm?id=77350.77353
http://dl.acm.org/citation.cfm?id=77350.77353
https://doi.org/10.1016/0890-5401(91)90052-4

Bibliography 131

[80] Alan Mycroft, Dominic Orchard, and Tomas Petricek. 2016. E�ect Systems Revisited—
Control-Flow Algebra and Semantics. In Semantics, Logics, and Calculi: Essays Dedicated
to Hanne Riis Nielson and Flemming Nielson on the Occasion of Their 60th Birthdays.
Springer, 1–32. https://doi.org/10.1007/978-3-319-27810-0_1

[81] Flemming Nielson and Hanne Riis Nielson. 1999. Type and E�ect Systems. In Correct
System Design, Recent Insight and Advances. Springer, 114–136. http://dl.acm.org/
citation.cfm?id=646005.673740

[82] Chris Okasaki, Peter Lee, and David Tarditi. 1994. Call-by-need and continuation-
passing style. LISP and Symbolic Computation 7, 57–81. https://doi.org/10.1007/
BF01019945

[83] Tomas Petricek and Don Syme. 2011. Joinads: A Retargetable Control-�ow Construct for
Reactive, Parallel and Concurrent Programming. In Proceedings of the 13th International
Conference on Practical Aspects of Declarative Languages. Springer, 205–219. http:
//dl.acm.org/citation.cfm?id=1946313.1946336

[84] G.D. Plotkin. 1975. Call-by-name, call-by-value and the _-calculus. Theoretical Computer
Science 1, 2, 125–159. https://doi.org/10.1016/0304-3975(75)90017-1

[85] Gordon Plotkin and John Power. 2003. Algebraic Operations and Generic E�ects. Applied
Categorical Structures 11, 69–94. https://doi.org/10.1023/A:1023064908962

[86] Gordon Plotkin and Matija Pretnar. 2009. Handlers of Algebraic E�ects. In Proceedings
of the 18th European Symposium on Programming Languages and Systems: Held As Part
of the Joint European Conferences on Theory and Practice of Software. Springer, 80–94.
https://doi.org/10.1007/978-3-642-00590-9_7

[87] Gordon D. Plotkin and John Power. 2001. Adequacy for Algebraic E�ects. In Proceedings
of the 4th International Conference on Foundations of Software Science and Computation
Structures. Springer, 1–24. http://dl.acm.org/citation.cfm?id=646793.704708

[88] Gordon D. Plotkin and John Power. 2002. Notions of Computation Determine Monads.
In Proceedings of the 5th International Conference on Foundations of Software Science and
Computation Structures. Springer, 342–356. http://dl.acm.org/citation.cfm?id=
646794.704856

[89] John C. Reynolds. 1974. On the Relation Between Direct and Continuation Semantics. In
Proceedings of the 2nd Colloquium on Automata, Languages and Programming. Springer,
141–156. http://dl.acm.org/citation.cfm?id=646230.681878

[90] John C. Reynolds. 1997. The Essence of Algol. In Algol-like Languages, Peter W. O’Hearn
and Robert D. Tennent (Eds.). Birkhäuser Boston, 67–88. https://doi.org/10.1007/
978-1-4612-4118-8_4

[91] Amr Sabry. 1998. What is a Purely Functional Language? Journal of Functional Program-
ming 8, 1, 1–22. https://doi.org/10.1017/S0956796897002943

[92] Amr Sabry and Matthias Felleisen. 1992. Reasoning About Programs in Continuation-
passing Style. In Proceedings of the 1992 ACM Conference on LISP and Functional Program-
ming. ACM, 288–298. https://doi.org/10.1145/141471.141563

https://doi.org/10.1007/978-3-319-27810-0_1
http://dl.acm.org/citation.cfm?id=646005.673740
http://dl.acm.org/citation.cfm?id=646005.673740
https://doi.org/10.1007/BF01019945
https://doi.org/10.1007/BF01019945
http://dl.acm.org/citation.cfm?id=1946313.1946336
http://dl.acm.org/citation.cfm?id=1946313.1946336
https://doi.org/10.1016/0304-3975(75)90017-1
https://doi.org/10.1023/A:1023064908962
https://doi.org/10.1007/978-3-642-00590-9_7
http://dl.acm.org/citation.cfm?id=646793.704708
http://dl.acm.org/citation.cfm?id=646794.704856
http://dl.acm.org/citation.cfm?id=646794.704856
http://dl.acm.org/citation.cfm?id=646230.681878
https://doi.org/10.1007/978-1-4612-4118-8_4
https://doi.org/10.1007/978-1-4612-4118-8_4
https://doi.org/10.1017/S0956796897002943
https://doi.org/10.1145/141471.141563

132 Bibliography

[93] Amr Sabry and Philip Wadler. 1996. A Re�ection on Call-by-value. In Proceedings of the
First ACM SIGPLAN International Conference on Functional Programming. ACM, 13–24.
https://doi.org/10.1145/232627.232631

[94] Ross Tate. 2013. The Sequential Semantics of Producer E�ect Systems. In Proceedings
of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. ACM, 15–26. https://doi.org/10.1145/2429069.2429074

[95] Andrew Tolmach. 1998. Optimizing ML using a hierarchy of monadic types. In Types in
Compilation, Xavier Leroy and Atsushi Ohori (Eds.). Springer, 97–115.

[96] D. A. Turner. 1979. A new implementation technique for applicative languages. Software:
Practice and Experience 9, 1, 31–49. https://doi.org/10.1002/spe.4380090105

[97] David N. Turner, Philip Wadler, and Christian Mossin. 1995. Once Upon a Type. In Pro-
ceedings of the Seventh International Conference on Functional Programming Languages and
Computer Architecture. ACM, 1–11. http://doi.acm.org/10.1145/224164.224168

[98] Philip Wadler. 1998. The Marriage of E�ects and Monads. In Proceedings of the Third ACM
SIGPLAN International Conference on Functional Programming. ACM, 63–74. https:
//doi.org/10.1145/289423.289429

[99] Philip Wadler. 2003. Call-by-value is Dual to Call-by-name. In Proceedings of the Eighth
ACM SIGPLAN International Conference on Functional Programming. ACM, 189–201.
https://doi.org/10.1145/944705.944723

[100] C.P. Wadsworth. 1971. Semantics and Pragmatics of the Lambda-calculus. University of
Oxford.

[101] Keith Wansbrough and Simon Peyton Jones. 1999. Once Upon a Polymorphic Type. In
Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. ACM, 15–28. http://doi.acm.org/10.1145/292540.292545

[102] Noam Zeilberger. 2009. The Logical Basis of Evaluation Order and Pattern-matching. Ph.D.
Dissertation. Carnegie Mellon University.

https://doi.org/10.1145/232627.232631
https://doi.org/10.1145/2429069.2429074
https://doi.org/10.1002/spe.4380090105
http://doi.acm.org/10.1145/224164.224168
https://doi.org/10.1145/289423.289429
https://doi.org/10.1145/289423.289429
https://doi.org/10.1145/944705.944723
http://doi.acm.org/10.1145/292540.292545

Appendix A

Order-enriched category theory

We give a brief introduction to the concepts of order-enriched (speci�cally Poset-enriched)
category theory that we use for the denotational semantics of GCBPV in Chapter 4. A more
comprehensive introduction to enriched category theory in general is given by Kelly [48]
(though note that restricting to Poset-enrichment simpli�es the de�nitions signi�cantly). We
assume some basic (ordinary) category theory (e.g. Mac Lane [66]).

A Poset-category is like an ordinary category, except that morphisms form partially ordered
sets and composition of morphisms is monotone.

De�nition A.0.1 (Poset-category) A Poset-category C consists of a collection of objects and,
for each pair of objects -,. , a poset C(-,.) of morphisms, together with:

• For each triple of objects-,., / , a composition function ◦ : C(., /)×C(-,.) → C(-,/).
Composition is required to be monotone (in both arguments) and associative.

• For each object - , an identity morphism id- ∈ C(-,-) that is the unit for composition.
J

We identify each poset (including objects of Poset below) with its underlying set, and
always use the symbol v for the order on morphisms in a Poset-category. Every Poset-category
has an underlying ordinary category, by forgetting the order on morphisms. We give several
examples, all of which are useful for constructing models of GCBPV.

Example A.0.2 Every locally small category (in particular, the category Set of sets and func-
tions) forms a Poset-category by using equality for each of the partial orders. In these cases,
all of the Poset-enriched de�nitions coincide with the ordinary ones. J

Example A.0.3 The prototypical example of a Poset-category is Poset itself, which has par-
tially ordered sets (-, v) as objects and monotone functions as morphisms. Morphisms are
ordered pointwise (i.e. 5 v 6 if 5 G v 6 G for all G). When we use Poset as a Poset-category,
this is the order on morphisms we use. J

Example A.0.4 We also restrict Poset to a smaller category. A poset - is pointed if it has
a least element ⊥, and a monotone function 5 : - → . between pointed posets is strict if
5 ⊥ = ⊥. The Poset-category Poset⊥ is formed by restricting Poset to pointed posets and strict
monotone functions. J

Example A.0.5 A poset (-, v) is an l-complete partial order if every l-chain G0 v G1 v . . .
has a least upper bound

⊔
G , and a monotone function between two lcpos is continuous if it

preserves least upper bounds of l-chains. The Poset-category lCpo has lcpos as objects and
continuous functions as morphisms. The order on morphisms is pointwise. J

133

134 Appendix A. Order-enriched category theory

As these examples show, each ordinary category may have more than one possible order-
enrichment. When using Poset-categories as models of GCBPV, the order on morphisms
must be chosen based on the side-e�ects being modelled. The order on morphisms is the
only extra structure required in Poset-category theory compared to ordinary category theory.
The remaining de�nitions are the same as the ordinary ones, except that wherever there is a
function on morphisms it is required to be monotone.

To model various type formers, we require Poset-categories C that come with some given
extra structure. A terminal object 1 of a Poset-category is just a terminal object in the underlying
ordinary category. We write 〈〉- : - → 1 for the universal morphisms. Binary products are
also the same as in the underlying category, except that the pairing operations 〈−,−〉 on
morphisms are required to be monotone (if 51 v 5 ′1 : - → .1 and 52 v 5 ′2 : - → .2
then 〈51, 52〉 v 〈5 ′1 , 5 ′2 〉 : - → .1 × .2). For each -,., / , there is a canonical associativity
morphism assoc : (- × .) × / → - × (. × /). Similarly, binary coproducts (with copairing
morphisms [51, 52] : -1 + -2 → .) are the same as in the underlying ordinary category,
except that the copairing operations are required to be monotone. Exponentials in Poset-
categories are just exponentials in the underlying category, except that the currying operations
Λ : C(/ × -,.) → C(/,- ⇒ .) are required to be monotone. This implies that uncurrying
Λ−1 : C(/,- ⇒ .) → C(/ × -,.) is also monotone.

We say that a Poset-category C is cartesian if it has chosen �nite products (terminal object
and binary products). It is bicartesian if it is cartesian and has chosen �nite coproducts (initial
object and binary coproducts). It is distributive if it is bicartesian and, for all -,., / ∈ C, the
morphism

(- × .) + (- × /)
[〈c1,inl◦c2〉,〈c1,inr◦c2〉]−−−−−−−−−−−−−−−−−−→ - × (. + /)

has an inverse dist-,.,/ : - × (. +/) → (- ×.) + (- ×/). A Poset-category C is (bi)cartesian
closed if it is (bi)cartesian and has chosen exponentials. Every bicartesian closed Poset-category
is distributive.

Example A.0.6 The Poset-categories Set, Poset and lCpo are bicartesian closed. For Set, the
terminal object is the singleton {★}, and the binary product -1 × -2 is the usual cartesian
product. The initial object is the empty set, and the coproduct -1 + -2 is the disjoint union.
For Poset and lCpo each of these is the same as in Set, with the obvious orderings. In Set
exponentials are sets of functions, in Poset they are sets of monotone functions, ordered
pointwise, and in lCpo they are sets of continuous functions, ordered pointwise.

The Poset-category Poset⊥ is cartesian; �nite products are the same as in Poset. (It is also
bicartesian, but not distributive or closed.) J

For models of GCBPV we also need Poset-adjunctions. To de�ne these we �rst consider
Poset-enrichment of functors. This is property of functors, not some additional structure that
must be chosen: each ordinary functor either does or does not Poset-enrich.

De�nition A.0.7 (Poset-functor) If C and D are Poset-categories, a Poset-functor � : C→ D
is a functor between the underlying ordinary categories, such that each function � : C(-,.) →
D(�-, �.) is monotone. Natural transformations between Poset-functors are just natural
transformations in the ordinary sense. J

The identity IdC : C→ C is a Poset-functor for every Poset-category C, and the composition
� ◦ � of two Poset-functors is also a Poset-functor.

A Poset-adjunction is then the same as an ordinary adjunction, except that the two functors
are required to Poset-enrich.1

1Throughout we use the name s for counits of adjunctions, reserving Y for e�ects.

135

De�nition A.0.8 (Poset-adjunction) Suppose that C and D are Poset-categories. A Poset-
adjunction � a * consists of two Poset-functors: the left adjoint � : C → D and the right
adjoint * : D→ C, together with two natural transformations

[: IdC → * ◦ � s : � ◦* → IdD

such that the two triangle laws*s ◦ [* = id* and s� ◦ �[= id� hold. J

Example A.0.9 There is a Poset-adjunction between posets and pointed posets:

Poset Poset⊥

(−)⊥

*

a
The left adjoint (−)⊥ sends each poset- to the pointed poset-⊥ formed by freely adding a least
element, and each monotone function 5 to its strict extension 5⊥ (so 5⊥⊥ = ⊥ and 5⊥G = 5 G

for G ≠ ⊥). The right adjoint is the forgetful functor, which sends each pointed poset to itself,
and each strict monotone function to itself. The unit [- : - → -⊥ is the monotone function
that maps G ∈ - to itself, and the counit s- : -⊥ → - is the strict monotone function that
merges the least elements. J

As in the ordinary case, there is an equivalent de�nition of Poset-adjunction in terms of
bijections between hom-posets:

De�nition A.0.10 (Poset-adjunction (alternative de�nition)) Suppose that C and D are
Poset-categories. A Poset-adjunction � a * consists of two Poset-functors: the left adjoint
� : C→ D and the right adjoint * : D→ C, together with a family of bijections

\ : C(�-,.) → D(-,*.)

natural in - ∈ C and . ∈ D. J

This de�nition does not explicitly require the functions \ (or their inverses) to be monotone,
but this follows from naturality: given 5 v 5 ′ : �- → . we have

\ 5 = * 5 ◦ \ id- v * 5 ′ ◦ \ id- = \ 5 ′

We also need tensorial strengths [50] for denotational semantics. The following de�nition is
exactly the same as the ordinary one, except we additionally require the functor to enrich.

De�nition A.0.11 (Strong Poset-functor) Suppose that C is a cartesian Poset-category. A
strong Poset-functor (�, str�) on C consists of a Poset-functor � : C → C and a natural
transformation str�

-,.
: - × �. → � (- × .) called the (tensorial) strength, such that the

following diagrams commute:

1× �- � (1×-)

�-

str�1,-

c2
�c2

(- ×.) × �/ � ((- ×.) ×/)

- × (. × �/) - × � (. ×/) � (- × (. ×/))

str�
-×.,/

assoc �assoc

-×str�
.,/

str�
-,.×/

136 Appendix A. Order-enriched category theory

A strong natural transformation U : (�, str�) → (�, str�) between strong Poset-functors is
a natural transformation U : � → � such that

- × �. � (- × .)

- ×�. � (- × .)

str�
-,.

-×U. U-×.

str�
-,.

commutes. J

Examples include the identity strong Poset-functor (IdC, id) on C (which we sometimes write
as IdC), and the composition (�, str�) ◦ (�, str�) B (� ◦�, � str�◦str�) of strong Poset-functors.
Strong functors are required in models of programming languages when we interpret open
terms. For example, models of the monadic metalanguage [78] use strong monads. We can use
the de�nitions above to give a succinct de�nition of order-enriched strong monads:

De�nition A.0.12 (Strong Poset-monad) Suppose that C is a cartesian Poset-category. A
strong Poset-monad on C consists of a strong Poset-functor (), str) and two strong natural
transformations

[: IdC → (), str) ` : (), str) ◦ (), str) → (), str)

such that the monad laws hold:

)

) ◦))) ◦)

)[[)

` `

) ◦) ◦)) ◦)

) ◦))

`)

) ` `

` J

Appendix B

Additional proofs

B.1 Erasing coercions in GCBPV terms
Recall the following lemma about graded call-by-push-value.

Lemma 2.7.5 Suppose that the e�ect algebra (E, ≤, ·, 1) is a partially ordered monoid with
bounded binary joins.

1. Given two value terms +1,+2 such that Γ ` +1 : � and Γ ` +2 : �, if b+1c = b+2c then
Γ ` +1 ≡ +2 : �.

2. Given two computation terms"1, "2 such that Γ `"1 : � and Γ `"2 : � , if b"1c = b"2c
then Γ ` "1 ≡ "2 : � . J

We give the proof of this lemma in this section.

B.1.1 Conjectured counterexample
Before giving the proof, we note that Lemma 2.7.5 does not appear to hold when the condition
that the e�ect algebra has bounded binary joins is dropped. Consider the partial order (E, ≤)
with Hasse diagram

1

01 02

11 12

2

This does not have bounded binary joins: the pair (01, 02) has two upper bounds (11 and 12),
but neither is less than the other. We de�ne the multiplication so that 1 is the unit and Y ·Y′ = 2
for Y, Y′ ≠ 1. Using this as an e�ect algebra, we de�ne a typing context Γ and two computation
terms "1 and "2 such that Γ ` "8 : 〈2〉unit for 8 ∈ {1, 2}:

Γ B G : 〈2〉(unit + unit), ~1 : 〈01〉unit, ~2 : 〈01〉unit
"8 B ~ to I. case I of {inl _. coerce01≤18 ~1, inr _. coerce02≤18 ~2}

The terms "8 are identical apart from the coercions (b"1c = b"2c), but we conjecture that
Γ `"1 . "2 : 〈2〉unit. The situation would be di�erent if 01 and 02 had a join 01∨02: we would
be able to reason as follows:

"8 ≡ ~ to I. coerce01∨02≤11 case I of {inl _. coerce01≤01∨02 ~1, inr _. coerce02≤01∨02 ~2}
≡ ~ to I. case I of {inl _. coerce01≤01∨02 ~1, inr _. coerce02≤01∨02 ~2}

(to commutes with coerce)

137

138 Appendix B. Additional proofs

and hence "1 ≡ "2. We use similar reasoning in the proof of Lemma 2.7.5.

B.1.2 Proof of Lemma 2.7.5
To prove Lemma 2.7.5, we �rst de�ne a stronger notion of subtyping for GCBPV in which
contravariant subtyping is not allowed. The judgments � <:′ � and � <:′ � are given by the
rules on the left of Figure 2.12 (which generate the usual notion of subtyping), except that the
rule for function types is replaced with

� <:′ �
(�→ �) <:′ (�→ �)

Clearly�<:′� implies�<:�, and we have coercions coerce�<:� from type� to type � if�<:′�
holds, as in Figure 2.12.

We have partial binary operations ∨ on value and computation types. When it is de�ned
� ∨ � is the join of the value types � and � with respect to <:′, and similarly for computation
types. In the de�nition, Y∨Y′ denotes the join of the e�ects Y, Y′ if it exists. The cases are not
exhaustive; the join is unde�ned if no case applies. The left-hand side of a case is unde�ned if
any part of the right-hand side is.

1 ∨ 1 B 1 unit ∨ unit B unit (�1 ×�2) ∨ (�1 × �2) B (�1 ∨ �1) × (�2 ∨ �2)
empty ∨ empty B empty (�1 +�2) ∨ (�1 + �2) B (�1 ∨ �1) + (�2 ∨ �2)

U� ∨ U� B U (� ∨ �)

unit ∨ unit B unit (�1 ×�2) ∨ (�1 × �2) B (�1 ∨ �1) × (�2 ∨ �2)
(�→ �) ∨ (�→ �) B �→ (�∨�) 〈Y〉� ∨ 〈Y′〉� B 〈Y∨Y′〉(� ∨ �)

Not allowing contravariant subtyping means we do not have to consider meets. Bounded
binary joins lift from the e�ect algebra to types:

Lemma B.1.1 Suppose that the e�ect algebra is a partially ordered monoid with bounded
binary joins.

1. If there is some � such that � <:′ � and �′ <:′ � then � ∨�′ is de�ned and is the join of
� and �′.

2. If there is some � such that � <:′ � and �′ <:′ � then � ∨�′ is de�ned and is the join of
� and �′.

Proof. The proof is by induction on the structure of � and � . If � = 1 then � = �′ = 1 and
1∨1 = 1 is clearly the join. Similarly for � = unit, for � = empty and for� = unit. If � = �1×�2
then � = �1 ×�2 and �′ = �′1 ×�′2 for some �1, �

′
1 <: �1 and �2, �

′
2 <: �2. Then �1 ∨�′1 and

�2∨�′2 are de�ned, and are joins. Hence�×�′ = (�1×�2) ∨ (�′1×�′2) B (�1∨�′1)×(�2∨�′2),
which is an upper bound. It is the least because if �′ is an upper bound then �′ = �′1 × �′2
for some �′1, �′2, such that �′8 is an upper bound of �8 and �′8 . Then because they are joins,
�8 ∨�′8 <: �′8 . Similar reasoning can be applied for � = �1 + �2, for � = U�′, for � = �1 × �2
and for � = � → �′. The latter uses the fact that subtyping is not allowed on �. Finally, if
� = 〈Y′′〉� then� = 〈Y〉� and�′ = 〈Y′〉�′ for some Y, Y′ ≤ Y′′ and�,�′<:�. Then Y∨Y′ is de�ned
because we assume bounded binary joins, and so is�∨�′. Hence 〈Y〉�∨〈Y′〉�′ = 〈Y∨Y′〉(�∨�′)
is de�ned, and is the join. �

B.1. Erasing coercions in GCBPV terms 139

We use this notion of subtyping to give typing judgments Γ `e + : � and Γ `e " : � for
terms that do not have explicit coercions. These are generated by the same rules as the usual
typing judgments (Figure 2.11), except that there is no rule for coerce, and the rules for case
expressions on sum types and for function application are replaced with:

Γ `e + : �1 +�2 Γ, G1 : �1 `e,1 : �1 Γ, G2 : �2 `e,2 : �2 �1 ∨ �2 de�ned
Γ `e case + of {inl G1.,1, inr G2.,2} : �1 ∨ �2

Γ `e + : � Γ `e " : � → � � <:′ �
Γ `e + ‘" : �

Note that these are syntax directed. Given Γ and + , if there is some � such that Γ `e + : �
then it is unique, and derivations are unique. Similarly for computations. For each term that
is well typed under these judgments, we can add explicit coercions to get terms that are well
typed under the original judgments. Given a typing context Γ and value term + such that
Γ `e+ : � for some�, we have a value term d+ eΓ such that Γ ` d+ eΓ : �. Similarly, given Γ and
" such that Γ `e " : � for some � we have d" eΓ such that Γ ` d" eΓ : � . These are de�ned
by induction on the structure of " and + . Most of the cases just apply d−e to subterms. The
interesting cases correspond to the new typing rules:

case + of
{inl G1.,1
, inr G2.,2}

Γ B
case d+ eΓ of
{inl G1. coerce�1<:�1∨�2 d,1eΓ,G1:�1
, inr G2. coerce�2<:�1∨�2 d,2eΓ,G2:�2}

if

Γ `e + : �1 +�2

Γ, G1 : �1 `e,1 : �1
Γ, G2 : �2 `e,2 : �2

d+ ‘" eΓ B (coerce�<:� d+ eΓ) ‘ d" eΓ if
{
Γ `e + : �
Γ `e " : � → �

These terms clearly have the correct types.
We also extend subtyping to typing contexts. Given two typing contexts Γ′ = G1 : �′1, . . . , G= :

�′= and Γ = G1 : �1, . . . , G= : �= of the same length and with the same variable names, we write
Γ′ <:′ Γ if �′8 <:′ �8 for each 8 , and also write coerceΓ′<:Γ for the substitution

G1 ↦→ coerce�′1<:�1 G1, . . . , G= ↦→ coerce�′=<:�= G=

If Γ ` + : � then Γ′ ` + [coerceΓ′<:Γ] : �, and if Γ ` " : � then Γ′ ` " [coerceΓ′<:Γ] : � .

Lemma B.1.2 Suppose that the e�ect algebra is a partially ordered monoid with bounded
binary joins.

1. If Γ ` + : � and Γ′ <:′ Γ then there is some �′ <:′ � such that Γ′ `e b+ c : �′ and

Γ′ ` coerce�′<:� d b+ c eΓ′ ≡ + [coerceΓ′<:Γ] : �

2. If Γ ` " : � and Γ′ <:′ Γ then there is some �′ <:′� such that Γ′ `e b" c : �′ and

Γ′ ` coerce� ′<:� d b" c eΓ′ ≡ " [coerceΓ′<:Γ] : �

Proof. By induction the derivations of Γ ` + : � and Γ ` " : � .
• Constants 2 , and the unit terms () and _{} are trivial.
• For variables G , we have (G : �) ∈ Γ, and (G : �′) ∈ Γ′ for some �′ <:′ �. Then we have
bG c = G and coerce�′<:� d bG c eΓ′ = coerce�′<:� G = G [coerceΓ′<:Γ].

140 Appendix B. Additional proofs

• For pairs Γ ` (+1,+2) : �1 ×�2 by the inductive hypothesis we have

Γ′ `e b+8 c : �′8 Γ′ ` coerce�′
8
<:�8 d b+8 c eΓ′ ≡ +8 [coerceΓ′<:Γ] : �8

for some �′8 <:′ �8 . Hence �′1 ×�′2 <:′ �1 ×�2, Γ′ `e b (+1,+2)c : �′1 ×�′2, and

coerce�′1×�′2<:�1×�2 d b (+1,+2)c eΓ′
≡ (coerce�′1<:�1 d b+1c eΓ′, coerce�′2<:�2 d b+2c eΓ′) (V laws for products)
≡ (+1 [coerceΓ′<:Γ],+2 [coerceΓ′<:Γ])
= (+1,+2) [coerceΓ′<:Γ]

The cases for inl, inr, thunk, pairs of computation terms, and 〈−〉 are similar.
• For Γ ` fst+ : �1 we have Γ ` + : �1 × �2. By the inductive hypothesis there is some

subtype of �1 ×�2, which necessarily has the form �′1 ×�′2 for �′8 <:′ �8 , such that

Γ′ `e b+ c : �′1 ×�′2 Γ′ ` coerce�′1×�′2<:�1×�2 d b+ c eΓ′ ≡ + [coerceΓ′<:Γ] : �1 ×�2

We have Γ′ `e bfst+ c : �′1 and

coerce�′1<:�1 d bfst+ c eΓ′ ≡ fst (coerce�′1×�′2<:�1×�2 d b+ c eΓ′) (V for products)
≡ fst (+ [coerceΓ′<:Γ])
= (fst+) [coerceΓ′<:Γ]

The cases for snd, projections for products of computations and force are similar.
• For Γ ` case� + of {} : � we have Γ ` + : empty. By the inductive hypothesis there is

some subtype of empty, which can only be empty itself, such that Γ′ `e b+ c : empty. We
have � <:′ �, Γ′ `e bcase� + of {}c : �, and

coerce�<:� d bcase� + of {}c eΓ′ ≡ case� + [coerceΓ′<:Γ] of {} ([law for empty)
= (case� + of {}) [coerceΓ′<:Γ]

• For Γ ` _G :�." : �→ � we have Γ, G : � ` " : � . Applying the inductive hypothesis to
Γ′, G : � <:′ Γ, G : �, there is some �′ <:′� such that

Γ′, G : � `e b" c : �′ Γ′, G : � ` coerce� ′<:� d b" c eΓ′,G :� ≡ " [coerceΓ′,G :�<:Γ,G :�] : �

We have (�→ �′) <:′ (�→ �′), Γ′ `e b_G :�." c : �→ �′, and

coerce(�→� ′)<: (�→�) d b_G :�." c eΓ′
≡ _~ :�. coerce� ′<:� (~ ‘ _G :�. d b" c eΓ′,G :�) (coerce�<:�, ≡,)
≡ _G :�. coerce� ′<:� d b" c eΓ,G :� (V law for functions)
≡ _G :�." [coerceΓ′,G :�<:Γ,G :�]
≡ (_G :�.") [coerceΓ′<:Γ] (coerce�<:�, ≡,)

• For Γ ` op+ : 〈e�op〉arop we have Γ ` + : carop. Since carop is a ground type, its only
subtype is carop itself. Hence by the inductive hypothesis we have

Γ′ `e b+ c : carop Γ′ ` coercecarop<:carop d b+ c eΓ′ ≡ + [coerceΓ′<:Γ] : carop

B.1. Erasing coercions in GCBPV terms 141

We have 〈e�op〉arop <:′ 〈e�op〉arop, Γ′ `e op+ : 〈e�op〉arop, and

coerce〈e�op〉arop<:〈e�op〉arop d bop+ c eΓ′
≡ op d b+ c eΓ′ (coerce�<:� # ≡ #)
≡ op (coercecarop<:carop d b+ c eΓ′) (coerce�<:�, ≡,)
≡ op (+ [coerceΓ′<:Γ])
= (op+) [coerceΓ′<:Γ]

• For Γ `" to G . # : 〈〈Y〉〉� we have Γ `" : 〈Y〉� and Γ, G : � `# : � . There is some subtype
of 〈Y〉�, which necessarily has the form 〈Y′〉�′ for Y′ ≤ Y and �′ <:′ � such that

Γ `e b" c : 〈Y′〉�′ Γ′ ` coerce〈Y ′〉�′<:〈Y〉� d b" c eΓ′ ≡ " [coerceΓ′<:Γ] : 〈Y〉�

Now Γ′, G : �′ <:′ Γ, G : �, so there is some �′ <: � such that

Γ′, G : �′ `e b# c : �′ Γ′, G : �′ ` coerce� ′<:� d b# c eΓ′,G :�′ ≡ # [coerceΓ′,G :�′<:Γ,G :�] : �

We have 〈〈Y′〉〉�′ <:′ 〈〈Y〉〉� , Γ′ `e b" to G . # c : 〈〈Y′〉〉�′, and

coerce〈〈Y ′〉〉� ′<:〈〈Y〉〉� d b" to G . # c eΓ′
≡ (coerceY ′≤Y d b" c eΓ′) to G . coerce� ′<:� d b# c eΓ′,G :�′
≡ (coerceY ′≤Y d b" c eΓ′) to G . # [coerceΓ′,G :�′<:Γ,G :�]
≡ (coerce〈Y ′〉�′<:〈Y〉� d b" c eΓ′) to G . # [coerceΓ′<:Γ]
≡ " [coerceΓ′<:Γ] to G . # [coerceΓ′<:Γ]
= (" to G . #) [coerceΓ′<:Γ]

• For Γ ` coerceY ′≤Y " : 〈Y〉� we have Γ `" : 〈Y′〉� and Y′ ≤ Y. By the inductive hypothesis
there is some subtype of 〈Y′〉�, which necessarily has the form 〈Y′′〉�′ for some Y′′ ≤ Y′
and �′ <:′ �, such that

Γ′ `e b" c : 〈Y′′〉�′ Γ′ ` coerce〈Y ′′〉�′<:〈Y ′〉� d b" c eΓ′ ≡ " [coerceΓ′<:Γ] : 〈Y′〉�

We have 〈Y′′〉�′<:′ 〈Y〉�, and Γ′`e bcoerceY ′≤Y " c : 〈Y′′〉�′ because bcoerceY ′≤Y " c = b" c.
The required equation also holds:

coerce〈Y ′′〉�′<:〈Y〉� d bcoerceY ′≤Y " c eΓ′
≡ coerce〈Y ′〉�<:〈Y〉� (coerce〈Y ′′〉�′<:〈Y ′〉� d b" c eΓ′)

(coerce� ′′<:� # ≡ coerce� ′<:� (coerce� ′′<:� ′ #))
≡ coerce〈Y ′〉�<:〈Y〉� (" [coerceΓ′<:Γ])
≡ (coerceY ′≤Y ") [coerceΓ′<:Γ]

• For Γ ` case + of {inl G1.,1, inr G2.,2} : � we have Γ ` + : �1 + �2. By the inductive
hypothesis there is a subtype of �1 + �2, which necessarily has the form �′1 + �′2 for
�′8 <:′ �8 , such that

Γ′ `e b+ c : �′1 +�′2 Γ′ ` coerce�′1+�′2<:�1+�2 d b+ c eΓ′ ≡ + [coerceΓ′<:Γ] : �1 +�2

For 8 ∈ {1, 2} we have Γ, G8 : �8 `,8 : � and Γ′, G8 : �′8 <:′ Γ, G8 : �8 , so there exists �′8 <:′ �
such that

Γ′, G8 : �′8 `e b,8 c : �′8
Γ′, G8 : �′8 ` coerce�′8<:� d b,8 c eΓ′,G8 :�′8 ≡,8 [coerceΓ′,G8 :�′8<:Γ,G8 :�8] : �

142 Appendix B. Additional proofs

Since �′1 and �′2 have an upper bound, by Lemma B.1.1 (1) their join �′1∨�′2 <: � is de�ned.
We therefore have Γ′ `e bcase + of {inl G1.,1, inr G2.,2}c : �′1 ∨ �′2 and

coerce�′1∨�′2<:� d bcase + of {inl G1.,1, inr G2.,2}c eΓ′

≡
case d b+ c eΓ′ of
{inl G1. coerce�′1∨�′2<:� (coerce�′1<:�′1∨�′2 d b,1c eΓ′,G1:�′1)
, inr G2. coerce�′2∨�′2<:� (coerce�′2<:�′2∨�′2 d b,2c eΓ′,G2:�′2)}

(V and [laws for sums)

≡ case d b+ c eΓ′ of {inl G1. coerce�′1<:� d b,1c eΓ′,G1:�′1, inr G2. coerce�′2<:� d b,2c eΓ′,G2:�′2}
(coerce�′′<:�+ ≡ coerce�′<:� (coerce�′′<:�′+))

≡ case d b+ c eΓ′ of {inl G1.,1 [coerceΓ′,G1:�′1<:Γ,G1:�1], inr G2.,2 [coerceΓ′,G2:�′2<:Γ,G2:�2]}
≡ case coerce�′1+�′2<:�1+�2 d b+ c eΓ′ of {inl G1.,1 [coerceΓ′<:Γ], inr G2.,2 [coerceΓ′<:Γ]}

(V and [laws for sums)
≡ (case + of {inl G1.,1, inr G2.,2}) [coerceΓ′<:Γ]

• For Γ `+ ‘" : � we have Γ `+ : � and Γ `" : �→ � . By the inductive hypothesis, there
exist �′ <:′ � and a subtype of �→ � that necessarily has the form �→ �′ for �′ <: �
(recall that we do not allow subtyping on arguments), such that

Γ′ `e b+ c : �′ Γ′ ` coerce�′<:� d b+ c eΓ′ ≡ + [coerceΓ′<:Γ] : �
Γ′ `e b" c : �→ �′ Γ′ ` coerce�→� ′<:�→� d b" c eΓ′ ≡ " [coerceΓ′<:Γ] : �→ �

We therefore have Γ `e b+ ‘" c : �′ and

coerce� ′<:� d b+ ‘" c eΓ′ ≡ coerce� ′<:� ((+ [coerceΓ′<:Γ]) ‘ d b" c eΓ′)
≡ (+ [coerceΓ′<:Γ]) ‘ coerce�→� ′<:�→� d b" c eΓ′

(V law for function types)
≡ (+ ‘") [coerceΓ′<:Γ] �

We obtain Lemma 2.7.5 as a corollary.

Proof (of Lemma 2.7.5). We give the proof for the �rst part of the lemma (values). The proof of
the second part (computations) is similar.

Suppose that Γ ` +1 : � and Γ ` +2 : �. We have Γ <:′ Γ, so by Lemma B.1.2 (1) there are
value types �′8 <:′ � such that Γ `e b+8 c : �′8 and

Γ ` coerce�′
8
<:� d b+8 c eΓ ≡ +8 [coerceΓ<:Γ] : �

for 8 ∈ {1, 2}. If b+1c = b+2c then �′1 = �′2, and we have:

+1 ≡ +1 [coerceΓ<:Γ] ≡ coerce�′1<:� d b+1c eΓ = coerce�′2<:� d b+2c eΓ ≡ +2 [coerceΓ<:Γ] ≡ +2

where we use the fact that the inequational theory is closed under substitution. �

B.2 Logical relations and the free lifting
This section contains proofs related to the free lifting de�ned in Section 3.1.1.

Lemma 3.1.6 If (2, 2) ∈ RfreeÈ�É for each constant 2 ∈ K�, then RfreeÈ−É is a logical relation.

B.2. Logical relations and the free lifting 143

Proof. We show that the free lifting meets each requirement in the de�nition of logical relation.
• The equations in Figure 3.1 hold by de�nition.
• For closure under operations we note that

op+ ≡ op+ to G . 〈G〉
op+ ′ ≡ op+ ′ to G . 〈G〉

(〈G〉, 〈G〉) : Rfree
�
G : arop

�
¤→ Rfree

�
〈1〉arop

�
and apply the �nal case in the de�nition of Rfree

�
〈1〉arop

�
.

• Closure under pure computations is one of the cases in the de�nition of RfreeÈ〈Y〉�É.
• For closure under to suppose that (","′) ∈ RfreeÈ〈Y〉�É and (#, # ′) : RfreeÈG : �É ¤→
RfreeÈ〈Y′〉�É. We show that

(" to G . # ,"′ to G . # ′) ∈ RÈ〈Y ·Y′〉�É

by induction on (","′) ∈ RfreeÈ〈Y〉�É. For the (〈+ 〉, 〈+ ′〉) case use the assumption
about (#, # ′) and

〈+ 〉 to G . # ≡ # [G ↦→+] 〈+ ′〉 to G . # ′ ≡ # ′[G ↦→+ ′]

For (coerceY ′′≤Y ", coerceY ′′≤Y "′) use the inductive hypothesis and

(coerceY ′′≤Y ") to G . # ≡ coerceY ′′ ·Y ′≤Y ·Y ′ (" to G . #)
(coerceY ′′≤Y "′) to G . # ′ ≡ coerceY ′′ ·Y ′≤Y ·Y ′ ("′ to G . # ′)

For (op+ to ~.", op+ ′ to ~."′), note that the inductive hypothesis implies

(" to G . # , "′ to G . # ′) : Rfree
�
~ : arop

�
¤→ RfreeÈ〈Y ·Y′〉�É

and then use

(op+ to ~.") to G . # ≡ op+ to ~. (" to G . #)
(op+ ′ to ~."′) to G . # ′ ≡ op+ ′ to ~. ("′ to G . # ′)

• Closure under coerce is one of the cases in the de�nition of RfreeÈ〈Y〉�É.
• Each constant is related to itself by assumption. �

Lemma 3.1.7 Suppose that RÈ−É is a logical relation and RfreeÈ1É = RÈ1É for all base types
1. Then RfreeÈ�É ⊆ RÈ�É implies RfreeÈ〈Y〉�É ⊆ RÈ〈Y〉�É.

Proof. By induction on the de�nition of RfreeÈ〈Y〉�É. Each case uses the closure properties of
the logical relation RÈ−É. For the (〈+ 〉, 〈+ ′〉) case use RfreeÈ�É ⊆ RÈ�É and closure under
pure computations. For (coerceY≤Y ′", coerceY≤Y ′"′) use the inductive hypothesis and closure
under coerce. The (op+ to G . ", op+ ′ to G . "′) case is the most di�cult. Suppose that
(+ ,+ ′) ∈ Rfree

�
carop

�
and (","′) : Rfree

�
G : arop

�
¤→ RfreeÈ〈Y〉�É. By the assumption on

base types, we have RfreeÈ�É = RÈ�É for all ground types � , in particular for the coarity
and arity of op. Hence the inductive hypothesis implies (+ ,+ ′) ∈ R

�
carop

�
and (","′) :

R
�
G : arop

�
¤→RÈ〈Y〉�É, and the result follows by closure of RÈ−É under operations and under

to. �

144 Appendix B. Additional proofs

Lemma 3.1.8 For each value type � and e�ect Y ⊆ Σ,

R′freeÈ〈Y〉�É = RfreeÈ〈Y〉�É

Proof. (⊆): For a �xed e�ect Y, we have R′freeÈ〈Y〉�É ⊆ RfreeÈ〈Y〉�É by a trivial induction.
(⊇): First, a trivial induction shows that if Y ⊆ Y′ then

(","′) ∈ R′freeÈ〈Y〉�É ⇒ (coerceY≤Y ′", coerceY≤Y ′"′) ∈ R′freeÈ〈Y
′〉�É

We then show by another induction that for all Y and (","′) ∈ RfreeÈ〈Y〉�Éwe have (","′) ∈
R′freeÈ〈Y〉�É. For the (〈+ 〉, 〈+ ′〉) ∈ RfreeÈ〈1〉�É case use

〈+ 〉 ≡ coerce∅≤∅ 〈+ 〉 〈+ ′〉 ≡ coerce∅≤∅ 〈+ ′〉

For (coerceY≤Y ′", coerceY≤Y ′") ∈ RfreeÈ〈Y′〉�É use the above implication. Finally, for

((op+ to G . "), (op+ ′ to G . "′)) ∈ RfreeÈ〈{op} ∪ Y〉�É

we assume that

(","′) : Rfree
�
G : arop

�
¤→ RfreeÈ〈Y〉�É (+ ,+ ′) ∈ Rfree

�
carop

�
By the inductive hypothesis, the above implication, and the fact that Rfree and R′free coincide
on ground types, we have

(coerceY≤{op}∪Y ", coerceY≤{op}∪Y "′) : Rfree
�
G : arop

�
¤→ R′freeÈ〈{op} ∪ Y〉�É

so by the de�nition of R′freeÈ〈{op} ∪ Y〉�É,

((op+ to G . coerceY≤{op}∪Y "), (op+ ′ to G . coerceY≤{op}∪Y "′)) ∈ R′freeÈ〈{op} ∪ Y〉�É

The result follows because

op+ to G . coerceY≤{op}∪Y ′" ≡ op+ to G . "

and similarly for op+ ′ to G . "′. �

B.3 Call-by-name and call-by-need
This section contains lemmas that are used to relate call-by-name and call-by-need evaluation
Section 5.3.

First, we give two lemmas that are useful in later proofs in this section.

Lemma B.3.1 The relations RÈ�ÉΔ and RÈ�ÉΔ are partial equivalence relations (symmetric
and transitive).

Proof. By induction on � and � . Most of the cases are trivial. For returner types, transitivity
comes from the de�nition of closed under divergence. The proof that (","′) ∈ RÈF�ÉΔ
implies ("′, ") ∈ RÈF�ÉΔ is a simple induction on (","′) ∈ RÈF�ÉΔ. �

Lemma B.3.2 The Kripke relation RÈ�É is closed under divergence for every computation
type � .

B.3. Call-by-name and call-by-need 145

Proof. By induction on � . We already have transitivity (by Lemma B.3.1), so in each case we
only consider the other requirements.

• For returner types this holds by de�nition.
• For � = unit, this is trivial because RÈunitÉΔ is the total relation.
• For � = �1 ×�2 we check each of the requirements individually.

– If Δ ` " : �1 ×�2 and Δ ` "′ : �1 ×�2 are trivially diverging then we have

" ≡ %1 to G . %2 "′ ≡ % ′1 to G
′. % ′2

for some

%1 ∈ {I | (I : F�) ∈ Δ} ∪ {ΩF�} % ′1 ∈ {I | (I : F�′) ∈ Δ} ∪ {ΩF�′}

and %2, % ′2. For each 8 ∈ {1, 2} we have 8‘" ≡ %1 to G . 8‘%2, and similarly for "′.
Hence 8‘" and 8‘"′ are both trivially diverging, so are related. This implies that
(","′) ∈ R

�
�1 ×�2

�Δ.
– For the second case of the de�nition of closed under divergence (De�nition 5.3.3)

we give the proof for the pair

(" need ~. #, # ′[~ ↦→"′])

where " and "′ are trivially diverging and (#, # ′) ∈ R
�
�1 ×�2

�Δ,~:F� (the other
three pairs are similar). For each 8 ∈ {1, 2}, we have

8‘(" need ~. #) ≡ " need ~. 8‘# 8‘(# ′[~ ↦→"′]) = (8‘# ′) [~ ↦→"′]

So it su�ces to show that (" need ~. 8‘#, (8‘# ′) [~ ↦→"′]) ∈ R
�
�
8

�Δ. This follows
from the inductive hypothesis.

• For � = �→ � we again check each requirement individually.
– If Δ ` " : �→ � and Δ ` "′ : �→ � are trivially diverging then we have

" ≡ %1 to G . %2 "′ ≡ % ′1 to G
′. % ′2

for some

%1 ∈ {I | (I : F�) ∈ Δ} ∪ {ΩF�} % ′1 ∈ {I | (I : F�′) ∈ Δ} ∪ {ΩF�′}

and %2, % ′2. For each Δ′ ⊲ Δ and (+ ,+ ′) ∈ RÈ�ÉΔ
′
we have+ ‘" ≡ %1 to G .+ ‘%2, and

similarly for "′. Hence + ‘" and + ′‘"′ are both trivially diverging, so are related.
This implies that (","′) ∈ RÈ�→ �ÉΔ.

– For the second case of the de�nition of closed under divergence (De�nition 5.3.3)
we give the proof for the pair

(" need ~. #, # ′[~ ↦→"′])

where " and "′ are trivially diverging and (#, # ′) ∈ RÈ�→ �ÉΔ,~:F� (the other
three pairs are similar). For each Δ′ ⊲ Δ and (+ ,+ ′) ∈ RÈ�ÉΔ, we have

+ ‘(" need ~. #) ≡ " need ~.+ ‘# + ′‘(# ′[~ ↦→"′]) = (+ ′‘# ′) [~ ↦→"′]

So it su�ces to show that (" need ~.+ ‘#, (+ ′‘# ′) [~ ↦→ "′]) ∈ RÈ�ÉΔ
′
. This

follows from the inductive hypothesis, using the fact that RÈ�É is a Kripke relation
to weaken # and # ′. �

146 Appendix B. Additional proofs

We next turn to the proof of the fundamental lemma. As usual, this is by induction on the
structure of the terms. Most of the cases are completely standard, so in this section we only
give the cases for need and to, which involve the de�nition of the logical relation on returner
types. These are the next two lemmas.

Lemma B.3.3 If Γ, G : F� ` " : � satis�es

(" [f], " [f′]) ∈ RÈ�ÉΔ

for all Δ and (f, f′) ∈ RÈΓ, G : F�ÉΔ, then for all (#, # ′) ∈ RÈF�ÉΔ and (f, f′) ∈ RÈΓÉΔ, we
have

(# need G . " [f], # ′ need G . " [f′]) ∈ RÈ�ÉΔ

Proof. By induction on the derivation of (#, # ′) ∈ RÈF�ÉΔ.
• For transitivity, use the inductive hypothesis and transitivity of RÈ�ÉΔ (Lemma B.3.1).
• If # ≡ 〈+ 〉 and # ′ ≡ 〈+ ′〉 with (+ ,+ ′) ∈ RÈ�ÉΔ then the pair we are considering is the

same up to ≡ as
(" [f, G ↦→ 〈+ 〉], " [f′, G ↦→ 〈+ ′〉])

The result therefore follows from the assumption about " .
• If # and # ′ are trivially diverging, the result follows from the fact that RÈ�É is closed

under divergence (Lemma B.3.2).
• For the second case of the de�nition of closed under divergence (De�nition 5.3.3), the

pair (#, # ′) can have one of four forms. We give the proof for one of them (the other
three are similar). Suppose that

≡ #1 need ~. #2 # ′ ≡ # ′2 [~ ↦→# ′1]

where #1 and # ′1 are trivially diverging and (#2, #
′
2) ∈ RÈF�É

Δ,~:F� . We have

need G . " [f] ≡ #1 need ~. #2 need G . " [f]
′ need G . " [f′] ≡ (# ′2 need G . " [f′]) [~ ↦→# ′1]

Since RÈ�É is closed under divergence (Lemma B.3.2), it therefore su�ces to show that

(#2 need G . " [f] , # ′2 need G . " [f′]) ∈ RÈ�É
Δ,~:F�

This follows from the inductive hypothesis, using the fact that Kripke relations respect
weakening (f and f′ are weakened). �

Lemma B.3.4 If Γ, G : � ` " : � satis�es

(" [f], " [f′]) ∈ RÈ�ÉΔ

for all Δ and (f, f′) ∈ RÈΓ, G : �ÉΔ, then for all (#, # ′) ∈ RÈF�ÉΔ and (f, f′) ∈ RÈΓÉΔ we
have

(# to G . " [f], # ′ to G . " [f′]) ∈ RÈ�ÉΔ

Proof. By induction on the derivation of (#, # ′) ∈ RÈF�ÉΔ.
• For transitivity, use the inductive hypothesis and transitivity of RÈ�ÉΔ (Lemma B.3.1).

B.3. Call-by-name and call-by-need 147

• If # ≡ 〈+ 〉 and # ′ ≡ 〈+ ′〉 with (+ ,+ ′) ∈ RÈ�ÉΔ then the pair we are considering is the
same up to ≡ as

(" [f, G ↦→ 〈+ 〉], " [f′, G ↦→ 〈+ ′〉])
The result therefore follows from the assumption about " .

• If # and # ′ are trivially diverging then for some

%1 ∈ {~ | (~ : F�) ∈ Δ} ∪ {ΩF�} % ′1 ∈ {~ | (~ : F�′) ∈ Δ} ∪ {ΩF�′}

and %2, % ′2 we have
≡ %1 to I. %2 # ′ ≡ % ′1 to I

′. % ′2

Hence

to G . " [f] ≡ %1 to I. %2 to G . " [f] # ′ to G . " [f′] ≡ % ′1 to I
′. % ′2 to G . " [f′]

so the two computations we wish to relate are both trivially diverging, and we can use
the fact that RÈ�É is closed under divergence (Lemma B.3.2).

• For the second case of the de�nition of closed under divergence (De�nition 5.3.3), the
pair (#, # ′) can have one of four forms. We give the proof for one of them (the other
three are similar). Suppose that

≡ #1 need ~. #2 # ′ ≡ # ′2 [~ ↦→# ′1]

where #1 and # ′1 are trivially diverging and (#2, #
′
2) ∈ RÈF�É

Δ,~:F� . We have

to G . " [f] ≡ #1 need ~. #2 to G . " [f]
′ to G . " [f′] ≡ (# ′2 to G . " [f′]) [~ ↦→# ′1]

Since RÈ�É is closed under divergence (Lemma B.3.2), it therefore su�ces to show that

(#2 to G . " [f] , # ′2 to G . " [f′]) ∈ RÈ�É
Δ,~:F�

This follows from the inductive hypothesis, using the fact that Kripke relations respect
weakening (f and f′ are weakened). �

At this point, we know that the fundamental lemma holds. We next show that call-by-name
and call-by-need are related by the logical relation:

Lemma B.3.5 If Γ, G : F� ` " : � then for all (#, # ′) ∈ RÈF�ÉΔ and (f, f′) ∈ RÈΓÉΔ, each
of the following pairs is in RÈ�ÉΔ:

(# need G . " [f], # ′ need G . " [f′]) (" [f] [G ↦→#], " [f′] [G ↦→# ′])
(" [f] [G ↦→#], # ′ need G . " [f′]) (# need G . " [f], " [f′] [G ↦→# ′])

Proof. For the two pairs on the top row, we apply Lemma B.3.3 and the fundamental lemma
(Lemma 5.3.4). The remaining two require more e�ort. We give only the proof for

(" [f] [G ↦→#], # ′ need G . " [f′])

The other is similar. The proof is by induction on the derivation of (#, # ′) ∈ RÈF�ÉΔ.
• For transitivity, use the inductive hypothesis and transitivity of RÈ�ÉΔ (Lemma B.3.1).

148 Appendix B. Additional proofs

• If # ≡ 〈+ 〉 and # ′ ≡ 〈+ ′〉 with (+ ,+ ′) ∈ RÈ�ÉΔ then the pair we are considering is the
same up to ≡ as

(" [f, G ↦→ 〈+ 〉], " [f′, G ↦→ 〈+ ′〉])
The result therefore follows from the fundamental lemma (Lemma 5.3.4).

• If # and # ′ are trivially diverging, the result follows from the fact that RÈ�É is closed
under divergence (Lemma B.3.2).

• For the second case of the de�nition of closed under divergence (De�nition 5.3.3), suppose
that Δ `#1 : F� and Δ `# ′1 : F� are trivially diverging, and that (#2, #

′
2) ∈ RÈF�É

Δ,~:F� .
We consider each of the four forms of pair (#, # ′) in turn. In each case, we use the fact
that the logical relation is a partial equivalence relation (Lemma B.3.1), and that f is
related to itself (which follows from the fundamental lemma). We also weaken terms,
and therefore use the fact that we have Kripke relations.

– If (#, # ′) = (#1 need ~. #2, #
′
1 need ~. #

′
2) then

" [f] [G ↦→#] ≡ " [f, G ↦→ (#1 need ~. #2)]
R " [f, G ↦→ #2 [~ ↦→#1]] (5.3.4, closure under divergence)
≡ " [f, G ↦→ #2] [~ ↦→#1]
R # ′1 need ~. #

′
2 need G . " [f′] (IH, closure under divergence)

≡ # ′ need G . " [f′]

– If (#, # ′) = (#2 [~ ↦→#1], # ′2 [~ ↦→# ′1]) then

" [f] [G ↦→#] ≡ " [f, G ↦→ #2] [~ ↦→#1]
R (# ′2 need G . " [f′]) [~ ↦→# ′1] (IH, closure under divergence)
≡ # ′ need G . " [f′]

– If (#, # ′) = (#2 [~ ↦→#1], # ′1 need ~. # ′2) then

" [f] [G ↦→#] ≡ " [f, G ↦→ #2] [~ ↦→#1]
R # ′1 need ~. #

′
2 need G . " [f′] (IH, closure under divergence)

≡ # ′ need G . " [f′]

– If (#, # ′) = (#1 need ~. #2, #
′
2 [~ ↦→# ′1]) then

" [f] [G ↦→#] ≡ " [f, G ↦→ (#1 need ~. #2)]
R " [f, G ↦→ #2 [~ ↦→#1]] (5.3.4, closure under divergence)
≡ " [f, G ↦→ #2] [~ ↦→#1]
R (# ′2 need G ." [f′]) [~ ↦→# ′1] (IH, closure under divergence)
≡ # ′ need G . " [f′] �

Finally, we show that we can use the logical relation to prove contextual equivalences. First
we note that closed, trivially diverging computations actually diverge:

Lemma B.3.6 If � ` " : � is trivially diverging then " ≡ Ω� .

Proof. There are no free computation variables, so " ≡ ΩF� to G . # for some # . The result
then follows from the [-law for the empty type. �

B.3. Call-by-name and call-by-need 149

Next, we note that on ground types the logical relation matches the equational theory:

Lemma B.3.7 If � is a ground type and (+ ,+ ′) ∈ RÈ�ÉΔ, then + ≡, ≡ + ′ for some closed
value, .

Proof. By induction on � .
• If � = unit then + ≡ () ≡ + ′ by the [-law for unit.
• If � = �1 ×�2 then

+ ≡ (fst+1, snd+2) ≡ (,1,,2) ≡ (fst+ ′1 , snd+ ′2) ≡ + ′

where,1 and,2 come from applying the inductive hypothesis.
• If � = empty then we have a contradiction (RÈemptyÉΔ is empty).
• If� = �1 +�2 then there are two cases to consider. If+ ≡ inl�2+1 and+ ′ ≡ inl�2+

′
1 with

(+1,+ ′1) ∈ RÈ�1ÉΔ, then

+ ≡ inl�2+1 ≡ inl�2, ≡ inl�2+1 ≡ + ′

where, comes from applying the inductive hypothesis. The inr case is similar. �

We also show that closed returners of ground type either return a result or diverge. To do
this, we also need to consider computations with free computation variables. The next lemma
is where it is important that computation variables are only bound inside the de�nition of the
logical relation to trivially diverging computations.

Lemma B.3.8 If � is a ground type and (","′) ∈ RÈF�ÉΔ then one of the following holds:
1. " ≡ 〈+ 〉 ≡ "′ for some closed value + .
2. " and "′ are both trivially diverging.

Proof. By de�nition, RÈF�É is the smallest closed-under-divergence relation such that

(+ ,+ ′) ∈ RÈ�ÉΔ ⇒ (〈+ 〉, 〈+ ′〉) ∈ RÈF�ÉΔ (B.1)

so we can proceed by induction on the derivation of (","′) ∈ RÈF�ÉΔ. If this holds because
of Equation (B.1) then the result follows immediately from Lemma B.3.7. Transitivity is trivial
(using transitivity of ≡). Otherwise, we consider each of the cases in the de�nition of closed
under divergence (De�nition 5.3.3).

• In the �rst case of the de�nition, both computations are required to be trivially diverging.
• For the second case we have two trivially diverging computations, which necessarily

have the form
" ≡ %1 to G . %2 "′ ≡ % ′1 to G′. % ′2

for some

%1 ∈ {I | (I : F�) ∈ Δ} ∪ {ΩF�} % ′1 ∈ {I | (I : F�′) ∈ Δ} ∪ {ΩF�′}

and also have some (#2, #
′
2) ∈ RÈF�É

Δ,~:F�. By the inductive hypothesis, there are two
cases to consider:

150 Appendix B. Additional proofs

– We have #2 ≡ 〈+ 〉 ≡ # ′2 for some closed+ . Then for each of the pairs in the second
case of De�nition 5.3.3 we have

" ≡ 〈+ 〉 ≡ "′

where we use the garbage collection rule and the fact that + is closed to remove
the need bindings.

– Both #2 and # ′2 are trivially diverging, which implies that

#2 ≡ &1 to I.&2 # ′2 ≡ &′1 to I′. &′2

for some

&1 ∈ {I | (I : F�1) ∈ Δ} ∪ {ΩF�1} &′1 ∈ {I | (I : F�′1) ∈ Δ} ∪ {ΩF�′1}

We show that" is trivially diverging ("′ is trivially diverging by an identical proof).
By looking at the four pairs in the second case of De�nition 5.3.3, we know that "
has one of two forms. The �rst is

" ≡ (%1 to G . %2) need ~.&1 to I.&2

In this case, if &1 ≠ ~ then

" ≡ &1 to I. (%1 to G . %2) need ~.&2

and if &1 = ~ then
" ≡ %1 to G . %2 to I.&2 [~ ↦→ 〈I〉]

both of which are trivially diverging. The second form of " is

" ≡ (&1 to I.&2) [~ ↦→%1 to G . %2]

In this case, if &1 ≠ ~ then

" ≡ &1 to I. (&2 [~ ↦→ (%1 to G . %2)])

and if &1 = ~ then

" ≡ %1 to G . %2 to I.&2 [~ ↦→ (%1 to G . %2)]

both of which are again trivially diverging. �

Finally, we can put the last few lemmas together to show that the logical relation matches
the equational theory on closed returners of ground type.

Corollary B.3.9 If � is a ground type and (","′) ∈ RÈF�É� then " ≡ "′.

Proof. Applying Lemma B.3.8 gives us two cases to consider:
• If we have " ≡ 〈+ 〉 ≡ "′, then we are done.
• If both " and "′ are both trivially diverging, then we apply Lemma B.3.6. �

	Introduction
	Approach
	Contributions

	Effect systems and evaluation orders
	Effect algebras
	Simply-typed lambda calculus
	Call-by-value
	Moggi-style call-by-name
	Graded monadic metalanguage
	Levy-style call-by-name
	Graded call-by-push-value
	Related work
	Summary

	Call-by-value and call-by-name
	Logical relations for graded call-by-push-value
	Restricting side-effects in call-by-value and call-by-name
	A Galois connection between call-by-value and call-by-name
	Reasoning principle for call-by-value and call-by-name
	Related work
	Summary

	Noninvertible program transformations
	Examples of noninvertible transformations
	Order-enriched semantics of GCBPV
	Relating syntax and semantics
	Relating call-by-value and call-by-name, semantically
	Related work
	Summary

	Call-by-need and extended call-by-push-value
	Extended call-by-push-value
	Call-by-need translation
	Equivalence between call-by-name and call-by-need
	An effect system for extended call-by-push-value
	Related work
	Summary

	Conclusions
	Future work
	Final remarks

	Bibliography
	Order-enriched category theory
	Additional proofs
	Erasing coercions in GCBPV terms
	Logical relations and the free lifting
	Call-by-name and call-by-need

