4 research outputs found

    CTL with Finitely Bounded Semantics

    Get PDF
    We consider a variation of the branching time logic CTL with non-standard, "finitely bounded" semantics (FBS). FBS is naturally defined as game-theoretic semantics where the proponent of truth of an eventuality must commit to a time limit (number of transition steps) within which the formula should become true on all (resp. some) paths starting from the state where the formula is evaluated. The resulting version CTL(FB) of CTL differs essentially from the standard one as it no longer has the finite model property. We develop two tableaux systems for CTL(FB). The first one deals with infinite sets of formulae, whereas the second one deals with finite sets of formulae in a slightly extended language allowing explicit indication of time limits in formulae. We prove soundness and completeness of both systems and also show that the latter tableaux system provides an EXPTIME decision procedure for it and thus prove EXPTIME-completeness of the satisfiability problem

    Automata-theoretic and bounded model checking for linear temporal logic

    Get PDF
    In this work we study methods for model checking the temporal logic LTL. The focus is on the automata-theoretic approach to model checking and bounded model checking. We begin by examining automata-theoretic methods to model check LTL safety properties. The model checking problem can be reduced to checking whether the language of a finite state automaton on finite words is empty. We describe an efficient algorithm for generating small finite state automata for so called non-pathological safety properties. The presented implementation is the first tool able to decide whether a formula is non-pathological. The experimental results show that treating safety properties can benefit model checking at very little cost. In addition, we find supporting evidence for the view that minimising the automaton representing the property does not always lead to a small product state space. A deterministic property automaton can result in a smaller product state space even though it might have a larger number states. Next we investigate modular analysis. Modular analysis is a state space reduction method for modular Petri nets. The method can be used to construct a reduced state space called the synchronisation graph. We devise an on-the-fly automata-theoretic method for model checking the behaviour of a modular Petri net from the synchronisation graph. The solution is based on reducing the model checking problem to an instance of verification with testers. We analyse the tester verification problem and present an efficient on-the-fly algorithm, the first complete solution to tester verification problem, based on generalised nested depth-first search. We have also studied propositional encodings for bounded model checking LTL. A new simple linear sized encoding is developed and experimentally evaluated. The implementation in the NuSMV2 model checker is competitive with previously presented encodings. We show how to generalise the LTL encoding to a more succint logic: LTL with past operators. The generalised encoding compares favourably with previous encodings for LTL with past operators. Links between bounded model checking and the automata-theoretic approach are also explored.reviewe

    SECURITY AND PRIVACY ASPECTS OF MOBILE PLATFORMS AND APPLICATIONS

    Get PDF
    Mobile smart devices (such as smartphones and tablets) emerged to dominant computing platforms for end-users. The capabilities of these convenient mini-computers seem nearly boundless: They feature compelling computing power and storage resources, new interfaces such as Near Field Communication (NFC) and Bluetooth Low Energy (BLE), connectivity to cloud services, as well as a vast number and variety of apps. By installing these apps, users can turn a mobile device into a music player, a gaming console, a navigation system, a business assistant, and more. In addition, the current trend of increased screen sizes make these devices reasonable replacements for traditional (mobile) computing platforms such as laptops. On the other hand, mobile platforms process and store the extensive amount of sensitive information about their users, ranging from the user’s location data to credentials for online banking and enterprise Virtual Private Networks (VPNs). This raises many security and privacy concerns and makes mobile platforms attractive targets for attackers. The rapid increase in number, variety and sophistication of attacks demonstrate that the protection mechanisms offered by mobile systems today are insufficient and improvements are necessary in order to make mobile devices capable of withstanding modern security and privacy threats. This dissertation focuses on various aspects of security and privacy of mobile platforms. In particular, it consists of three parts: (i) advanced attacks on mobile platforms and countermeasures; (ii) online authentication security for mobile systems, and (iii) secure mobile applications and services. Specifically, the first part of the dissertation concentrates on advanced attacks on mobile platforms, such as code re-use attacks that hijack execution flow of benign apps without injecting malicious code, and application-level privilege escalation attacks that allow malicious or compromised apps to gain more privileges than were initially granted. In this context, we develop new advanced code re-use attack techniques that can bypass deployed protection mechanisms (e.g., Address Space Layout Randomization (ASLR)) and cannot be detected by any of the existing security tools (e.g., return address checkers). Further, we investigate the problem of application-level privilege escalation attacks on mobile platforms like Android, study and classify them, develop proof of concept exploits and propose countermeasures against these attacks. Our countermeasures can mitigate all types of application-level privilege escalation attacks, in contrast to alternative solutions proposed in literature. In the second part of the dissertation we investigate online authentication schemes frequently utilized by mobile users, such as the most common web authentication based upon the user’s passwords and the recently widespread mobile 2-factor authentication (2FA) which extends the password-based approach with a secondary authenticator sent to a user’s mobile device or generated on it (e.g, a One-time Password (OTP) or Transaction Authentication Number (TAN)). In this context we demonstrate various weaknesses of mobile 2FA schemes deployed for login verification by global Internet service providers (such as Google, Dropbox, Twitter, and Facebook) and by a popular Google Authenticator app. These weaknesses allow an attacker to impersonate legitimate users even if their mobile device with the secondary authenticator is not compromised. We then go one step further and develop a general attack method for bypassing mobile 2FA schemes. Our method relies on a cross-platform infection (mobile-to-PC or PC-to-mobile) as a first step in order to compromise the Personal Computer (PC) and a mobile device of the same user. We develop proof-of-concept prototypes for a cross-platform infection and show how an attacker can bypass various instantiations of mobile 2FA schemes once both devices, PC and the mobile platform, are infected. We then deliver proof-of-concept attack implementations that bypass online banking solutions based on SMS-based TANs and visual cryptograms, as well as login verification schemes deployed by various Internet service providers. Finally, we propose a wallet-based secure solution for password-based authentication which requires no secondary authenticator, and yet provides better security guaranties than, e.g., mobile 2FA schemes. The third part of the dissertation concerns design and development of security sensitive mobile applications and services. In particular, our first application allows mobile users to replace usual keys (for doors, cars, garages, etc.) with their mobile devices. It uses electronic access tokens which are generated by the central key server and then downloaded into mobile devices for user authentication. Our solution protects access tokens in transit (e.g., while they are downloaded on the mobile device) and when they are stored and processed on the mobile platform. The unique feature of our solution is offline delegation: Users can delegate (a portion of) their access rights to other users without accessing the key server. Further, our solution is efficient even when used with constraint communication interfaces like NFC. The second application we developed is devoted to resource sharing among mobile users in ad-hoc mobile networks. It enables users to, e.g., exchange files and text messages, or share their tethering connection. Our solution addresses security threats specific to resource sharing and features the required security mechanisms (e.g., access control of resources, pseudonymity for users, and accountability for resource use). One of the key features of our solution is a privacy-preserving access control of resources based on FoF Finder (FoFF) service, which provides a user-friendly means to configure access control based upon information from social networks (e.g., friendship information) while preserving user privacy (e.g., not revealing their social network identifiers). The results presented in this dissertation were included in several peer-reviewed publications and extended technical reports. Some of these publications had significant impact on follow up research. For example, our publications on new forms of code re-use attacks motivated researchers to develop more advanced forms of ASLR and to re-consider the idea of using Control-Flow Integrity (CFI). Further, our work on application-level privilege escalation attacks was followed by many other publications addressing this problem. Moreover, our access control solution using mobile devices as access tokens demonstrated significant practical impact: in 2013 it was chosen as a highlight of CeBIT – the world’s largest international computer expo, and was then deployed by a large enterprise to be used by tens of thousands of company employees and millions of customers

    Understanding decision problem structuring by executives

    Get PDF
    This thesis reports on an investigation undertaken to determine the nature of the decision problem structuring behaviour of executives and the determinants of that behaviour. Decision problem structuring is concerned with those activities that translate an identified decision problem into a form suitable for the making of a choice. Activities commonly associated with the structuring of decision problems include the defining of objectives, the generation of alternatives, and the collection of relevant supporting information. Utilising a multiple case study approach, sixteen Chief Executive Officers or General Managers of medium to large (largest had 2800 employees) organisations, operating within a confined geographical region of New Zealand, were questioned on their decision problem structuring behaviour. Participants were asked to describe, in detail, the processes they followed in structuring decision problems, along with what they felt caused them to act as they did. In addition to the direct communication between the researcher and the participant, each executive completed a supplementary questionnaire and undertook a computer based cognitive style analysis test (the latter two for purposes of triangulation). Raw interview data was integrated with that from the other data sources (such as the questionnaire) through use of an adaptation of the data analysis aspects of the grounded theory approach. Within the context of the study, described decision structuring behaviour was found to be more closely aligned with that of wider descriptive theory than any of the existing prescribed problem structuring methods. Described behaviour regularly exhibited the use of prior decision-making experiences, decision situations where an identified solution initiated the decision, and the existence of Satisficing behaviour. The most evident structuring process comprised the defining of objectives and the generating of alternatives, occurring in an iterative and cyclical manner. These activities were supported, where required, by the gathering of information. It was observed that the contextual effects of time, limited finance, level of information and political interference played a significant part in not just the problem structuring activities, but they were also found to affect the decision-maker’s perception of the problem before any structuring occurred. As a result, the actual decision problem state and the perceived problem state often differed. Similarly, the executive decision-maker was also found to influence the perception of the problem and the subsequent activities that were carried out in structuring it. The executive’s experience, their understanding of decision problem structuring, and their overall confidence were found to be influential
    corecore