98,892 research outputs found

    Cellular automaton rules conserving the number of active sites

    Full text link
    This paper shows how to determine all the unidimensional two-state cellular automaton rules of a given number of inputs which conserve the number of active sites. These rules have to satisfy a necessary and sufficient condition. If the active sites are viewed as cells occupied by identical particles, these cellular automaton rules represent evolution operators of systems of identical interacting particles whose total number is conserved. Some of these rules, which allow motion in both directions, mimic ensembles of one-dimensional pseudo-random walkers. Numerical evidence indicates that the corresponding stochastic processes might be non-Gaussian.Comment: 14 pages, 5 figure

    Quenched noise and over-active sites in sandpile dynamics

    Full text link
    The dynamics of sandpile models are mapped to discrete interface equations. We study in detail the Bak-Tang-Wiesenfeld model, a stochastic model with random thresholds, and the Manna model. These are, respectively, discretizations of the quenched Edwards-Wilkinson equation with columnar, point-like and correlated noise, with the constraint that the interface velocity is either zero or exactly one. The constraint, embedded in the sandpile rules, gives rise to another noise component. This term has for the Bak-Tang-Wiesenfeld model long-range on-site correlations and reveals that with open boundary conditions there is no spatial translational invariance.Comment: 4 pages, 3 figure

    Effect of ELF e.m. fields on metalloprotein redox-active sites

    Full text link
    The peculiarity of the distribution and geometry of metallic ions in enzymes pushed us to set the hypothesis that metallic ions in active-site act like tiny antennas able to pick up very feeble e.m. signals. Enzymatic activity of Cu2+, Zn2+ Superoxide Dismutase (SOD1) and Fe2+ Xanthine Oxidase (XO) has been studied, following in vitro generation and removal of free radicals. We observed that Superoxide radicals generation by XO is increased by a weak field having the Larmor frequency fL of Fe2+ while the SOD1 kinetics is sensibly reduced by exposure to a weak field having the frequency fL of Cu2+ ion.Comment: 18 pages, 4 figure

    Influence of a confined methanol solvent on the reactivity of active sites in UiO-66

    Get PDF
    UiO-66, composed of Zr-oxide bricks and terephthalate linkers, is currently one of the most studied metal-organic frameworks due to its exceptional stability. Defects can be introduced in the structure, creating undercoordinated Zr atoms which are Lewis acid sites. Here, additional BrOnsted sites can be generated by coordinated protic species from the solvent. In this Article, a multilevel modeling approach was applied to unravel the effect of a confined methanol solvent on the active sites in UiO-66. First, active sites were explored with static periodic density functional theory calculations to investigate adsorption of water and methanol. Solvent was then introduced in the pores with grand canonical Monte Carlo simulations, followed by a series of molecular dynamics simulations at operating conditions. A hydrogen-bonded network of methanol molecules is formed, allowing the protons to shuttle between solvent methanol, adsorbed water, and the inorganic brick. Upon deprotonation of an active site, the methanol solvent aids the transfer of protons and stabilizes charged configurations via hydrogen bonding, which could be crucial in stabilizing reactive intermediates. The multilevel modeling approach adopted here sheds light on the important role of a confined solvent on the active sites in the UiO-66 material, introducing dynamic acidity in the system at finite temperatures by which protons may be easily shuttled from various positions at the active sites

    Kinetics of Anchoring of Polymer Chains on Substrates with Chemically Active Sites

    Full text link
    We consider dynamics of an isolated polymer chain with a chemically active end-bead on a 2D solid substrate containing immobile, randomly placed chemically active sites (traps). For a particular situation when the end-bead can be irreversibly trapped by any of these sites, which results in a complete anchoring of the whole chain, we calculate the time evolution of the probability Pch(t)P_{ch}(t) that the initially non-anchored chain remains mobile until time tt. We find that for relatively short chains Pch(t)P_{ch}(t) follows at intermediate times a standard-form 2D Smoluchowski-type decay law lnPch(t)∼−t/ln(t)ln P_{ch}(t) \sim - t/ln(t), which crosses over at very large times to the fluctuation-induced dependence lnPch(t)∼−t1/2ln P_{ch}(t) \sim - t^{1/2}, associated with fluctuations in the spatial distribution of traps. We show next that for long chains the kinetic behavior is quite different; here the intermediate-time decay is of the form lnPch(t)∼−t1/2ln P_{ch}(t) \sim - t^{1/2}, which is the Smoluchowski-type law associated with subdiffusive motion of the end-bead, while the long-time fluctuation-induced decay is described by the dependence lnPch(t)∼−t1/4ln P_{ch}(t) \sim - t^{1/4}, stemming out of the interplay between fluctuations in traps distribution and internal relaxations of the chain.Comment: Latex file, 19 pages, one ps figure, to appear in PR
    • …
    corecore