397 research outputs found

    The ContikiMAC Radio Duty Cycling Protocol

    Get PDF
    Low-power wireless devices must keep their radio transceivers off as much as possible to reach a low power consumption, but must wake up often enough to be able to receive communication from their neighbors. This report describes the ContikiMAC radio duty cycling mechanism, the default radio duty cycling mechanism in Contiki 2.5, which uses a power efficient wake-up mechanism with a set of timing constraints to allow device to keep their transceivers off. With ContikiMAC, nodes can participate in network communication yet keep their radios turned off for roughly 99% of the time. This report describes the ContikiMAC mechanism, measures the energy consumption of individual ContikiMAC operations, and evaluates the efficiency of the fast sleep and phase-lock optimizations

    Comparison of CSMA based MAC protocols of wireless sensor networks

    Full text link
    Energy conservation has been an important area of interest in Wireless Sensor networks (WSNs). Medium Access Control (MAC) protocols play an important role in energy conservation. In this paper, we describe CSMA based MAC protocols for WSN and analyze the simulation results of these protocols. We implemented S-MAC, T-MAC, B-MAC, B-MAC+, X-MAC, DMAC and Wise-MAC in TOSSIM, a simulator which unlike other simulators simulates the same code running on real hardware. Previous surveys mainly focused on the classification of MAC protocols according to the techniques being used or problem dealt with and presented a theoretical evaluation of protocols. This paper presents the comparative study of CSMA based protocols for WSNs, showing which MAC protocol is suitable in a particular environment and supports the arguments with the simulation results. The comparative study can be used to find the best suited MAC protocol for wireless sensor networks in different environments.Comment: International Journal of AdHoc Network Systems, Volume 2, Number 2, April 201

    Powertrace: Network-level Power Profiling for Low-power Wireless Networks

    Get PDF
    Low-power wireless networks are quickly becoming a critical part of our everyday infrastructure. Power consumption is a critical concern, but power measurement and estimation is a challenge. We present Powertrace, which to the best of our knowledge is the first system for network-level power profiling of low-power wireless systems. Powertrace uses power state tracking to estimate system power consumption and a structure called energy capsules to attribute energy consumption to activities such as packet transmissions and receptions. With Powertrace, the power consumption of a system can be broken down into individual activities which allows us to answer questions such as “How much energy is spent forwarding packets for node X?”, “How much energy is spent on control traffic and how much on critical data?”, and “How much energy does application X account for?”. Experiments show that Powertrace is accurate to 94% of the energy consumption of a device. To demonstrate the usefulness of Powertrace, we use it to experimentally analyze the power behavior of the proposed IETF standard IPv6 RPL routing protocol and a sensor network data collection protocol. Through using Powertrace, we find the highest power consumers and are able to reduce the power consumption of data collection with 24%. It is our hope that Powertrace will help the community to make empirical energy evaluation a widely used tool in the low-power wireless research community toolbox

    CENet: A Cabinet Environmental Sensing Network

    Get PDF
    For data center cooling and intelligent substation systems, real time cabinet environmental monitoring is a strong requirement. Monitoring data, such as temperature, humidity, and noise, is important for operators to manage the facilities in cabinets. We here propose a sensing network, called CENet, which is energy efficient and reliable for cabinet environmental monitoring. CENet achieves above 93% reliable data yield and sends fewer beacons compared to periodic beaconing. It does so through a data-aided routing protocol. In addition, based on B-MAC, we propose a scheduling scheme to increase the lifetime of the network by reducing unnecessary message snooping and channel listening, thus it is more energy efficient than B-MAC. The performance of CENet is evaluated by simulations and experiments

    TinyNode: a comprehensive platform for wireless sensor network applications

    Get PDF
    • …
    corecore