135 research outputs found

    Corporate influence and the academic computer science discipline. [4: CMU]

    Get PDF
    Prosopographical work on the four major centers for computer research in the United States has now been conducted, resulting in big questions about the independence of, so called, computer science

    Metascheduling of HPC Jobs in Day-Ahead Electricity Markets

    Full text link
    High performance grid computing is a key enabler of large scale collaborative computational science. With the promise of exascale computing, high performance grid systems are expected to incur electricity bills that grow super-linearly over time. In order to achieve cost effectiveness in these systems, it is essential for the scheduling algorithms to exploit electricity price variations, both in space and time, that are prevalent in the dynamic electricity price markets. In this paper, we present a metascheduling algorithm to optimize the placement of jobs in a compute grid which consumes electricity from the day-ahead wholesale market. We formulate the scheduling problem as a Minimum Cost Maximum Flow problem and leverage queue waiting time and electricity price predictions to accurately estimate the cost of job execution at a system. Using trace based simulation with real and synthetic workload traces, and real electricity price data sets, we demonstrate our approach on two currently operational grids, XSEDE and NorduGrid. Our experimental setup collectively constitute more than 433K processors spread across 58 compute systems in 17 geographically distributed locations. Experiments show that our approach simultaneously optimizes the total electricity cost and the average response time of the grid, without being unfair to users of the local batch systems.Comment: Appears in IEEE Transactions on Parallel and Distributed System

    Formal Verification of Synchronisation, Gossip and Environmental Effects for Wireless Sensor Networks

    Get PDF
    The Internet of Things (IoT) promises a revolution in the monitoring and control of a wide range of applications, from urban water supply networks and precision agriculture food production, to vehicle connectivity and healthcare monitoring. For applications in such critical areas, control software and protocols for IoT systems must be verified to be both robust and reliable. Two of the largest obstacles to robustness and reliability in IoT systems are effects on the hardware caused by environmental conditions, and the choice of parameters used by the protocol. In this paper we use probabilistic model checking to verify that a synchronisation and dissemination protocol for Wireless Sensor Networks (WSNs) is correct with respect to its requirements, and is not adversely affected by the environment. We show how the protocol can be converted into a logical model and then analysed using the probabilistic model-checker, PRISM. Using this approach we prove under which circumstances the protocol is guaranteed to synchronise all nodes and disseminate new information to all nodes. We also examine the bounds on synchronisation as the environment changes the performance of the hardware clock, and investigate the scalability constraints of this approach

    Formal verification of synchronisation, gossip and environmental effects for wireless sensor networks

    Get PDF
    The Internet of Things (IoT) promises a revolution in the monitoring and control of a wide range of applications, from urban water supply networks and precision agriculture food production, to vehicle connectivity and healthcare monitoring. For applications in such critical areas, control software and protocols for IoT systems must be verified to be both robust and reliable. Two of the largest obstacles to robustness and reliability in IoT systems are effects on the hardware caused by environmental conditions, and the choice of parameters used by the protocol. In this paper we use probabilistic model checking to verify that a synchronisation and dissemination protocol for Wireless Sensor Networks (WSNs) is correct with respect to its requirements, and is not adversely affected by the environment. We show how the protocol can be converted into a logical model and then analysed using the probabilistic model-checker, PRISM. Using this approach we prove under which circumstances the protocol is guaranteed to synchronise all nodes and disseminate new information to all nodes. We also examine the bounds on synchronisation as the environment changes the performance of the hardware clock, and investigate the scalability constraints of this approach. © 2019 Universitatsbibliothek TU Berlin

    Security supportive energy-aware scheduling and energy policies for cloud environments

    Get PDF
    Cloud computing (CC) systems are the most popular computational environments for providing elastic and scalable services on a massive scale. The nature of such systems often results in energy-related problems that have to be solved for sustainability, cost reduction, and environment protection. In this paper we defined and developed a set of performance and energy-aware strategies for resource allocation, task scheduling, and for the hibernation of virtual machines. The idea behind this model is to combine energy and performance-aware scheduling policies in order to hibernate those virtual machines that operate in idle state. The efficiency achieved by applying the proposed models has been tested using a realistic large-scale CC system simulator. Obtained results show that a balance between low energy consumption and short makespan can be achieved. Several security constraints may be considered in this model. Each security constraint is characterized by: (a) Security Demands (SD) of tasks; and (b) Trust Levels (TL) provided by virtual machines. SD and TL are computed during the scheduling process in order to provide proper security services. Experimental results show that the proposed solution reduces up to 45% of the energy consumption of the CC system. Such significant improvement was achieved by the combination of an energy-aware scheduler with energy-efficiency policies focused on the hibernation of VMs.COST Action IC140
    corecore