84 research outputs found

    EXPÉRIMENTATIONS VIRTUELLES: VIE ARTIFICIELLE POUR LA GÉNÉRATION DE FORMES ET DE COMPORTEMENT

    Get PDF
    National audienceCet article présente une sélection de travaux réalisés par l'équipe VORTEX de l'IRIT depuis 1993 dans les domaines de la génération automatique de formes et de comportements. Nous montrons ici la spécificité de ces travaux utilisant des techniques originales issues de la vie artificielle afin de proposer un nouveau type d'interaction entre l'utilisateur et l'environnement de simulation

    A Consensus on the Definition and Knowledge Base for Computer Graphics

    Get PDF
    Despite several decades of historical innovation, measurable impacts, and multiple specializations the existing knowledge base for Computer Graphics (CG) lacks consensus, and numerous definitions for it have been published based on distinct contexts. Disagreement among post-secondary academics has divided CG programs into three contextual areas that emphasize different topics. This division has resulted in the decontextualization of CG education, and CG programs now face several challenges in meeting the needs of industry. Employing the Delphi Method, this investigation explored the perceptions among post-secondary educators and industry professionals about the definition of CG and how it is identified in terms of characteristics and context. The outcomes of this investigation identified CG in the technological paradigm, and provided a road map towards a true definition and distinct knowledge base necessary for establishing CG as a formal computing discipline

    ASTRAL PROJECTION: THEORIES OF METAPHOR, PHILOSOPHIES OF SCIENCE, AND THE ART O F SCIENTIFIC VISUALIZATION

    Get PDF
    This thesis provides an intellectual context for my work in computational scientific visualization for large-scale public outreach in venues such as digitaldome planetarium shows and high-definition public television documentaries. In my associated practicum, a DVD that provides video excerpts, 1 focus especially on work I have created with my Advanced Visualization Laboratory team at the National Center for Supercomputing Applications (Champaign, Illinois) from 2002-2007. 1 make three main contributions to knowledge within the field of computational scientific visualization. Firstly, I share the unique process 1 have pioneered for collaboratively producing and exhibiting this data-driven art when aimed at popular science education. The message of the art complements its means of production: Renaissance Team collaborations enact a cooperative paradigm of evolutionary sympathetic adaptation and co-creation. Secondly, 1 open up a positive, new space within computational scientific visualization's practice for artistic expression—especially in providing a theory of digi-epistemology that accounts for how this is possible given the limitations imposed by the demands of mapping numerical data and the computational models derived from them onto visual forms. I am concerned not only with liberating artists to enrich audience's aesthetic experiences of scientific visualization, to contribute their own vision, but also with conceiving of audiences as co-creators of the aesthetic significance of the work, to re-envision and re-circulate what they encounter there. Even more commonly than in the age of traditional media, on-line social computing and digital tools have empowered the public to capture and repurpose visual metaphors, circulating them within new contexts and telling new stories with them. Thirdly, I demonstrate the creative power of visaphors (see footnote, p. 1) to provide novel embodied experiences through my practicum as well as my thesis discussion. Specifically, I describe how the visaphors my Renaissance Teams and I create enrich the Environmentalist Story of Science, essentially promoting a counter-narrative to the Enlightenment Story of Science through articulating how humanity participates in an evolving universal consciousness through our embodied interaction and cooperative interdependence within nested, self-producing (autopoetic) systems, from the micro- to the macroscopic. This contemporary account of the natural world, its inter-related systems, and their dynamics may be understood as expressing a creative and generative energy—a kind of consciousness-that transcends the human yet also encompasses it

    Towards a Phenomenological Theory of the Visceral in the Interactive Arts

    Get PDF
    This is a digitised version of a thesis that was deposited in the University Library. If you are the author and you have a query about this item please contact PEARL Admin ([email protected])Metadata merged with duplicate record (http://hdl.handle.net/10026.1/2319) on 20.12.2016 by CS (TIS).This thesis explores the ways in which certain forms of interactive art may and do elicit visceral responses. The term "visceral" refers to the cardiovascular, respiratory, uro-genital and especially excretory systems that affect mind and body on a continuum of awareness. The "visceral" is mentioned in the field of interactive arts, but it remains systematically unexplored and undefined. Further, interactive artworks predominantly focus on the exteroceptive (stimuli from outside) rather than the interoceptive (stimuli arising within the body, especially the viscera) senses. The existentialist phenomenology of Maurice Merleau-Ponty forms the basis for explorations of the visceral dimension of mind/body. New approaches to understanding interactive art, design and the mind/body include: attunements to the world; intertwinings of mind/body, technology and world; and of being in the world. Each artwork within utilizes a variation of the phenomenological methods derived from Merl eau-Ponty's; these are discussed primarily in Chapters One and Three. Because subjective, first-person, experiences are a major aspect of a phenomenological approach, the academic writing is interspersed with subjective experiences of the author and others. This thesis balances facets of knowledge from diverse disciplines that account for visceral phenomena and subjective experience. Along with the textual exegesis, one major work of design and two major works of art were created. These are documented on the compact disc (CDROM) bound within. As an essential component of each artwork, new technological systems were created or co-created by the author. User surveys comprise Appendices Two, Three and Four, and are also online at: www. sfu. ca/-dgromala/thesis. To access the URL: login as , and use the password . Numerous talks, exhibitions and publications that directly relate to the thesis work is in Appendix One. This work begins with an introduction to Merleau-Ponty's ideas of flesh and reversibility. Chapter Two is the review of the literature, while Chapter Three is an explication of the hypothesis, an overview of the field, and a framing of the problem. Discussions of each artwork are in Chapter Four (The Meditation Chamber), Chapter Five (BioMorphic Typography) and Chapter Six (The MeatBook). Chapter Seven forms the conclusion. References to the documentation on the CD are found throughout the thesis, and italicized paragraphs provide an artistic context for each chapter

    The Machine as Art/ The Machine as Artist

    Get PDF
    The articles collected in this volume from the two companion Arts Special Issues, “The Machine as Art (in the 20th Century)” and “The Machine as Artist (in the 21st Century)”, represent a unique scholarly resource: analyses by artists, scientists, and engineers, as well as art historians, covering not only the current (and astounding) rapprochement between art and technology but also the vital post-World War II period that has led up to it; this collection is also distinguished by several of the contributors being prominent individuals within their own fields, or as artists who have actually participated in the still unfolding events with which it is concerne

    Cinematic Arts 2017 APR Self-Study & Documents

    Get PDF
    UNM Cinematic Arts APR self-study report and review team report for Fall 2017, fulfilling requirements of the Higher Learning Commission

    The Machine as Art/ The Machine as Artist

    Get PDF

    A Field Guide to Genetic Programming

    Get PDF
    xiv, 233 p. : il. ; 23 cm.Libro ElectrónicoA Field Guide to Genetic Programming (ISBN 978-1-4092-0073-4) is an introduction to genetic programming (GP). GP is a systematic, domain-independent method for getting computers to solve problems automatically starting from a high-level statement of what needs to be done. Using ideas from natural evolution, GP starts from an ooze of random computer programs, and progressively refines them through processes of mutation and sexual recombination, until solutions emerge. All this without the user having to know or specify the form or structure of solutions in advance. GP has generated a plethora of human-competitive results and applications, including novel scientific discoveries and patentable inventions. The authorsIntroduction -- Representation, initialisation and operators in Tree-based GP -- Getting ready to run genetic programming -- Example genetic programming run -- Alternative initialisations and operators in Tree-based GP -- Modular, grammatical and developmental Tree-based GP -- Linear and graph genetic programming -- Probalistic genetic programming -- Multi-objective genetic programming -- Fast and distributed genetic programming -- GP theory and its applications -- Applications -- Troubleshooting GP -- Conclusions.Contents xi 1 Introduction 1.1 Genetic Programming in a Nutshell 1.2 Getting Started 1.3 Prerequisites 1.4 Overview of this Field Guide I Basics 2 Representation, Initialisation and GP 2.1 Representation 2.2 Initialising the Population 2.3 Selection 2.4 Recombination and Mutation Operators in Tree-based 3 Getting Ready to Run Genetic Programming 19 3.1 Step 1: Terminal Set 19 3.2 Step 2: Function Set 20 3.2.1 Closure 21 3.2.2 Sufficiency 23 3.2.3 Evolving Structures other than Programs 23 3.3 Step 3: Fitness Function 24 3.4 Step 4: GP Parameters 26 3.5 Step 5: Termination and solution designation 27 4 Example Genetic Programming Run 4.1 Preparatory Steps 29 4.2 Step-by-Step Sample Run 31 4.2.1 Initialisation 31 4.2.2 Fitness Evaluation Selection, Crossover and Mutation Termination and Solution Designation Advanced Genetic Programming 5 Alternative Initialisations and Operators in 5.1 Constructing the Initial Population 5.1.1 Uniform Initialisation 5.1.2 Initialisation may Affect Bloat 5.1.3 Seeding 5.2 GP Mutation 5.2.1 Is Mutation Necessary? 5.2.2 Mutation Cookbook 5.3 GP Crossover 5.4 Other Techniques 32 5.5 Tree-based GP 39 6 Modular, Grammatical and Developmental Tree-based GP 47 6.1 Evolving Modular and Hierarchical Structures 47 6.1.1 Automatically Defined Functions 48 6.1.2 Program Architecture and Architecture-Altering 50 6.2 Constraining Structures 51 6.2.1 Enforcing Particular Structures 52 6.2.2 Strongly Typed GP 52 6.2.3 Grammar-based Constraints 53 6.2.4 Constraints and Bias 55 6.3 Developmental Genetic Programming 57 6.4 Strongly Typed Autoconstructive GP with PushGP 59 7 Linear and Graph Genetic Programming 61 7.1 Linear Genetic Programming 61 7.1.1 Motivations 61 7.1.2 Linear GP Representations 62 7.1.3 Linear GP Operators 64 7.2 Graph-Based Genetic Programming 65 7.2.1 Parallel Distributed GP (PDGP) 65 7.2.2 PADO 67 7.2.3 Cartesian GP 67 7.2.4 Evolving Parallel Programs using Indirect Encodings 68 8 Probabilistic Genetic Programming 8.1 Estimation of Distribution Algorithms 69 8.2 Pure EDA GP 71 8.3 Mixing Grammars and Probabilities 74 9 Multi-objective Genetic Programming 75 9.1 Combining Multiple Objectives into a Scalar Fitness Function 75 9.2 Keeping the Objectives Separate 76 9.2.1 Multi-objective Bloat and Complexity Control 77 9.2.2 Other Objectives 78 9.2.3 Non-Pareto Criteria 80 9.3 Multiple Objectives via Dynamic and Staged Fitness Functions 80 9.4 Multi-objective Optimisation via Operator Bias 81 10 Fast and Distributed Genetic Programming 83 10.1 Reducing Fitness Evaluations/Increasing their Effectiveness 83 10.2 Reducing Cost of Fitness with Caches 86 10.3 Parallel and Distributed GP are Not Equivalent 88 10.4 Running GP on Parallel Hardware 89 10.4.1 Master–slave GP 89 10.4.2 GP Running on GPUs 90 10.4.3 GP on FPGAs 92 10.4.4 Sub-machine-code GP 93 10.5 Geographically Distributed GP 93 11 GP Theory and its Applications 97 11.1 Mathematical Models 98 11.2 Search Spaces 99 11.3 Bloat 101 11.3.1 Bloat in Theory 101 11.3.2 Bloat Control in Practice 104 III Practical Genetic Programming 12 Applications 12.1 Where GP has Done Well 12.2 Curve Fitting, Data Modelling and Symbolic Regression 12.3 Human Competitive Results – the Humies 12.4 Image and Signal Processing 12.5 Financial Trading, Time Series, and Economic Modelling 12.6 Industrial Process Control 12.7 Medicine, Biology and Bioinformatics 12.8 GP to Create Searchers and Solvers – Hyper-heuristics xiii 12.9 Entertainment and Computer Games 127 12.10The Arts 127 12.11Compression 128 13 Troubleshooting GP 13.1 Is there a Bug in the Code? 13.2 Can you Trust your Results? 13.3 There are No Silver Bullets 13.4 Small Changes can have Big Effects 13.5 Big Changes can have No Effect 13.6 Study your Populations 13.7 Encourage Diversity 13.8 Embrace Approximation 13.9 Control Bloat 13.10 Checkpoint Results 13.11 Report Well 13.12 Convince your Customers 14 Conclusions Tricks of the Trade A Resources A.1 Key Books A.2 Key Journals A.3 Key International Meetings A.4 GP Implementations A.5 On-Line Resources 145 B TinyGP 151 B.1 Overview of TinyGP 151 B.2 Input Data Files for TinyGP 153 B.3 Source Code 154 B.4 Compiling and Running TinyGP 162 Bibliography 167 Inde

    Steps to an Ecology of Networked Knowledge and Innovation: Enabling new forms of collaboration among sciences, engineering, arts, and design

    Get PDF
    SEAD network White Papers ReportThe final White Papers (posted at http://seadnetwork.wordpress.com/white-paper- abstracts/final-white-papers/) represent a spectrum of interests in advocating for transdisciplinarity among arts, sciences, and technologies. All authors submitted plans of action and identified stakeholders they perceived as instrumental in carrying out such plans. The individual efforts led to an international scope. One of the important characteristics of this collection is that the papers do not represent a collective aim toward an explicit initiative. Rather, they offer a broad array of views on barriers faced and prospective solutions. In summary, the collected White Papers and associated Meta- analyses began as an effort to take the pulse of the SEAD community as broadly as possible. The ideas they generated provide a fruitful basis for gauging trends and challenges in facilitating the growth of the network and implementing future SEAD initiatives.National Science Foundation Grant No.1142510. Additional funding was provided by the ATEC program at the University of Texas at Dallas and the Institute for Applied Creativity at Texas A&M University
    • …
    corecore