2,982 research outputs found

    Security of distributed-phase-reference quantum key distribution

    Full text link
    Distributed-phase-reference quantum key distribution stands out for its easy implementation with present day technology. Since many years, a full security proof of these schemes in a realistic setting has been elusive. For the first time, we solve this long standing problem and present a generic method to prove the security of such protocols against general attacks. To illustrate our result we provide lower bounds on the key generation rate of a variant of the coherent-one-way quantum key distribution protocol. In contrast to standard predictions, it appears to scale quadratically with the system transmittance.Comment: 4 pages + appendix, 4 figure

    New Areas of Contributions and New Addition of Security

    Get PDF
    Open Journal of Big Data (OJBD) (www.ronpub.com/ojbd) is an open access journal, which addresses the aspects of Big Data, including new methodologies, processes, case studies, poofs-of-concept, scientific demonstrations, industrial applications and adoption. This editorial presents two articles published in the first issue of the second volume of OJBD. The first article is about the investigation of social media for the public engagement. The second article looks into large-scale semantic web indices for six RDF collation orders. OJBD has an increasingly improved reputation thanks to the support of research communities. We will set up the Second International Conference on Internet of Things, Big Data and Security (IoTBDS 2017), in Porto, Portugal, between 24 and 26 April 2017. OJBD is published by RonPub (www.ronpub.com), which is an academic publisher of online, open access, peer-reviewed journals

    Still Wrong Use of Pairings in Cryptography

    Get PDF
    Several pairing-based cryptographic protocols are recently proposed with a wide variety of new novel applications including the ones in emerging technologies like cloud computing, internet of things (IoT), e-health systems and wearable technologies. There have been however a wide range of incorrect use of these primitives. The paper of Galbraith, Paterson, and Smart (2006) pointed out most of the issues related to the incorrect use of pairing-based cryptography. However, we noticed that some recently proposed applications still do not use these primitives correctly. This leads to unrealizable, insecure or too inefficient designs of pairing-based protocols. We observed that one reason is not being aware of the recent advancements on solving the discrete logarithm problems in some groups. The main purpose of this article is to give an understandable, informative, and the most up-to-date criteria for the correct use of pairing-based cryptography. We thereby deliberately avoid most of the technical details and rather give special emphasis on the importance of the correct use of bilinear maps by realizing secure cryptographic protocols. We list a collection of some recent papers having wrong security assumptions or realizability/efficiency issues. Finally, we give a compact and an up-to-date recipe of the correct use of pairings.Comment: 25 page

    A HYBRIDIZED ENCRYPTION SCHEME BASED ON ELLIPTIC CURVE CRYPTOGRAPHY FOR SECURING DATA IN SMART HEALTHCARE

    Get PDF
    Recent developments in smart healthcare have brought us a great deal of convenience. Connecting common objects to the Internet is made possible by the Internet of Things (IoT). These connected gadgets have sensors and actuators for data collection and transfer. However, if users' private health information is compromised or exposed, it will seriously harm their privacy and may endanger their lives. In order to encrypt data and establish perfectly alright access control for such sensitive information, attribute-based encryption (ABE) has typically been used. Traditional ABE, however, has a high processing overhead. As a result, an effective security system algorithm based on ABE and Fully Homomorphic Encryption (FHE) is developed to protect health-related data. ABE is a workable option for one-to-many communication and perfectly alright access management of encrypting data in a cloud environment. Without needing to decode the encrypted data, cloud servers can use the FHE algorithm to take valid actions on it. Because of its potential to provide excellent security with a tiny key size, elliptic curve cryptography (ECC) algorithm is also used. As a result, when compared to related existing methods in the literature, the suggested hybridized algorithm (ABE-FHE-ECC) has reduced computation and storage overheads. A comprehensive safety evidence clearly shows that the suggested method is protected by the Decisional Bilinear Diffie-Hellman postulate. The experimental results demonstrate that this system is more effective for devices with limited resources than the conventional ABE when the system’s performance is assessed by utilizing standard model

    A privacy-preserving fuzzy interest matching protocol for friends finding in social networks

    Get PDF
    Nowadays, it is very popular to make friends, share photographs, and exchange news throughout social networks. Social networks widely expand the area of people’s social connections and make communication much smoother than ever before. In a social network, there are many social groups established based on common interests among persons, such as learning group, family group, and reading group. People often describe their profiles when registering as a user in a social network. Then social networks can organize these users into groups of friends according to their profiles. However, an important issue must be considered, namely many users’ sensitive profiles could have been leaked out during this process. Therefore, it is reasonable to design a privacy-preserving friends-finding protocol in social network. Toward this goal, we design a fuzzy interest matching protocol based on private set intersection. Concretely, two candidate users can first organize their profiles into sets, then use Bloom filters to generate new data structures, and finally find the intersection sets to decide whether being friends or not in the social network. The protocol is shown to be secure in the malicious model and can be useful for practical purposes.Peer ReviewedPostprint (author's final draft

    Blockchain-enabled Data Governance for Privacy-Preserved Sharing of Confidential Data

    Full text link
    In a traditional cloud storage system, users benefit from the convenience it provides but also take the risk of certain security and privacy issues. To ensure confidentiality while maintaining data sharing capabilities, the Ciphertext-Policy Attribute-based Encryption (CP-ABE) scheme can be used to achieve fine-grained access control in cloud services. However, existing approaches are impaired by three critical concerns: illegal authorization, key disclosure, and privacy leakage. To address these, we propose a blockchain-based data governance system that employs blockchain technology and attribute-based encryption to prevent privacy leakage and credential misuse. First, our ABE encryption system can handle multi-authority use cases while protecting identity privacy and hiding access policy, which also protects data sharing against corrupt authorities. Second, applying the Advanced Encryption Standard (AES) for data encryption makes the whole system efficient and responsive to real-world conditions. Furthermore, the encrypted data is stored in a decentralized storage system such as IPFS, which does not rely on any centralized service provider and is, therefore, resilient against single-point failures. Third, illegal authorization activity can be readily identified through the logged on-chain data. Besides the system design, we also provide security proofs to demonstrate the robustness of the proposed system.Comment: 23 pages, 19 algorithms, 1 figur

    Practical yet Provably Secure: Complex Database Query Execution over Encrypted Data

    Get PDF
    Encrypted databases provide security for outsourced data. In this work novel encryption schemes supporting different database query types are presented enabling complex database queries over encrypted data. For specific constructions enabling exact keyword queries, range queries, database joins and substring queries over encrypted data we prove security in a formal framework, present a theoretical runtime analysis and provide an assessment of practical performance characteristics
    • …
    corecore