17 research outputs found

    Incremental Construction of an Associative Network from a Corpus

    Get PDF
    This paper presents a computational model of the incremental construction of an associative network from a corpus. It is aimed at modeling the development of the human semantic memory. It is not based on a vector representation, which does not well reproduce the asymmetrical property of word similarity, but rather on a network representation. Compared to Latent Semantic Analysis, it is incremental which is cognitively more plausible. It is also an attempt to take into account higher-order co-occurrences in the construction of word similarities. This model was compared to children association norms. A good correlation as well as a similar gradient of similarity were found

    Extracting Spooky-activation-at-a-distance from Considerations of Entanglement

    Get PDF
    Following an early claim by Nelson & McEvoy \cite{Nelson:McEvoy:2007} suggesting that word associations can display `spooky action at a distance behaviour', a serious investigation of the potentially quantum nature of such associations is currently underway. This paper presents a simple quantum model of a word association system. It is shown that a quantum model of word entanglement can recover aspects of both the Spreading Activation equation and the Spooky-activation-at-a-distance equation, both of which are used to model the activation level of words in human memory.Comment: 13 pages, 2 figures; To appear in Proceedings of the Third Quantum Interaction Symposium, Lecture Notes in Artificial Intelligence, vol 5494, Springer, 200

    Quantum Information Dynamics and Open World Science

    Get PDF
    One of the fundamental insights of quantum mechanics is that complete knowledge of the state of a quantum system is not possible. Such incomplete knowledge of a physical system is the norm rather than the exception. This is becoming increasingly apparent as we apply scientific methods to increasingly complex situations. Empirically intensive disciplines in the biological, human, and geosciences all operate in situations where valid conclusions must be drawn, but deductive completeness is impossible. This paper argues that such situations are emerging examples of {it Open World} Science. In this paradigm, scientific models are known to be acting with incomplete information. Open World models acknowledge their incompleteness, and respond positively when new information becomes available. Many methods for creating Open World models have been explored analytically in quantitative disciplines such as statistics, and the increasingly mature area of machine learning. This paper examines the role of quantum theory and quantum logic in the underpinnings of Open World models, examining the importance of structural features of such as non-commutativity, degrees of similarity, induction, and the impact of observation. Quantum mechanics is not a problem around the edges of classical theory, but is rather a secure bridgehead in the world of science to come

    Handling Resource Oscillations Through Selective Misinformation

    Get PDF
    When resource consumers select among competing providers based on delayed information, inefficient oscillations in resource utilization can emerge. This paper describes an approach, based on selective stochastic resource request rejection, for dealing with this emergent dysfunction.This work was supported by the NSF Computational and Social Systems program as well as the DARPA Control of Agent-Based Systems program

    Creating the Perception-based LADDER sketch recognition language

    Get PDF
    Sketch recognition is automated understanding of hand-drawn diagrams. Current sketch recognition systems exist for only a handful of domains, which contain on the order of 10--20 shapes. Our goal was to create a generalized method for recognition that could work for many domains, increasing the number of shapes that could be recognized in real-time, while maintaining a high accuracy. In an effort to effectively recognize shapes while allowing drawing freedom (both drawing-style freedom and perceptually-valid variations), we created the shape description language modeled after the way people naturally describe shapes to 1) create an intuitive and easy to understand description, providing transparency to the underlying recognition process, and 2) to improve recognition by providing recognition flexibility (drawing freedom) that is aligned with how humans perceive shapes. This paper describes the results of a study performed to see how users naturally describe shapes. A sample of 35 subjects described or drew approximately 16 shapes each. Results show a common vocabulary related to Gestalt grouping and singularities. Results also show that perception, similarity, and context play an important role in how people describe shapes. This study resulted in a language (LADDER) that allows shape recognizers for any domain to be automatically generated from a single hand-drawn example of each shape. Sketch systems for over 30 different domains have been automatically generated based on this language. The largest domain contained 923 distinct shapes, and achieved a recognition accuracy of 83% (and a top-3 accuracy of 87%) on a corpus of over 11,000 sketches, which recognizes almost two orders of magnitude more shapes than any other existing system.National Science Foundation (U.S.) (grant 0757557)National Science Foundation (U.S.) (grant 0943499

    Recognizing Interspersed sketches quickly

    Get PDF
    Sketch recognition is the automated recognition of hand-drawn diagrams. When allowing users to sketch as they would naturally, users may draw shapes in an interspersed manner, starting a second shape before finishing the first. In order to provide freedom to draw interspersed shapes, an exponential combination of subshapes must be considered. Because of this, most sketch recognition systems either choose not to handle interspersing, or handle only a limited pre-defined amount of interspersing. Our goal is to eliminate such interspersing drawing constraints from the sketcher. This paper presents a high-level recognition algorithm that, while still exponential, allows for complete interspersing freedom, running in near real-time through early effective sub-tree pruning. At the core of the algorithm is an indexing technique that takes advantage of geometric sketch recognition techniques to index each shape for efficient access and fast pruning during recognition. We have stresstested our algorithm to show that the system recognizes shapes in less than a second even with over a hundred candidate subshapes on screen.National Science Foundation (U.S.) (IIS Creative IT Grant #0757557

    Sketch Recognition on Mobile Devices

    Get PDF
    Sketch recognition allows computers to understand and model hand drawn sketches and diagrams. Traditionally sketch recognition systems required a pen based PC interface, but powerful mobile devices such as tablets and smartphones can provide a new platform for sketch recognition systems. We describe a new sketch recognition library, Strontium (SrL) that combines several existing sketch recognition libraries modified to run on both personal computers and on the Android platform. We analyzed the recognition speed and accuracy implications of performing low-level shape recognition on smartphones with touch screens. We found that there is a large gap in recognition speed on mobile devices between recognizing simple shapes and more complex ones, suggesting that mobile sketch interface designers limit the complexity of their sketch domains. We also found that a low sampling rate on mobile devices can affect recognition accuracy of complex and curved shapes. Despite this, we found no evidence to suggest that using a finger as an input implement leads to a decrease in simple shape recognition accuracy. These results show that the same geometric shape recognizers developed for pen applications can be used in mobile applications, provided that developers keep shape domains simple and ensure that input sampling rate is kept as high as possible

    Rethinking Pen Input Interaction: Enabling Freehand Sketching Through Improved Primitive Recognition

    Get PDF
    Online sketch recognition uses machine learning and artificial intelligence techniques to interpret markings made by users via an electronic stylus or pen. The goal of sketch recognition is to understand the intention and meaning of a particular user's drawing. Diagramming applications have been the primary beneficiaries of sketch recognition technology, as it is commonplace for the users of these tools to rst create a rough sketch of a diagram on paper before translating it into a machine understandable model, using computer-aided design tools, which can then be used to perform simulations or other meaningful tasks. Traditional methods for performing sketch recognition can be broken down into three distinct categories: appearance-based, gesture-based, and geometric-based. Although each approach has its advantages and disadvantages, geometric-based methods have proven to be the most generalizable for multi-domain recognition. Tools, such as the LADDER symbol description language, have shown to be capable of recognizing sketches from over 30 different domains using generalizable, geometric techniques. The LADDER system is limited, however, in the fact that it uses a low-level recognizer that supports only a few primitive shapes, the building blocks for describing higher-level symbols. Systems which support a larger number of primitive shapes have been shown to have questionable accuracies as the number of primitives increase, or they place constraints on how users must input shapes (e.g. circles can only be drawn in a clockwise motion; rectangles must be drawn starting at the top-left corner). This dissertation allows for a significant growth in the possibility of free-sketch recognition systems, those which place little to no drawing constraints on users. In this dissertation, we describe multiple techniques to recognize upwards of 18 primitive shapes while maintaining high accuracy. We also provide methods for producing confidence values and generating multiple interpretations, and explore the difficulties of recognizing multi-stroke primitives. In addition, we show the need for a standardized data repository for sketch recognition algorithm testing and propose SOUSA (sketch-based online user study application), our online system for performing and sharing user study sketch data. Finally, we will show how the principles we have learned through our work extend to other domains, including activity recognition using trained hand posture cues

    Pesquisa de clip arts combinando imagens raster e vectoriais

    Get PDF
    Existe actualmente um crescente desenvolvimento de sistemas de armazenamento e pesquisa de imagens. Uma aproximação adoptada nesses sistemas é a recuperação de imagens baseada em conteúdo (CBIR, Content-Based Image Retrieval). No âmbito destas aplicações existem utilizadores que pretendem utilizar imagens clip art para os seus trabalhos e apresentações. Existem muitas imagens clip art espalhadas por diversas bases de dados em sítios na Internet ou em colecções vendidas em dispositivos ópticos. A pesquisa de imagens nestas bases de dados leva os utilizadores a percorrem várias listas de imagens manualmente ou por métodos de pesquisa por texto, muitas vezes ineficientes. Essas bases de dados de clip arts são representadas por imagens vectoriais e imagens raster. Existem várias tecnologias de pesquisa e recuperação de ambos os tipos de imagens clip art, raster e vectoriais, contudo, a investigação tem sido realizada em separado sem retirar partido das duas áreas de investigação em conjunto, no problema de recuperar e explorar colecções de clip arts. O objectivo deste trabalho é implementar um motor de busca para encontrar clip arts em base de dados compostas por imagens vectoriais e imagens raster. O trabalho envolve um conversor de imagens raster em vectoriais, a extracção de características das imagens raster e vectoriais e a avaliação do sistema de recuperação de clip arts.Fundação para a Ciência e Tecnologia - Projecto CRUSH (Clip art Retrieval using Sketches),referência PTDC/EIA-EIA/108077/200
    corecore