134 research outputs found

    Wireless Communication Test on 868 MHz and 2.4 GHz from inside the 18650 Li-Ion Enclosed Metal Shell

    Get PDF
    As the RF communication on 18650 Li-ion cell level has not been reported due to its challenges and constrains, in this work, a valid wireless data link is demonstrated in an enclosed empty metal shell at 868 MHz and 2.4 GHz based on the IEEE 802.15.4 standard. The experimental tests are carried out using two generic unturned radiative structures, a wire loop fitted inside a cell shell, and an open terminal sub miniature version A (SMA), subsequently oriented vertically and horizontally relative to the ground plane. Based on signal strength indicator, bit error rate, and packet error rate, the test characterized a payload of 120 bytes at the highest speed of 150 kbps and 250 kbps supported by the IEEE 802.15.4 for the two communication frequencies. A MATLAB simulation is used in parallel to determine the three-dimensional radiative pattern of the two structures, whereas a three-ray model for multipath range propagation is implemented to complete the empirical experiments. It was demonstrated through testing communication of up to 10 m for both operating frequencies, proving the concept of wireless cell communication within short ranges, an essential feature for monitoring the health of each cell inside future electric vehicles (EVs)

    NASA Tech Briefs, December 1999

    Get PDF
    Topics include: Imaging/Videos/Cameras; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Books and Reports

    An Implantable Low Pressure, Low Drift, Dual BioPressure Sensor and In-Vivo Calibration Methods Thereof

    Get PDF
    The human body’s intracranial pressure (ICP) is a critical component in sustaining healthy blood flow to the brain while allowing adequate volume for brain tissue within the rigid structures of the cranium. Disruptions in the body’s autoregulation of intracranial pressure are often caused by hemorrhage, tumors, edema, or excess cerebral spinal fluid resulting in treatments that are estimated to globally cost up to approximately five billion dollars annually. A critical element in the contemporary management of acute head injury, intracranial hemorrhage, stroke, or other conditions resulting in intracranial hypertension, is the real-time monitoring of ICP. Currently, such mainstream clinical monitoring can only take place short-term within an acute care hospital. The monitoring is prone to measurement drift and is comprised of externally tethered pressure sensors that are temporarily implanted into the brain, thus carrying a significant risk of infection. To date, reliable, low drift, completely internalized, long-term ICP monitoring devices remain elusive. The successful development of such a device would not only be safer and more reliable in the short-term but would expand the use of ICP monitoring for the management of chronic intracranial hypertension and enable further clinical research into these disorders. The research herein reviews the current challenges of existing ICP monitoring systems, develops a new novel sensing technology, and evaluates the same for potentially facilitating long-term implantable ICP sensing. Based upon the findings of this research, this dissertation proposes and evaluates a dual matched-die piezo-resistive strain sensing device, with a novel in-vivo calibration system and method thereof, for application to long-term implantable ICP sensing

    Development of a Wireless Telemetry Load and Displacement Sensor for Orthopaedic Applications

    Get PDF
    Due to sensor size and supporting circuitry, in vivo load and deformation measurements are currently restricted to applications within larger orthopaedic implants. The objective of this thesis is to repurpose a commercially available low-power, miniature, wireless, telemetric, tire-pressure sensor (FXTH87) to measure load and deformation for future use in biomechanical applications. The capacitive transducer membrane of the FXTH87 was modified, and a relationship was reported between applied compressive deformation and sensor signal value. The sensor package was embedded within a deformable enclosure to illustrate potential applications of the sensor for monitoring load. Finite element analysis was an effective tool to predict the fatigue life and failure location of 3D-printed Ti-6Al-4V and PLA load cells. Finite element models of fracture fixation loading scenarios were developed to evaluate the feasibility of internal sensing components. The proposed device presents a sensitive and precise means to monitor high-capacity loads within small-scale, deformable enclosures

    NASA Tech Briefs, June 1994

    Get PDF
    Topics covered include: Microelectronics; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences; Life Sciences; Books and Report

    Development of innovative cross-disciplinary engineering showcase

    Get PDF
    The development of engineering education relies substantially on interactive showcases and practical knowledge. The cross-disciplinary engineering showcase is designed to be fully interactive by having user input, producing a tangible output, and to understand distinct elements from each of the engineering disciplines such as, civil, mechanical and electrical (CME). The showcase operates from the input of mechanical rotational energy by the user pedalling the exercycle. Mechanical energy is then transferred to the pump via a gear train, which converts the user input of 30 rpm to the optimal pump operating speed of 2900 rpm. Further, it is used to pump water from the lower eservoir to the upper reservoir via one of the three flow paths, which the user can select by opening or closing flow valves. Once the water reaches a given height, it then flows back to the lower reservoir via a micro-hydro generator. As a result, it generates electrical energy stored in a power bank that can be used by the user to charge a digital device. Also, the showcase has a QR code to digital media, which will provide an additional explanation/exposition of the presented engineering principles to the user/students. The aim of this project is to develop a cross- disciplinary engineering showcase to enhance student learnings by interpreting the CME engineering principles in schools, institutes, and universities

    Development of innovative cross-disciplinary engineering showcase

    Get PDF
    The development of engineering education relies substantially on interactive showcases and practical knowledge. The cross-disciplinary engineering showcase is designed to be fully interactive by having user input, producing a tangible output, and to understand distinct elements from each of the engineering disciplines such as, civil, mechanical and electrical (CME). The showcase operates from the input of mechanical rotational energy by the user pedalling the exercycle. Mechanical energy is then transferred to the pump via a gear train, which converts the user input of 30 rpm to the optimal pump operating speed of 2900 rpm. Further, it is used to pump water from the lower eservoir to the upper reservoir via one of the three flow paths, which the user can select by opening or closing flow valves. Once the water reaches a given height, it then flows back to the lower reservoir via a micro-hydro generator. As a result, it generates electrical energy stored in a power bank that can be used by the user to charge a digital device. Also, the showcase has a QR code to digital media, which will provide an additional explanation/exposition of the presented engineering principles to the user/students. The aim of this project is to develop a cross- disciplinary engineering showcase to enhance student learnings by interpreting the CME engineering principles in schools, institutes, and universities

    Surface engineering by titanium particulate injection mounding

    Get PDF
    In a recent study a structural hold down component was designed and produced using the particulate injection moulding (PIM) process. The material of choice was titanium due not only to the material properties but also due to the desire to create custom made components for a state-of-the-art marine vessel. On removal from the mould the green parts were seen to have an irregular surface on the top face. The irregular surface presented no through part defects and although the surface irregularities were caused by separation of the two-phases the effect was restricted to the outer surface of the parts. In a more historic study by the author the surface properties of titanium dental implants were modified by the use of adaptive mould inserts during the moulding phase of PIM. These two contrasting studies are considered and have become the basis of a current investigation looking to engineer surface irregularities in an ordered fashion. The application of meso-machining, and additive manufacture are considered and the functionality which may arise are presented

    Building Services

    Get PDF

    Index to 1986 NASA Tech Briefs, volume 11, numbers 1-4

    Get PDF
    Short announcements of new technology derived from the R&D activities of NASA are presented. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This index for 1986 Tech Briefs contains abstracts and four indexes: subject, personal author, originating center, and Tech Brief Number. The following areas are covered: electronic components and circuits, electronic systems, physical sciences, materials, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences
    • …
    corecore