9,980 research outputs found

    A pediatric near-infrared spectroscopy brain-computer interface based on the detection of emotional valence

    Get PDF
    Brain-computer interfaces (BCIs) are being investigated as an access pathway to communication for individuals with physical disabilities, as the technology obviates the need for voluntary motor control. However, to date, minimal research has investigated the use of BCIs for children. Traditional BCI communication paradigms may be suboptimal given that children with physical disabilities may face delays in cognitive development and acquisition of literacy skills. Instead, in this study we explored emotional state as an alternative access pathway to communication. We developed a pediatric BCI to identify positive and negative emotional states from changes in hemodynamic activity of the prefrontal cortex (PFC). To train and test the BCI, 10 neurotypical children aged 8-14 underwent a series of emotion-induction trials over four experimental sessions (one offline, three online) while their brain activity was measured with functional near-infrared spectroscopy (fNIRS). Visual neurofeedback was used to assist participants in regulating their emotional states and modulating their hemodynamic activity in response to the affective stimuli. Child-specific linear discriminant classifiers were trained on cumulatively available data from previous sessions and adaptively updated throughout each session. Average online valence classification exceeded chance across participants by the last two online sessions (with 7 and 8 of the 10 participants performing better than chance, respectively, in Sessions 3 and 4). There was a small significant positive correlation with online BCI performance and age, suggesting older participants were more successful at regulating their emotional state and/or brain activity. Variability was seen across participants in regards to BCI performance, hemodynamic response, and discriminatory features and channels. Retrospective offline analyses yielded accuracies comparable to those reported in adult affective BCI studies using fNIRS. Affective fNIRS-BCIs appear to be feasible for school-aged children, but to further gauge the practical potential of this type of BCI, replication with more training sessions, larger sample sizes, and end-users with disabilities is necessary

    Inclusive Intelligent Learning Management System Framework

    Get PDF
    Machado, D. S-M., & Santos, V. (2023). Inclusive Intelligent Learning Management System Framework. International Journal of Automation and Smart Technology, 13(1), [2423]. https://doi.org/10.5875/ausmt.v13i1.2423The article finds context and the current state of the art in a systematic literature review on intelligent systems employing PRISMA Methodology which is complemented with narrative literature review on disabilities, digital accessibility and legal and standards context. The main conclusion from this review was the existing gap between the available knowledge, standards, and law and what is put into practice in higher education institutions in Portugal. Design Science Research Methodology was applied to output an Inclusive Intelligent Learning Management System Framework aiming to help higher education professors to share accessible pedagogic content and deliver on-line and presential classes with a high level of accessibility for students with different types of disabilities, assessing the uploaded content with Web content Accessibility Guidelines 3.0, clustering students according to their profile, conscient feedback and emotional assessment during content consumption, applying predictive models and signaling students at risk of failing classes according to study habits and finally applying a recommender system. The framework was validated by a focus group to which experts in digital accessibility, information systems and a disabled PhD graduate.publishersversionpublishe

    ThermoPixels:Toolkit for Personalizing Arousal-based Interfaces through Hybrid Crafting

    Get PDF
    Much research has shown the potential of affective interfaces to support people reflect on, and understand their bodily responses. Yet, people find it difficult to engage with, and understand their biodata which they have limited prior experience with. Building on affective interfaces and material-centered design, we developed ThermoPixels, a toolkit including thermochromic and heating materials, as well as galvanic skin response sensors for creating representations of physiological arousal. Within 10 workshops, 20 participants created personalized representations of physiological arousal and its real-time changes using the toolkit. We report on participants’ material exploration, their experience of creating shapes and the use of colors for emotional awareness and regulation. Reflecting on our findings, we discuss embodied exploration and creative expression, the value of technology in emotion regulation and its social context, and the importance of understanding material limitations for effective sense-making

    Live Biofeedback as a User Interface Design Element: A Review of the Literature

    Get PDF
    With the advances in sensor technology and real-time processing of neurophysiological data, a growing body of academic literature has begun to explore how live biofeedback can be integrated into information systems for everyday use. While researchers have traditionally studied live biofeedback in the clinical domain, the proliferation of affordable mobile sensor technology enables researchers and practitioners to consider live biofeedback as a user interface element in contexts such as decision support, education, and gaming. In order to establish the current state of research on live biofeedback, we conducted a literature review on studies that examine self and foreign live biofeedback based on neurophysiological data for healthy subjects in an information systems context. By integrating a body of highly fragmented work from computer science, engineering and technology, information systems, medical science, and psychology, this paper synthesizes results from existing research, identifies knowledge gaps, and suggests directions for future research. In this vein, this review can serve as a reference guide for researchers and practitioners on how to integrate self and foreign live biofeedback into information systems for everyday use

    Design of Cognitive Interfaces for Personal Informatics Feedback

    Get PDF

    NeuroPrime: a Pythonic framework for the priming of brain states in self-regulation protocols

    Get PDF
    Due to the recent pandemic and a general boom in technology, we are facing more and more threats of isolation, depression, fear, overload of information, between others. In turn, these affect our Self, psychologically and physically. Therefore, new tools are required to assist the regulation of this unregulated Self to a more personalized, optimal and healthy Self. As such, we developed a Pythonic open-source humancomputer framework for assisted priming of subjects to “optimally” self-regulate their Neurofeedback (NF) with external stimulation, like guided mindfulness. For this, we did a three-part study in which: 1) we defined the foundations of the framework and its design for priming subjects to self-regulate their NF, 2) developed an open-source version of the framework in Python, NeuroPrime, for utility, expandability and reusability, and 3) we tested the framework in neurofeedback priming versus no-priming conditions. NeuroPrime is a research toolbox developed for the simple and fast integration of advanced online closed-loop applications. More specifically, it was validated and tuned for the research of priming brain states in an EEG neurofeedback setup. In this paper, we will explain the key aspects of the priming framework, the NeuroPrime software developed, the design decisions and demonstrate/validate the use of our toolbox by presenting use cases of priming brain states during a neurofeedback setup.MIT -Massachusetts Institute of Technology(PD/BD/114033/2015

    A multivariate randomized controlled experiment about the effects of mindfulness priming on EEG neurofeedback self-regulation serious games

    Get PDF
    Neurofeedback training (NFT) is a technique often proposed to train brain activity SR with promising results. However, some criticism has been raised due to the lack of evaluation, reliability, and validation of its learning effects. The current work evaluates the hypothesis that SR learning may be improved by priming the subject before NFT with guided mindfulness meditation (MM). The proposed framework was tested in a two-way parallel-group randomized controlled intervention with a single session alpha NFT, in a simplistic serious game design. Sixty-two healthy naïve subjects, aged between 18 and 43 years, were divided into MM priming and no-priming groups. Although both the EG and CG successfully attained the up-regulation of alpha rhythms (F(1,59) = 20.67, p ηp2 = 0.26), the EG showed a significantly enhanced ability (t(29) = 4.38, p t(29) = 1.18, p > 0.1). Furthermore, EG superior performance on NFT seems to be explained by the subject’s lack of awareness at pre-intervention, less vigour at post-intervention, increased task engagement, and a relaxed non-judgemental attitude towards the NFT tasks. This study is a preliminary validation of the proposed assisted priming framework, advancing some implicit and explicit metrics about its efficacy on NFT performance, and a promising tool for improving naïve “users” self-regulation ability.This work is co-financed by the ERDF—European Regional Development Fund through the Operational Program for Competitiveness and Internationalisation—COMPETE 2020 (ref.: POCI01-0145-FEDER-007043; ref: POCI-01-0145-FEDER-007038), the North Portugal Regional Operational Program—NORTE 2020 (ref.: NORTE-01-0145-FEDER-000045) and by the Portuguese Foundation for Science and Technology – FCT under MIT Portugal (author Ph.D. grant ref.: PD/BD/114033/2015) and within the R&D Units Project Scope (ref.: UIDB/00319/2020)
    • …
    corecore