7 research outputs found

    Image based stroke-rate detection system for swim race analysis

    Get PDF
    Swim race analysis systems often rely on manual digitization of recorded videos to obtain performance related metrics such as stroke-rate, stroke-length or swim velocity. Using imageprocessing algorithms, a stroke tagging system has been developed that can be used in competitive swimming environments. Test images from video footage of a women’s 200 m medley race recorded at the 2012 Olympic Games, was segmented into regions of interest (ROI) consisting of individual lanes. Analysis of ROI indicated that the red component of the RGB color map corresponded well with the splash generated by the swimmer. Detected red values from the splash were filtered and a sine-fitting function applied; the frequency of which was used to estimate stroke-rate. Results were compared to manually identified parameters and demonstrated excellent agreement for all four disciplines. Future developments will look to improve the accuracy of the identification of swimmer position allowing swim velocity to be calculated

    Deep learning and 5G and beyond for child drowning prevention in swimming pools

    Get PDF
    Drowning is a major health issue worldwide. The World Health Organization’s global report on drowning states that the highest rates of drowning deaths occur among children aged 1–4 years, followed by children aged 5–9 years. Young children can drown silently in as little as 25 s, even in the shallow end or in a baby pool. The report also identifies that the main risk factor for children drowning is the lack of or inadequate supervision. Therefore, in this paper, we propose a novel 5G and beyond child drowning prevention system based on deep learning that detects and classifies distractions of inattentive parents or caregivers and alerts them to focus on active child supervision in swimming pools. In this proposal, we have generated our own dataset, which consists of images of parents/caregivers watching the children or being distracted. The proposed model can successfully perform a seven-class classification with very high accuracies (98%, 94%, and 90% for each model, respectively). ResNet-50, compared with the other models, performs better classifications for most classes.Peer ReviewedPostprint (published version

    Automated tracking of swimmers in the clean swimming phase of a race

    Get PDF
    The current advice for a sports analyst when filming a large performance area is to use multiple fixed cameras or a single panning one. Neither of these options is ideal: multiple cameras must be positioned, have their shutters synchronised and their footage combined for analysis; a panning camera makes it difficult to determine an athlete’s movement relative to an external frame of reference. The aim of this study was to establish a process that enabled the confident, accurate and precise use of a wide field of view for measuring distance and speed in large performance areas. Swimming was used as an example sport as it had a large performance area, which measured 50 m by 25 m. A process for determining the accuracy and precision with which distance and speed could be reconstructed from a wide field of view was developed. A nonlinear calibration procedure was used to account for radial distortion. The Root Mean Square Error (RMSE) of reconstructed distances for a wide field of view was 16 x 10-3 m. This compared favourably with a three camera system reported in the literature, which had an RMSE of 46 x 10-3 m. In addition, it was shown that a wide field of view could be used to identify a 1% enhancement in speed when it was measured over 10 m or more. A wide field of view was used to capture video footage of a swimming competition. This was used to track swimmers using two methods: manual and automated. The two methods showed good agreement for mean speed, but the automated one had higher variability in instantaneous speed than did the manual
    corecore