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Abstract 

The current advice for a sports analyst when filming a large performance area is 

to use multiple fixed cameras or a single panning one. Neither of these options 

is ideal: multiple cameras must be positioned, have their shutters synchronised 

and their footage combined for analysis; a panning camera makes it difficult to 

determine an athlete’s movement relative to an external frame of reference. The 

aim of this study was to establish a process that enabled the confident, accurate 

and precise use of a wide field of view for measuring distance and speed in 

large performance areas. Swimming was used as an example sport as it had a 

large performance area, which measured 50 m by 25 m. 

A process for determining the accuracy and precision with which distance and 

speed could be reconstructed from a wide field of view was developed. A 

nonlinear calibration procedure was used to account for radial distortion. The 

Root Mean Square Error (RMSE) of reconstructed distances for a wide field of 

view was 16 x 10-3 m. This compared favourably with a three camera system 

reported in the literature, which had an RMSE of 46 x 10-3 m. In addition, it was 

shown that a wide field of view could be used to identify a 1% enhancement in 

speed when it was measured over 10 m or more. 

A wide field of view was used to capture video footage of a swimming 

competition. This was used to track swimmers using two methods: manual and 

automated. The two methods showed good agreement for mean speed, but the 

automated one had higher variability in instantaneous speed than did the 

manual. 

Keywords: sport analysis, calibration, wide field of view  
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1 Introduction 

1.1 Competitive swimming 

Competitive swimming has a history that goes back at least two hundred years 

(FINA 2015a). Today, the sport is regulated by FINA, the Fédération 

Internationale de Natation, and has been a part of every summer Olympic 

Games since 1896 (IOC 2015). In Great Britain, the national governing body for 

competitive swimming is British Swimming. 

Over the last forty-five years the performance of swimmers in competitions, 

such as the Olympic Games and the FINA World Championships, has been 

analysed. As shown in Figure 1.1, it is now common for national swimming 

teams to film and analyse their swimmers at major swimming competitions. 

 
 

 
 

Figure 1.1. Filming area for the national swimming teams at the 2011 FINA World Championships 

and the 2012 Olympic Games. 
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Such analysis aims to provide objective measures of a swimmer’s performance 

in four phases of a race: a start, turns, a finish, and clean swimming in between 

these. This data is calculated by hand: video footage of the race is replayed 

post-race and the swimmer is manually digitised at key distances, such as 

where they surfaced after the start. Coaches use the analysis data to, for 

example, guide training or establish race tactics. 

The current analysis method relies on manual digitisation. Typically, two or 

three key distances are digitised per swimmer per lap (Smith, Norris and Hogg 

2002). Each race is one to thirty laps and has eight swimmers in it. In addition, 

there are likely to be over a hundred races in each competition. Such 

digitisation requires a large amount of manpower. For example, Mason and 

Cossor (2000) reported that forty-one people worked six hour shifts around the 

clock to analyse the swimmers at one competition. 

1.2 Automated digitisation 

An obvious way of reducing the amount of manual digitisation is to automate it 

in some way. Digital image processing techniques are one way of doing this. 

These are used in video analysis tools, such as Dartfish, to track distinctive 

coloured objects in video footage. An example is shown in Figure 1.2. A 

swimming pool is a highly dynamic environment that contains movement such 

as ripples, splashes and reflections as well as the swimmers. Dartfish is unlikely 

to perform as well as a bespoke algorithm which has been optimised to account 

for such movements. 

How digital image processing techniques could be used to automate swimming 

competition performance analysis is a central theme of the work reported in this 
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document. The application of these techniques typically requires a standardised 

filming technique. 

 

Figure 1.2. Digital image processing techniques are used to reduce the amount of manual 

digitisation that is needed. Here, a golf club head is semi-automatically tracked in Dartfish (2015). 

 

1.3 Filming techniques 

Two main filming techniques have been used in competition performance 

analysis. One uses multiple fixed cameras and the other a single panning 

camera. Neither is ideal for automated digitisation. 

A single camera that has a fixed view of the whole swimming pool could be an 

elegant solution. It would require less equipment than a multi-camera system 

and as a result should be easier and quicker to setup and calibrate. In addition, 

only a single source of video footage would need to be calibrated and 

processed. The size of a swimming pool means that such a camera would have 

to be in a non-ideal position (i.e. with the optical axis not perpendicular to the 

swimming direction) or use a wide-angled lens, which is likely to result in highly 

distorted footage. These two options are shown in Figure 1.3. 
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Figure 1.3. Two views of a swimming pool captured by a single fixed camera. 

 
How a single fixed camera could be used in swimming competition performance 

analysis is another central theme of the work reported in this document. 

1.4 Error 

The use of automated digitisation and a single fixed camera are departures 

from the norm. They should make competition performance analysis easier and 

quicker, but it is reasonable to ask whether this convenience has a cost. A key 

question is what impact they will have on the accuracy and precision of the 

analysis data. For example, can an automated system digitise a swimmer with 

the same accuracy and precision as an experienced analyst? 

The accuracy and precision of the analysis data calculated by automated 

digitisation and the view from a single fixed camera is the final theme of the 

work reported in this document. 
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2 Literature review 

2.1 Competitive swimming 

FINA regulates the size and configuration of competition pools. This is laid out 

in FINA (2013a). The key measurement is the swimming distance, which must 

be 50 m plus 0.03 m and minus 0.00 m. In addition, FINA mandate that the pool 

should consist of ten 2.5 m wide swimming lanes and be up to 3 metres deep. 

Figure 2.1 illustrates these dimensions. The lanes must be separated by lane 

ropes, which consist of hundreds of coloured floats. FINA stipulates that the 

floats in the first and last 5 m must be red and that there must be distinctive 

coloured floats at 15 m and 25 m in the swimming direction. 

 

Figure 2.1. A typical 50 m competition pool. Swimming direction is along the X axis. The start end 

is at X = 0 m and the turn end is at X = 50 m. 

 
There are four competitive swimming strokes: backstroke, breaststroke, 

butterfly and freestyle. FINA (2013b) describes the swimmer actions that are 

permissible in each stroke. In most races the swimmer uses one of these 

strokes, but in the individual medley, all four are used in the order: butterfly, 

backstroke, breaststroke and freestyle. Race distances are from 50 m to 1500 

m, i.e. 1 to 30 laps. These are summarised in Table 2.1. At the Olympics, the 
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only 50 m race is a freestyle one, women do not swim the 1500 m freestyle and 

men do not swim the 800 m freestyle. 

Table 2.1. Race distances by stroke. 

Stroke 
Race distance (m) 

50 100 200 400 800 1500 
Backstroke       
Breaststroke       
Butterfly       
Freestyle       
Individual medley       

 

The time taken to complete the race distance is used to place the swimmers in 

a race. This time is referred to as the race time. An automated timing system is 

used: the race is started with a visual and audible start signal and time is 

measured at the end of each lap by pads, which the swimmer must touch to 

register a time. 

At a competition, each race usually has a heat, a semi-final and a final. In races 

of 400 m and over, there is only a heat and final. In each round, the swimmers 

with the smallest race times qualify for the next round. There are typically 

sixteen swimmers in the semi-finals and eight swimmers in a final. The finalists 

with the three smallest race times in the final win the medals. 

2.2 Competition performance analysis 

2.2.1 Introduction 

Over the last forty-five years the performance of swimmers in competitions has 

been analysed. Smith, Norris and Hogg (2002), in their review of swimming 

competition performance analysis, identified that the aims of such analysis are: 

 To identify strengths and weaknesses in a swimmer’s performance. 
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 To check if a swimmer followed their race plan. 

 To provide data on a swimmer’s competitor. 

 To guide a swimmer’s training. 

As a result, they highlight that the analysis is of use in competition and in 

training. 

Competition performance analysis usually involves capturing video footage of a 

race and post-race analysis of this footage. Filming positions are usually in the 

spectator stands; an example is shown in Figure 2.2. An above-water view of 

the racing is captured. This is replayed in coordinate digitiser software post-race 

and the swimmers are manually digitised at key distances, e.g. on completion of 

the start or just prior to a turn. Time at these distances is taken from the 

camera’s frame rate or an external timing system. On completion of the 

analysis, the data is provided to coaches in a report or a spreadsheet. 

 

Figure 2.2. Competition performance analysis filming position at the 2012 Olympic Games. 
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2.2.2 Race phases 

An analysis of a race breaks it down into phases. These are: a start, turns, a 

finish, and clean swimming in between the start, turns and finish. Two ways of 

identifying the boundaries between phases have been used: fixed distance and 

individual distance. 

Fixed distance is the predominant approach. The boundaries between phases 

are at set distances in the swimming direction. Many different set distances 

have been used. Currently, British Swimming use the distances described by 

Smith, Norris and Hogg (2002) and illustrated in Figure 2.3. One advantage of 

the fixed distance approach is the ease with which races can be compared. 

Furthermore, as will be shown in Section 2.3, simple methods can be used to 

identify when a swimmer is at one of the distances. 

 

Figure 2.3. Fixed distance approach to splitting a 100 m race into phases. Boundaries between 

contiguous race phases are at fixed distances in the swimming direction, i.e. in the X axis. 

 
The individual distance approach used swimmer actions to identify phase 

boundaries. Commonly used actions were the first hand entry (Pai, Hay and 

Wilson 1984) or the first head emersion (Veiga et al. 2012) after a period of 

underwater swimming. The analysis calculated the distance on the X axis at 

which these actions occurred. This gave a more accurate delineation of race 

phases than the fixed distance approach, but required a more complicated 

method of measuring distance. 
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2.2.3 Clean swimming phase 

There is evidence that clean swimming is the most important race phase. Table 

2.2 shows that the clean swimming phase takes up most of the race distance. In 

addition, it accounts for most of the race time. This is because it is the longest 

and it is swum at the slowest speed. For example, Veiga et al. (2012) found that 

the mean speed in the start, turn and clean swimming phases were 2.010 m s-1, 

1.685 m s-1 and 1.560 m s-1 (respectively). 

Table 2.2. Length of race phases. The fixed distance boundaries illustrated in Figure 2.3 were used 

to do these calculations. 

Phase 50 100 200 400 800 1500 

Start (m) 15 15 15 15 15 15 

Turns (m) 0 15 45 105 225 435 

Finish (m) 5 5 5 5 5 5 

Free swim (m) 30 65 135 275 555 1045 

Free swim (%) 60.0 65.0 67.5 68.8 69.4 69.7 

 

The time taken to swim the clean swimming phase, which is typically expressed 

as the speed in this phase, has been shown to have the highest correlation with 

race time. Three studies have analysed all race phases and correlated the time 

or speed in the phase with race time: Arellano et al. (1994); Mason and Cossor 

(2000); Thompson Haljand and MacLaren (2000). In all races except one, clean 

swimming speed had either the highest or second highest correlation with race 

time. Furthermore, it had the highest in over 80% of the races. So, performance 

in the clean swimming phase accounted for most of the variability in race time. 

2.2.4 Conclusion 

This section reviewed competition performance analysis and found: 

 It aims to give coaches objective data for use in competition and training. 



10 
 

 The data is calculated by manually digitising the swimmer in above-water 

video footage. 

 A race is split into four phases: a start, turns, a finish, and clean 

swimming in-between these. The boundary between phases is at a fixed 

distance or a predetermined swimmer action. 

 Of the four phases, clean swimming is the longest. In addition, the time 

or speed in this phase has been found to contribute the most to the 

overall performance. 

In the next section, the focus switches to the methods that have been used to 

measure distances in competition performance analysis. Due to its importance, 

a particular emphasis is placed on the clean swimming phase. Then, in section 

2.4, approaches to automating the digitisation of swimmers are reviewed. This 

is done with a view to how the manual digitisation methods currently used in 

competition performance analysis could be automated. 

2.3 Measuring distance 

2.3.1 Introduction 

A measurement of distance from video footage requires a way of transforming 

between pixel and world coordinate systems. The pixel coordinate system is 

used to define the index of a picture element (or pixel) in an image, which is a 

2D matrix of pixels. The pixel coordinate system has U and V axes. The world 

coordinate system represents 3D points and distances in the real world and has 

X, Y and Z axes. The transformation from world to pixel coordinate systems is 

called projection and the reverse is called reconstruction. 
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Projection and reconstruction are typically performed by a calibration model. A 

calibration model is calculated by a calibration procedure. These procedures 

define how to calculate the relationship between pixel and world coordinate 

systems and the equations that are used to do projection and reconstruction. In 

some calibration procedures the relationship between pixel and world 

coordinate systems is only valid for a given plane in the world coordinate 

system. This is called the calibrated plane. 

Table 2.3 lists the methods that have been used to measure distance in 

competition performance analysis. These methods and a calibration procedure 

called nonlinear, which has been shown to be applicable to the wide-angle 

viewing conditions typical of sporting competitions, are discussed in the 

following subsections. 
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Table 2.3. Methods used to measure distance in competition performance analysis. 

Method Study 

Lap time 

Craig and Pendergast (1979) 

Craig et al. (1985) 

Chollet et al. (1996) 

Pelayo et al. (1996) 

Chollet et al. (1997) 

Chollet and Pelayo (1999) 

Panning 
British Swimming 

Kennedy et al. (1990) 

Optical axis 

Wakayoshi et al. (1992) 

Chollet and Pelayo (1999) 

Thompson et al. (2000) 

Thompson, Haljand and MacLaren (2000) 

Chollet, Tourny-Chollet and Hogie (2001) 

Tourny-Chollet et al. (2002) 

Takagi et al. (2004) 

Hellard et al. (2008) 

Linear scaling 

East (1970) 

Chow et al. (1984) 

Miller, Hay and Wilson (1984) 

Pai, Hay and Wilson (1984) 

Chengalur and Brown (1992) 

Arellano et al. (1994) 

Pelayo et al. (1996) 
Arellano (2001) 
Chatard et al. (2001a) 
Chatard et al. (2001b) 
Chatard et al. (2001c) 
Chatard et al. (2001d) 
Chatard et al. (2001e) 
Cossor and Mason (2001) 
Girold et al. (2001a) 
Girold et al. (2001b) 
Ikuta, Mason and Cossor (2001) 
Mason and Cossor (2001) 
Riewald (2001) 
Wilson (2001) 

Veiga et al. (2012) 

2D-DLT Veiga et al. (2012) 

Unknown 

Mason, Loschner and Fowlie (1995) 

Mason and Cossor (2000) 

Huot-Marchand et al. (2005) 
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2.3.2 Lap time 

This is not a calibration procedure. It does not even require video footage. 

Instead, the lap times from the official timing system are used to calculate an 

average speed for the entire lap as 50 / t, where t is the lap time in seconds. 

Examples 

Craig and Pendergast (1979) pioneered this method at the 1976 US Olympic 

Trials. Time to swim each 100 m of a race was obtained from the automated 

timing system. Clean swimming speed was calculated from this. Stroke rate 

was calculated in real-time by three observers: each used a stopwatch to time 

five consecutive stroke cycles in each lap. Speed and stroke rate data was used 

to construct “stroke rate-velocity curves” (Craig and Pendergast 1979, p279), 

which described the relationship between speed, stroke rate and stroke length. 

An example is shown in Figure 2.4. 

 

Figure 2.4. Stroke rate-velocity curves for the freestyle swimmers at the 1976 US Olympic Trials. 

Stroke length is the gradient of the line drawn from the origin to a point on a curve. The “2 fastest 

males” were national record holders. Adapted from Craig and Pendergast (1979, p280). 
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Chollet et al. (1996 and 1997) built on the work done at the US Olympic Trials in 

1976. A key development was the calculation of stroke rate from video footage 

instead of real-time observations. Four panning cameras were used: each 

camera followed two of the eight swimmers in each race. 

Advantages 

The lap time method has the following advantages: 

 Automated. The timing data is collected by the automated timing system 

and is often available in a machine-readable file format, e.g. LENEX 

(OMEGA Timing 2015). As a result, calculation of average speed for a 

lap can be largely automated. 

 High accuracy and precision data source. The timing data is the official 

result of the race: it is this data that determines, for example, a world 

record or the winner on an Olympic medal. In addition, the calculation of 

speed from time is straightforward and can be automated. Therefore, 

there is little chance for errors to occur. 

Disadvantages 

The lap time method has the following disadvantages: 

 Average swimming speed for a lap is only an estimate of clean swimming 

speed. All studies that have used this method acknowledge that it leads 

to an overestimation of clean swimming speed (Craig and Pendergast 

1979, Craig et al. 1985, and Chollet et al. 1997). 

 May be unsuitable for elite swimmers. Enhancements as small as 1% 

can result in a medal-winning performance at a major competition (Pyne, 
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Trewin and Hopkins 2004). An estimate of clean swimming speed may 

be unable to reliably identify such enhancements. 

2.3.3 Panning camera 

This calibration procedure used panning, instead of fixed cameras. Each 

camera followed one or more swimmers in each race and distances were 

measured with reference to the lane ropes. 

Examples 

Kennedy et al. (1990) used panning cameras at the 1988 Olympic Games. A 

single camera was used to capture video footage of the eight swimmers in each 

race. The phase boundaries were at distances that coincided with a change in 

colour of the floats on the lane ropes. These were at 15 m, 40 m and 45 m in 

the X axis. During post-race analysis, transverse lines were visually aligned with 

the appropriate float on each lane rope. This had to be done for each frame in 

the footage in which the analyst thought the swimmer was at a phase boundary. 

British Swimming also uses panning cameras. However, unlike Kennedy et al. 

(1990), they can measure distances that do not coincide with a change in float 

colour. The measurements are done by way of a map, which is constructed 

using the following steps: 

1. Adjust the lane ropes. Make sure there are no gaps between floats and 

that the corresponding change in float colour on each lane rope is at the 

same distance in the X axis. 

2. Identify the floats at 15 m, 25 m, 35 m and 45 m in the X axis. Also, count 

the number of floats in each coloured section of floats. 
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3. Construct the map. Calculate the average metres per float between 0 m 

and 15 m, 15 m and 25 m, 25 m and 35 m, 35 m and 45 m, and 45 m 

and 50 m in the X axis. From this, construct a diagram of the lane rope, 

which shows the colour and distance in the X axis of the floats near the 

phase boundaries. 

During analysis the float that the swimmer is aligned with is identified. This is 

done by drawing a transverse line between corresponding floats on two or more 

lane ropes. The number of floats between the identified one and the nearest 

change in float colour is then counted. The distance of the identified float can 

then be found in the map. 

Advantages 

The panning calibration procedure has the following advantages: 

 Freely positioned camera. The camera can be located wherever it can 

capture the required video footage. 

 Multiple measurements per camera. A single camera can be used to 

measure more than one fixed distance or the distance between swimmer 

actions. 

Disadvantages 

The panning calibration procedure has the following disadvantages: 

 Non-fixed view. Each frame in the video footage had a different view of 

the calibrated plane, i.e. the lane ropes. This led to a reconstruction 

process that was more time-consuming than it would have been for a 

fixed view camera. 
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 Potential for out-of-plane measurements. Consider the case of digitising 

a swimmer’s head at a fixed distance in a breaststroke race. In this 

stroke the swimmer’s head is on the water’s surface at two instants in 

each stroke cycle. Each cycle is likely to have a duration of one second 

or more (according to, e.g., East 1970; Pai, Hay and Wilson 1984; and 

Kennedy et al. 1990). As a result, the head is unlikely to be on the 

water’s surface at each fixed distance and so measurements off the 

calibrated plane would probably occur. However, Kennedy et al. (1990, 

p190) stated that the error in such measurements were likely to be “small 

and primarily random in nature”. 

2.3.4 Optical axis 

The optical axis calibration procedure is used to measure the time that a 

swimmer is at a fixed distance boundary between two race phases. Table 2.4 

summarises the distances these have been at. Two studies did not describe 

this: Chollet and Pelayo (1999) had two cameras near 25 m and Takagi et al. 

(2004) used five cameras. 

Table 2.4. Phase boundaries for the studies that used the optical axis calibration procedure. 

Study X (m) 

Wakayoshi et al. (1992) 5, 10, 45 

Thompson et al. (2000) 5, 7.5, 15, 25, 42.5 

Thompson, Haljand and MacLaren (2000) 5, 7.5, 15, 25, 42.5 

Chollet, Tourny-Chollet and Hogie (2001) 7.5, 42.5 

Tourny-Chollet et al. (2002) 7.5, 42.5 

Hellard et al. (2008) 7.5, 15, 25, 42.5 
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For this calibration procedure, each camera is positioned at the required 

distance and its optical axis is set perpendicular to the swimming direction. The 

time at which the swimmer intersects the optical axis gives their time at that 

distance. In this way, each camera acts like a video-based timing gate. 

Examples 

Wakayoshi et al. (1992) analysed the performance of swimmers at the 1988 

Japanese Olympic Trials and the 1989 Pan Pacific Championships. As shown 

in Figure 2.5, three cameras used the optical axis calibration procedure and a 

fourth camera (i.e. Camera 3) was used to calculate stroke rate. An external 

time synchronisation system was used; as the start signal light could be seen by 

one camera (i.e. Camera 1), race and video time could be harmonised in the 

footage from all cameras. 

 

Figure 2.5. Camera setup at 1988 Japanese Olympic Trials and 1989 Pan Pacific Championships 

(Wakayoshi et al. 1992, p136). 

 
Thompson, Haljand and MacLaren (2000) describe the way this calibration 

procedure is used: 
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1. Mark control points on the pool deck at the fixed distances (i.e. 5 m, 10 m 

and 45 m in the X axis for Wakayoshi et al. 1992). 

2. Position and orientate each camera so its optical axis intersects the 

control points. 

3. Capture footage of the control points from each camera. 

4. Without changing the cameras’ position or orientation, capture footage of 

the races. 

5. In the coordinate digitiser, superimpose transverse lines between the 

control points at each fixed distance. 

6. During analysis, count the number of times the synchronisation signal 

occurs between the start pistol firing and the instant the swimmer 

intersects a transverse line. Convert this count to seconds using the 

known frequency of the synchronisation signal. 

7. Calculate clean swimming speed as d / t, where d is the distance 

between two cameras in the X axis and t the time taken to swim it. 

Wakayoshi et al. (1992) calculated speed between Camera 2 and Camera 4 on 

the first lap and Cameras 1 and 4 on subsequent ones. So, d was either 35 m 

or 40 m in the X axis. Other studies have used shorter distances, e.g. Chollet 

and Pelayo (1999) used 15 m in the X axis. 

Advantages 

The optical axis calibration procedure has the following advantages: 

 Simplicity. It has a relatively simple set-up procedure and projection and 

reconstruction are straightforward. So, it is easy to implement and 

understand. 
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 High accuracy and precision. This simplicity suggests that there are 

fewer chances for errors to occur. Furthermore, there is no parallax error 

as the swimmers are always measured on the optical axis. 

Disadvantages 

The optical axis calibration procedure has the following disadvantages: 

 Each camera can only measure time at one distance. As a result, at least 

two cameras are needed to measure clean swimming speed but more 

are typically used. This can cause logistical problems, e.g. 

synchronisation cabling has to be run between cameras that are up to 40 

m apart. 

 Cameras cannot be freely positioned. If a required camera location is not 

available, then time at that distance cannot be measured. Anecdotally, 

this is a common occurrence: typically, at least one camera location is 

not available due to e.g. a spectator exit route, spectator seating or 

occupation by competition staff such as commentators or the media. 

2.3.5 Linear scaling 

The linear scaling calibration procedure extends the optical axis one. The key 

addition is a linear scaling coefficient, which describes the relationship between 

the pixel and world coordinate systems. This can be used to construct a 

calibrated plane or do reconstructions or projections off the optical axis. 

The scaling coefficient is calculated from the distance, in metres and pixels, 

between control points on the pool deck or the lane ropes. It is used to do 

reconstructions and projections, for which the equations are: 
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=  2.1 

=  2.2 

where  is the scaling coefficient in metres per pixel,  is the distance in the 

world coordinate system and  the distance in the pixel coordinate system. 

Examples 

Pai et al. (1984) measured the clean swimming speed of the swimmers at the 

1982 Commonwealth Games. Four control points on the near and far edges of 

the pool deck were used to calculate a calibration model. This gave a calibrated 

plane on the water surface that was 6.48 m in the X axis. This is shown in 

Figure 2.6. The calibrated plane was mid-pool, i.e. close to 25 m in the X axis. 

 

Figure 2.6. Calibrated plane used at the 1982 Commonwealth Games (Pai et al. 1984, p228). L and li 

(i = 1 to 9) were 6.48 m. The length of each li in pixels was measured and used to calculate scale 

factor s for each lane. 

 
The calibrated plane allowed Pai et al. (1984) to measure the distance at which 

the swimmer performed a certain action. The chosen action was when the tip of 

the swimmer’s index finger intersected the water surface at the start and end of 

a stroke cycle. This ensured that the measured distance was on the calibrated 

plane. 
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Arellano et al. (1994) positioned control points on the lane ropes instead of the 

pool deck. Cameras were located to capture footage of 10 m from the start end, 

the central 30 m, and 7.5 m at the turn end. The central camera was used to 

calculate stroke rate and the ones at the start and turn ends measured phase 

boundaries, which were at 7.5 m, 10 m, 40 m and 42.5 m in the X axis. Implicit 

in this is that the cameras at the start and turn end had to each measure two 

fixed distances, i.e. 7.5 m and 10 m from the end of the pool. The following 

steps were used to do this: 

1. In the video footage, identify the float on the lane rope at 5 m and 10 m 

from both ends of the pool. It was known that the floats changed in colour 

every 5 m. 

2. Determine the length of these 5 m sections of lane rope in pixels at the 

near and far side of the pool. 

3. Calculate scaling coefficients for the near and far sides of the pool. 

4. Use Equation 2.2 to project transverse lines at 7.5 m. 

Steps 1 to 4 are illustrated in Figure 2.7. 
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Figure 2.7. Projection of a transverse line using the linear scaling calibration procedure and control 

points on the lane ropes. Scale coefficients (s1 and s2) are calculated for the nearest and furthest 

lane ropes. The transverse line at X = 7.5 m is drawn between these lane ropes from: U1 + (2.5 / s1) 

pixels to U3 + (2.5 / s2) pixels. 

Advantages 

The linear scaling calibration procedure has the following advantages: 

 Simplicity. The calculation of the scaling coefficient and equations for 

reconstruction and projection are straightforward to understand and 

implement. 

 Multiple measurements per camera. Each camera can measure more 

than one distance. 

Disadvantages 

The linear scaling calibration procedure has the following disadvantages: 
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 Small calibrated plane. The calibrated planes were less than 10 m in the 

X axis. So, two cameras would be needed to measure time or speed 

throughout the clean swimming phase. 

 Potential for out-of-plane measurements. This was described in the 

Panning camera subsection. 

2.3.6 2D-DLT 

The 2D-DLT calibration procedure (Walton 1981) is the 2D equivalent of 3D-

DLT (Abdel-Aziz and Karara 1971). A 2D-DLT calibration model requires the 

same inputs as linear scaling, i.e. the world and pixel coordinates of control 

points. A system of linear equations is formed from these and solved to 

calculate eight DLT parameters, Ai (i = 1 to 8). If more than four control points 

are provided, then the system of equations is overdetermined and a least 

squares solution is calculated. Once calculated, the DLT parameters are used 

to do projection and reconstruction. 

Projection 

Kwon (1999, p397) states that Walton’s projection equations are: 

= + ++ +  2.3 

= + ++ +  2.4 

where  (i = 1 to 8) are the DLT parameters,  and  are the pixels 

coordinates, and  and  the world coordinates. 
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Reconstruction 

Reconstruction is achieved by rearranging Equations 2.3 and 2.4 into a pair of 

linear equations, which are then solved for  and : 

− + − = −  2.5 

− + − = −  2.6 

where  (i = 1 to 8) are the DLT parameters,  and  are the pixels 

coordinates, and  and  the world coordinates. 

Examples 

Veiga et al. (2012) measured the clean swimming speed of the swimmers at an 

international competition. Three video cameras were used to film the races and 

a 2D-DLT calibration model was calculated for each camera’s footage. Eight 

control points on the pool deck were used to calculate Ai (i = 1 to 8). Calibrated 

planes were on the water surface and about 15 m in the X axis. The calibration 

model error (as defined in Equation 3.1) for the distances between 32 points on 

the lane ropes was 46 x 10-3 m. 

Advantages 

The 2D-DLT calibration procedure has the following advantages: 

 Freely positioned camera. The camera can be located wherever it can 

capture the required video footage. 

 Multiple measurements per camera. Each camera can measure more 

than one fixed distance or the distance between swimmer actions. 

 Error minimisation. If more than four control points are used, then a least 

square solution for Ai (i = 1 to 8) is calculated. This should go some way 
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to reducing the projection and reconstruction errors that are caused by 

errors in measuring a control point’s world or pixel coordinates. Contrast 

this with the linear scaling procedure: any error in a control point’s 

coordinates would propagate to the scaling coefficient and hence 

projection and reconstruction. 

 Closed-form solution. The projection and reconstruction equations (2.3 to 

2.6) are closed-form expressions. Such expressions have a low 

computational burden (Heikkilä and Silvén 1997). 

 Control points are prescribed by the swimming pool’s geometry. 

Disadvantages 

The 2D-DLT calibration procedure has the following disadvantages: 

 Complexity. Compared to optical axis and linear scaling, 2D-DLT is a 

relatively complex calibration procedure. The DLT parameters, Ai (i = 1 to 

8), are not easily understood as they are not based on physical 

parameters such as focal length (Heikkilä and Silvén 1997). In addition, 

although they are closed-form expressions, the projection and 

reconstruction equations (i.e. Equations 2.3 to 2.6) are harder to 

understand and solve than, for example, the linear scaling ones. 

 Assumption of a linear relationship between pixels and metres. Tsai 

(1987) states that the 2D-DLT calibration procedure (as described in this 

subsection) needs extending to account for nonlinear lens distortions. 

This may not be needed if a narrow field of view is used. Overall, it 

probably means that more than one camera would be required, which 

has the logistical problems identified in the Optical axis subsection. 
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 Potential for out-of-plane measurements. This was described in the 

Panning camera subsection. 

2.3.7 Nonlinear 

The nonlinear calibration procedure uses two steps to calculate the relationship 

between pixel and world coordinate systems. The first accounts for the effects 

that the camera’s lens and the imperfections in the camera’s construction has 

on the video footage that it captured. This stage uses video footage of a planar 

calibration object; images from this are shown in Figure 2.8.  The second step 

estimates the camera’s pose, i.e. its position and orientation in the world 

coordinate system. The world and pixel coordinates of four or more control 

points are required for this. 

 
 

 
 

Figure 2.8. Images from the video footage of a planar calibration object (Bouguet 2013). 

 
A popular and convenient implementation of the nonlinear calibration procedure 

is provided in the form of a MATLAB toolbox (Bouguet 2013). This toolbox 

implements the methods described in two studies: Heikkilä and Silvén (1997) 

and Zhang (2000). Another implementation is OpenCV (OpenCV 2015). 

Knowledge of C++ programming is required to use this so it is less convenient 

than the MATLAB toolbox. 



28 
 

The following steps are used to calculate a nonlinear calibration model using 

the MATLAB toolbox: 

1. Set and lock the video camera’s settings. Any external lens (if used) 

must be fitted and zoom and focus fixed. However, exposure time does 

not have to be locked. 

2. Capture video footage of a calibration object. A convenient choice is a 

checkerboard pattern attached to a flat surface (Zhang 2000). The 

calibration object should be held in a range of positions and orientations 

such that the object appears in each part of the field of view. This gives 

good lens coverage. 

3. Select images from the footage of the calibration object. Ensure that the 

selected images cover the camera’s field of view and show the 

calibration object in a range of orientations. 

4. Calculate the world coordinates of the calibration object’s checkerboard 

corners. The checkerboard geometry and size of each square is used to 

do this. 

5. Find the pixel coordinates of the checkerboard corners in each image of 

the calibration object. A semi-automated and sub-pixel accurate function 

is used. Initial pixel coordinates of the object’s four bounding corners in 

each image are provided by the user. Digital image processing 

techniques are then used to automatically determine the sub-pixel 

accurate pixel coordinates of all checkerboard corners in each image. 

6. Calculate the calibration model’s intrinsic parameters and distortion 

coefficients. An optimisation approach is used; this attempts to minimise 

reprojection error, which is the sum of the distance between found and 
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projected checkerboard corners in each image of the calibration object. 

During this calculation, the user can choose to calculate or fix any of the 

intrinsic parameters or distortion coefficients. For example, if the user 

decides that the camera does not suffer from tangential distortion, then it 

can be fixed at zero. 

The intrinsic parameters are the focal length, the principal point and the 

skew. The distortion parameters describe two types of lens distortion: 

radial and tangential. These are described in more detail in the 

Projection and Reconstruction subsections. 

7. Calculate extrinsic parameters. This requires the intrinsic parameters, 

distortion coefficients and the pixel and world coordinates of at least four 

control points. If more than four control points are provided, then the 

solution to the extrinsic parameters is overdetermined and an error 

minimisation process is undertaken. 

The extrinsic parameters consist of two matrices, which are called R and 

T. These are described in more detail in the Projection and 

Reconstruction subsections. 

The nonlinear calibration model calculated by the above steps is used to do 

projections and reconstructions, which are a sequence of transformations 

between world, camera, normalised image and pixel coordinate systems. 

Projection 

The first transformation in the projection sequence is from world to camera 

coordinate systems. This is implemented as a rigid body transformation, which 

consists of a rotation followed by a translation. This aligns and then collocates 

the origins of the two coordinate systems. Figure 2.9 illustrates this. 
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Figure 2.9. World to camera coordinate system transformation. A rotation (�) followed by a 

translation (�) aligns and then collocates the two coordinate systems. 

 [ ] = � [ ] +  2.7 

� = [ cos cos + sin sin sin cos − sin + sin sin cos cos sincos sin cos cos − sin− sin cos + sin cos sin − sin − sin + sin cos cos cos cos ] 2.8 

= � [−−− ] 2.9 

where ,  and  are pitch, yaw and roll rotations about the world X, Y and Z 

axes (respectively) and ,  and  are the coordinates of the optical centre in 

the world coordinate system. Rotations are applied in roll-pitch-yaw order, i.e. 

the world coordinates are first rotated about the Z axis, then the X axis and 
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finally the Y axis. Positive rotations are applied clockwise when looking at the 

positive end of the axis. 

The second transformation in the sequence is from camera to undistorted 

normalised image coordinate systems. This consists of a pinhole projection of 

points on the calibrated plane onto the image plane. During this, a focal length 

of unity is assumed. 

 

Figure 2.10. Camera to undistorted normalised image coordinate system transformation. Point p on 

the calibrated plane is pinhole projected to point q on to the image plane. 

 [ ] = [ ] 2.10 

 
The third transformation in the sequence is from undistorted normalised image 

to distorted normalised image coordinate systems. This transformation applies 

two lens distortions: radial and tangential. Radial distortion results from 
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differences in magnification across a lens. Barrel distortion, which is common in 

wide-angle and fisheye lenses, is when magnification decreases as distance 

from the principal point increases. Tangential distortion is caused by the 

misalignment of a camera’s lens and image plane (Bradski and Kaehler 2008). 

The effect of lens distortion is points that are not the same as for a pinhole 

projection, i.e. Equation 2.10. 

The transformation for a camera not fitted with a fisheye lens has equations that 

describe radial (Equation 2.12) and tangential (Equation 2.13) distortion. These 

are applied to the undistorted normalised image coordinates in Equation 2.11: 

[ ′′] = � [ ] + [ ] 2.11 

� = + � + � + �  2.12 

[ ] = [ � + � +� + � + ] 2.13 

where  is the magnitude of , , �  (i = 1 to 3) are radial distortion 

coefficients, and �  (i = 4 to 5) are the tangential distortion coefficients. 

A fisheye lens is designed to radially distort. This is achieved by including a lens 

with a large negative meniscus at the front of the system of lenses (Saxby 

2011). This lens changes the direction of incoming light rays toward the optical 

axis, as shown in Figure 2.11, and causes barrel distortion. 
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Figure 2.11. Fisheye lens. A lens with a large negative meniscus changes the direction of incoming 

light rays toward the optical axis. The angle between an incoming ray and the optical axis is �. 

 
The fisheye transformation that is implemented in Bouguet’s (2013) toolkit is 

based on work by Kannala and Brandt (2006). Their position is that a real 

fisheye lens does not follow any single theoretical projection. So, they proposed 

that a fisheye lens is best described by a generic fisheye projection equation. 

This is given in Equations 2.15 and 2.16 and is applied to the undistorted 

normalised image coordinates in Equation 2.14: 

[ ′′] = � [ ] 2.14 

� = � + � � + � � + � � + � �  2.15 

� = tan−  2.16 

where  is the magnitude of , , �  (� = 6 to 9) are the radial distortion 

coefficients, and � is the angle between an incoming ray and the optical axis. 
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Bouguet’s (2013) toolkit does not account for tangential distortion for a fisheye 

lens. In contrast, Kannala and Brandt (2006) do. Therefore, Bouguet’s 

implementation could be considered incomplete. 

The fourth, and final, transformation in the sequence is from the distorted 

normalised image coordinate system to the pixel coordinate system. This 

consists of a change in origin and the effects of two physical features of the 

camera: focal length and skew: 

[ ] = [ ′� + ′� +′� + ] 2.17 

where  and  are the coordinates of the principal point in pixels, �  and �  are 

the focal length on the U and V axes (in pixels), and � is the skew between 

these axes. 

The principal point is the centre of the radial distortion. It is assumed to be at 

the image centre, but imperfections in the camera may mean this is not the 

case. The skew is usually considered to be zero, i.e. the angle between the 

axes is 90° (Bouguet 2013, Bradski and Kaehler 2008 and Zhang 2000). The 

use of two focal lengths allows for non-square pixels. The aspect ratio, which is 

defined as � �⁄  is a measure of this; its default value is one, i.e. square pixels 

are assumed. 

Reconstruction 

The first transformation is from the pixel to the distorted normalised image 

coordinate system. This is achieved by a re-arrangement of Equation 2.17 to 

give: 
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[ ′′] = [ − ′� − �⁄− �⁄ ] 2.18 

 
The second transformation in the sequence is from the distorted normalised 

image to the undistorted normalised image coordinate system. This 

transformation removes radial and tangential distortion. There isn’t a closed 

form solution to this (Heikkilä and Silvén 1997). So, Bouguet’s (2013) toolkit 

uses an iterative method in which an initial approximation converges toward a 

final value over twenty iterations. 

The non-fisheye transformation is: 

[ ] = � ([ ′′] − [ ]) 2.19 

where �,  and  are as defined in Equations 2.12 and 2.13. Equations 2.19, 

2.12 and 2.13 are iterated twenty times. On the first iteration,  is unknown, so 

an approximate value is used (in Equations 2.12 and 2.13): it is set to | ′, ′|. 
On subsequent iterations  is set to | , |, i.e. using the  and  calculated on 

the previous iteration. 

The fisheye transformation is: 

[ ] = tan �′ [ ′′] 2.20 

� = �+ � � + � � + � � + � �  2.21 

where �  (� = 6 to 9) and � are as defined in Equations 2.14 to 2.16 and ′ is the 

magnitude of ′, ′ . Equation 2.21 is iterated twenty times. On the first 

iteration, � is unknown so an approximate value is used: it is set to tan− ′. On 
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subsequent iterations, the previously calculated value of � (from Equation 2.21) 

is used. 

The third transformation in the sequence is from the undistorted normalised 

image to the camera coordinate system. Dunn et al. (2012) established a way of 

doing this transformation using line-plane interception geometry. 

[ ] = [ ] 2.22 

where  is the distance, in the camera coordinate system, between the optical 

centre and point , , . 

The fourth, and final, transformation in the sequence is from camera to world 

coordinate systems. This consists of rigid body transformation, which is the 

reverse of that performed in Equation 2.7. 

[ ] = �− [ ] −  2.23 

Examples 

There are no known uses of the nonlinear calibration procedure in swimming 

competition performance analysis. However, Dunn et al. (2012) used it to 

construct a calibrated plane from video footage of a tennis competition. One 

camera used the nonlinear calibration procedure; this camera had a field of 

view that included the singles court and the surrounding area (which was 

needed as the play was not restricted to the court). The camera was located in 

the spectator stands at approximately (-8 m, -12 m, 9 m) in the world coordinate 

system. Four control points were located at the corners of the singles court, 

which measured about 24 m in the X axis and 8 m in the Y axis (ITF 2015). The 



37 
 

calibrated plane was larger; it was approximately 32 m by 18 m. Figure 2.12 

shows the camera location, singles court, control points and calibrated plane. 

 

Figure 2.12. Camera location, tennis court and calibrated plane used by Dunn et al. (2012). Control 

points were at the corners of the singles court. The calibrated plane measured 32 m by 18 m. 

 
Dunn et al. (2012) used a 1:30 scale model of the competition setup to assess 

reconstruction accuracy. The nonlinear and 2D-DLT calibration procedures 

were used to reconstruct 60 test points inside the singles court and 64 outside 

it. The results are summarised in Table 2.5. The nonlinear calibration procedure 

gave lower reconstruction error than 2D-DLT in the X axis and the resultant 

direction. Dunn et al. (2012) attributed this to 2D-DLT neglecting to account for 

lens distortion. These distortions were high as a wide field of view was needed 

to capture footage of the calibrated plane. 
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Table 2.5. RMSE of reconstructed test points in the X and Y axes and the resultant (R) direction 

from Dunn et al. (2012). The 2D-DLT calibration procedure used fifteen control points whereas the 

nonlinear one used four. n = 60 for inside and n = 64 for outside. 

 
 

X (10-3 m) Y (10-3 m) R (10-3 m) 

Inside 
2D-DLT 71.0 39.8 81.4 

Nonlinear 38.1 55.9 67.7 

Outside 
2D-DLT 105.8 71.6 127.8 

Nonlinear 34.9 69.7 78.0 

 

Advantages 

The nonlinear procedure has the following advantages: 

 Freely positioned camera. The camera can be located wherever it can 

capture footage of the calibrated plane. 

 Inbuilt support for lens distortion and camera imperfections. Although a 

zero distortion and perfectly constructed camera is theoretically possible, 

in practise, most cameras are imperfect and have some distortion 

(Bradski and Kaehler 2008). The nonlinear calibration procedure can 

account for this whereas linear-based procedures, e.g. linear scaling and 

2D-DLT, may not be able to. This allows for wide field of views, where 

lens distortion can be large (as shown by Dunn et al. 2012). 

 Single camera. A wide field of view makes it more likely that a single 

camera could be used to obtain footage of a swimming pool. This 

removes the logistical problems associated with multiple cameras, which 

are identified in the Optical axis section. 

 Fine control. Any of the intrinsic parameters or distortion coefficients can 

be calculated or fixed. In this way, the calibration model need be no more 

complex than needed, which may help avoid numerical instability (Zhang 

2000). In addition, the equations that describe the lens distortion are 
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interchangeable. For example, Bouguet (2013) provides equations for 

fisheye and non-fisheye lenses. This means that the equation can be 

matched with the type of external lens, if any, that was used. 

 Inbuilt support for handling noise. Heikkilä and Silvén (1997) state that 

images always contain noise. The nonlinear calibration procedure is 

numerically stable, i.e. it dampens the effect of noise on the intrinsic 

parameters and distortion coefficients. Zhang (2000) did a series of 

computer simulations to show this: noise led to a 0.3% error in focal 

length and less than a 1 pixel error in principal point. Using more images 

of the calibration object than is strictly necessary when calculating the 

intrinsic parameters and distortion coefficient gives this. 

Disadvantages 

The nonlinear procedure has the following disadvantages: 

 Complexity. The nonlinear calibration procedure is the most complex of 

those considered in this document. Images of a calibration object must 

be captured; no other procedure requires this step. In addition, options 

for the calibration model (e.g. number of distortion coefficients) must be 

chosen. Although this offers fine control, as will be shown in Chapter 3, 

an incorrect choice can have a large and detrimental effect on 

reconstruction error. 

 Mathematically challenging. The mathematics that underpins this 

procedure is not straightforward. This is in stark contrast to the optical 

axis and linear scaling procedures and, to some extent, 2D-DLT. 

 Large depth of field is required for large control volumes. Focused 

footage of the calibration object and the objects of interest, e.g. the 
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swimmers, is required. The calibration object is typically held within a 

metre or so of the camera whereas the swimmers are tens of metres 

away. Such a depth of field requires a narrow aperture, which can lead to 

underexposed footage. To ensure a good quality calibration, exposure 

time can be increased when capturing footage of the calibration object. 

Then, the exposure time can be reduced to prevent blurring in the race 

footage. 

2.3.8 Conclusion 

This section reviewed methods that have or could be used in swimming 

competition performance analysis and found: 

 All of the existing video-based competition performance analysis 

methods have used either a multi-camera system or a single panning 

camera. 

 Neither of these is ideal. A multi-camera system can cause logistical 

problems and calibration for a panning camera is time-consuming. 

 The nonlinear calibration procedure was the only one with inbuilt support 

for a lens that could achieve a wide field of view. This may enable a 

single fixed camera to obtain the footage needed to analyse swimmers in 

the clean swimming phase. This calibration procedure has not previously 

been used in swimming competition performance analysis. So, its 

performance in this application would need assessing. 
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2.4 Automated swimmer digitisation 

2.4.1 Introduction 

Section 2.2 identified that competition performance analysis uses manual 

digitisation of a race’s video footage to split the race into phases and measure a 

swimmer’s performance in each phase. In this section, ways of automatically 

doing this are reviewed. Such automated methods use digital image processing 

techniques. Two commonly used techniques are differencing and thresholding; 

these are typically used in combination to separate a foreground object from 

those in the background. Differencing subtracts an image of the background 

from an image that contains the background and a foreground object. 

Thresholding classifies as background each pixel that is less than a certain 

value, which is called the threshold. The other pixels are part of a foreground 

object. The output of these two techniques is usually an image in which the 

background is black and foreground is white. An example is in Figure 2.13. 

 

Figure 2.13. Example of thresholding to classify background and foreground pixels (Russ 2011, 

p402). 
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No published studies on automated swimming competition analysis could be 

found. One study that described an automated and video-based system for 

measuring swimmer lap time in training was found (Pogalin et al. 2007). A small 

body of work on automated and video-based drowning prevention systems was 

also found (Eng at al. 2003, Lu and Tan 2004, Wang et al. 2004, and Chan 

2013). Arguably the most relevant study in this area remained unpublished. The 

Centre for Sports Engineering Research at Sheffield Hallam University 

developed a prototype stroke detection system, called iSwim (Driscoll and 

Kelley 2013). All these studies are reviewed in this section. 

In general, these studies shared a common approach to detecting swimmers in 

video footage. This approach is called motion-based and assumes that there 

are two types of object in a scene: a static background and one or more moving 

foreground objects. In competition performance analysis the swimmers would 

be the foreground objects and everything else, e.g. the water, lane ropes and 

pool markings, would be the background objects. 

An approach such as this typically involves the following steps: 

1. Build models of the background and foreground objects. 

2. Use the models to classify the pixels in an image as belonging to either a 

background or foreground object. 

3. Identify the swimmers in the set of foreground objects and track each 

swimmer from frame-to-frame. 

4. Update the models to include any new knowledge about the background 

and foreground objects gained from steps 2 and 3. 
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How the studies from the literature addressed the four steps listed above is 

discussed in the following subsections. 

2.4.2 iSwim 

This is a prototype of an automated and video-based stroke detection system, 

which was developed by Driscoll and Kelley (2013) at the Centre for Sports 

Engineering Research at Sheffield Hallam University. It was targeted at 

competition performance analysis. In this regard it may be unique: another 

study on automated and video-based competition performance analysis was not 

found. 

iSwim used video footage from a single fixed camera. An example of the 

footage used is in Figure 2.14. 

 

Figure 2.14. iSwim used video footage from a single fixed camera. 

 
Strokes were detected using the steps listed below. These are then discussed 

in more detail in the following subsections. 

1. Select a background image, B. 
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2. Construct five profile lines per lane. 

3. Read RGBr for each pixel on each profile line in B, where RGBr is the red 

channel in the RGB colour space. 

4. Iterate through each image, fi, in the race footage and: 

4.1. Read RGBr for each pixel on each profile line in fi. 

4.2. Calculate the absolute difference between the corresponding values in 

the RGBr profile lines for fi and B. 

4.3. Suppress any small differences in RGBr. 

4.4. Create a mean profile line. 

4.5. Identify the swimmer’s leading edge on the mean profile line. 

4.6. Generate a signal from the rate of change of the leading edge of the 

swimmer. 

4.7. Process the signal to split the tracking data into laps. 

4.8. Further process the signal for each lap to detect when the swimmer 

performed a stroke. 

Models of background and foreground objects 

The background model was a single image when the pool was empty. Typically, 

this image was from just before the start of the race. An analysis of the colours 

in such images showed that the background was dominated by RGBb and 

RGBg. In the presence of a swimmer these values changed little yet the amount 

of RGBr increased. This gave the swimmer model, i.e. a clear increase in RGBr 

above the background value. The RGBr, RGBg and RGBb values along a line in 

the centre of a lane are shown in Figure 2.15. 
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Figure 2.15. RGBr, RGBg and RGBb values along a line in the centre of a lane (Driscoll and Kelley 

2013, p14). 

 
A key innovation in iSwim was the use of profile lines. A profile line was a line in 

a swimming lane, which was one pixel wide and aligned with the swimming 

direction. Five such lines were positioned in the centre of each lane. They had 

two purposes: a) reduce the computational burden by decreasing the number of 

pixels that had to be stored and processed and b) omit the lane ropes and 

pixels that were adjacent to them. It is likely that these pixels were excluded to 

prevent them being (erroneously) classified as foreground objects, i.e. 

swimmers. Five profile lines superimposed on a lane is shown in Figure 2.16. 

 

Figure 2.16. The position of five profile lines superimposed on a lane (Driscoll and Kelley 2013, 

p15). 
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Classification of pixels 

iSwim used a differencing approach to classify the pixels on the profile lines. 

First, the absolute difference between the RGBr values of corresponding pixels 

in the current and background image were calculated. Secondly, small 

differences in RGBr were suppressed: any difference in the lower 98th percentile 

was set to zero. Thirdly, the five profile lines were collapsed into one; this line 

was the mean of the five it was constructed from. Finally, another suppression 

of small values was done: any pixel on the mean profile line whose RGBr value 

was in the lower 50th percentile was classified as being part of the background 

and the rest were said to belong to the foreground objects. As there was only 

one swimmer per lane, all foreground pixels in a lane were assumed to belong 

to that swimmer. 

Tracking of swimmers 

In iSwim, the swimmer’s position was determined by finding the position of the 

first and last foreground pixel on the mean profile line. This process is shown in 

Figure 2.17. The rate of change of the first and last positions was used to split 

the race into laps, to identify the clean swimming phase in each lap, and to 

detect when the swimmer performed a stroke in the clean swimming phases. 

 

Figure 2.17. The first and last position of a foreground pixel on the mean profile line (Driscoll and 

Kelley (2013, p17). 
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Updating models of background and foreground objects 

The background object model was not updated: the same background image 

was used when processing all images in the race footage. Similarly, the 

foreground object model was not updated, but it did adapt to the RGBr values 

that were in the current and background images: the swimmer was made up of 

the pixels that had the highest RGBr values. 

Advantages 

The iSwim system has the following advantages: 

 Single-camera system. The video footage was captured by a single 

freely positioned camera. 

 Simplicity. The background model was a single image and the swimmer 

was identified by a simple process involving two fixed percentiles. Also, 

swimmer tracking was straightforward. 

 Profile lines. These reduced the number of pixels that had to be read 

from hard disk, stored in memory, and processed. In addition, they could 

be positioned to exclude problematic regions of the image (i.e. the lane 

ropes).  

 Low computational burden. First, the RGB colour space was used; this is 

the native colour space in many development tools and hence 

conversion to another colour space was not required. Secondly, as 

discussed above, the use of profile lines had a lower computational 

burden than if all pixels in each lane were used. Finally, iSwim used 

simple models that were not updated. 

Disadvantages 

The iSwim system has the following disadvantages: 
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 Modelling of non-static background. iSwim made no attempt to model 

changes in the background. Instead, some of the background motion 

was omitted by careful positioning of the profile lines. Such positioning 

may not be suitable for tracking swimmers who are adjacent to the lane 

ropes. 

2.4.3 Lap time measurement system 

This is an automated and video-based lap time measurement system, which 

was developed by Pogalin et al. (2007) in conjunction with the Dutch Olympic 

Committee. It was targeted at the competitive swimming training environment. 

Three pool-side, fixed view cameras, with overlapping views, were used to film 

the swimming that took place in three lanes of a 50 m swimming pool. The 

lanes had one to four swimmers in them. The camera positions and example 

footage is shown in Figure 2.18. 

 
 

 
 

Figure 2.18. Camera positions and example footage for the lap time measurement system (Pogalin 

et al, 2007, p6 and p7). 
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The footage was distorted. This was undistorted using the nonlinear calibration 

procedure as implemented by Bouguet (2013). Point reconstruction was 

achieved with the linear scaling algorithm; control points on the pool deck and 

lane ropes were used to calculate the scaling coefficient (in Equation 2.1). 

Lap times were measured by iterating through each image, fi, in the training 

footage and applying the process detailed below: 

1. Read RGB for each pixel in each lane in fi. 

2. Convert the RGB to the Cr channel of the YCbCr colour space. 

3. Update background image, Bi, using a weighted average scheme. 

4. Calculate the difference between the Cr values in fi and Bi. 

5. Threshold the resulting differences. 

6. Associate connected regions of foreground pixels in fi with those from 

previous frames.  

Models of background and foreground objects 

Pogalin et al. (2007) noted that the pool was largely blue and the swimmers 

were mainly red. This was a similar finding to that reported by Driscoll and 

Kelley (2013). In addition, they found that the difference between pool and 

swimmer was enhanced by converting from the RGB to the YCbCr colour 

space. Only the Cr channel of this colour space was subsequently used. 

The background model in frame i, i.e. Bi, was a weighted average of the 

previous background model and the current image, fi: 

= − − + �  2.24 

where  is the background model update rate. In this way, the background 

model was continuously updated. 
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The foreground objects, i.e. the swimmers, were not directly modelled. Instead, 

a pixel not considered to be part of a background object was a swimmer. This 

was similar to the approach used by iSwim. 

Classification of pixels 

Pogalin et al. (2007) classified pixels by way of background subtraction. The 

difference between the Cr values of corresponding pixels in the current and 

background image were calculated. The difference values were thresholded 

and foreground pixels were formed into connected regions. If such regions 

contained a certain number of pixels and a fraction of these had difference 

values above an upper threshold, then all the pixels in that region were 

classified as being a foreground object, i.e. a swimmer. All other pixels were 

classified as background. 

Tracking of swimmers 

Pogalin et al. (2007) tracked swimmers between frames, cameras and laps. If a 

connected region of foreground pixels overlapped one from the previous frame, 

then these two regions were said to be the same swimmer. Swimmers were 

tracked across cameras by selecting the regions that had the “best degree of 

overlap” (Pogalin et al. 2007, p9) and were moving in the same direction. 

Tracking swimmers between laps proved to be problematic as they were either 

underwater or static (and therefore less red than a moving swimmer). Methods 

for handling this and other challenges, such as the merging and splitting of 

swimmers and incomplete tracking, were presented. These included manual 

interventions. 

Advantages 

The lap time measurement system has the following advantages: 
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 Simplicity. The background model was constructed and updated via a 

simple equation and the foreground objects were classified through a 

straightforward process involving two fixed thresholds. 

 Regular background model updates. This accounted for the highly 

dynamic nature of the swimming pool environment. 

 Swimmers as connected regions. It was recognised that swimmers must 

be a connected region of foreground pixels that was a certain size. This 

was used to inform the classification of pixels. As a by-product, small 

non-static background objects (e.g. ripples, reflections) that were in the 

same part of the colour space as the swimmers were rejected. 

Disadvantages 

The lap time measurement system has the following disadvantages: 

 Multiple cameras. The system was time-consuming to setup: each 

camera had to be positioned and orientated so that it overlapped with the 

adjacent one and then calibrated. The authors identified that such a 

system would ideally have fewer cameras. 

 Modelling of non-static background. Reflections and ripples were not 

modelled and occasionally prevented identification of a swimmer or led to 

background objects being classified as a swimmer. Examples of this are 

shown in Figure 2.19. 

 Above water and motion-based approach for tracking underwater or 

static foreground objects. Swimmers at the end of a lap proved hard to 

track. 
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a) b) 

 
 

 
 

Figure 2.19. Reflections and ripples a) preventing swimmer identification and b) incorrectly 

identified as a swimmer (Pogalin et al. 2007, p12). 

 

2.4.4 Drowning prevention systems 

Systems aimed at the prevention of drowning in swimming pools are described 

in this subsection. This involves tracking swimmers in video footage from above 

water fixed cameras and identifying the early signs of a water crisis. Four 

studies illustrate the progress in this area. These are discussed in more detail in 

the following subsections. 

 Eng at al. (2003). Introduced block-based models for background and 

foreground objects. 

 Lu and Tan (2004). Used a Kalman filter to track swimmers. This 

provided a local search window for subsequent swimmer identification. 

Devised a scheme to remove the splash created by the swimmer. 

 Wang et al. (2004). Introduced pixel motion frequency, which 

characterised the temporal variation in a pixel’s colour. This was used to 

classify and filter pixels and hence reduce noise and specular reflections. 
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 Chan (2013). Developed the pixel motion concept to classify the 

background and different parts of the swimmer. This provided a local 

search window for swimmer identification. 

These studies share a common approach to identifying and tracking swimmers: 

1. Take a sequence of images: 

1.1. Learn background and foreground models. 

1.2. Classify each pixel using its motion frequency, if used. 

2. Iterate through each image, fi, in the sequence and: 

2.1. Calculate the difference between each pixel in fi and the background 

and foreground models. A local search window may be used. 

2.2. Use the difference to classify each pixel as belonging to either a 

background or foreground object. 

2.3. Identify the swimmers and associate them with those from previous 

tracking. 

2.4. Update the background and foreground models. 

Models of background and foreground objects 

The drowning prevention systems used a variety of colour spaces. Eng et al. 

(2003) found that the CIELa*b* provided better segmentation, i.e. larger 

differences between background and foreground objects, than other spaces. Lu 

and Tan (2004) used HSV and Chan (2013) used RGB. 

All studies constructed a background model by clustering in their chosen colour 

space. This approach was motivated by noting that a swimming pool contained 

only a few background objects that formed tight clusters in the colour space. 

Example objects are water, pool floor, and pool floor markings. A background 
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model that consisted of two clusters in HSV colour space is shown in Figure 

2.20. 

 
 

 
 

Figure 2.20. A background model consisting of two clusters in the HSV colour space (Lu and Tan 

2004, p162 and p163). 

 
Lu and Tan (2004) formed clusters for the whole pool whereas the others used 

a block-based approach. This split the pool into a grid of non-overlapping 

blocks, e.g. Chan (2013) split the pool into a grid of 30 by 32 pixel blocks and 

formed clusters for each block. 

Eng et al. (2003) and Wang et al. (2004) used k-means clustering to find up to 

three cluster centroids per block. Lu and Tan (2004) used a Gaussian Mixed 

Model: this described the pool as a set of distributions, which each had its own 

mean and standard deviation. Chan (2013) combined elements of both these 

methods, i.e. k-means to find clusters, which were then characterised by the 

mean and standard deviation of their Gaussian distribution. 

All the studies recognized that the background objects were subject to temporal 

variations. These variations were caused by water movement, reflections, 

shadows, splashes and ripples. Examples of the effect of these on a pool floor 

marking are shown in Figure 2.21. The consensus was that such movements 

had to be accounted for when building a background model. 
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Figure 2.21. A pool floor background pixel affected by water movement and ripple in a short 

sequence of images (Lu and Tan 2004, p162). 

 
One approach, used by Lu and Tan (2004), was to build a background model 

from images when the background was not moving, i.e. an empty and still 

swimming pool. The other studies constructed a clean background image (B) 

from a sequence of images, e.g. Chan (2013) used sequences of five or twelve 

images. A temporal median filter was used to construct B. This filter sets a pixel 

in B, i.e. B(U, V), to be the colour that was the closest to the corresponding 

pixels in the image sequence using: 

, = {� , ∈ � , | min� , ∑|� , − � , |�
= } 2.25 

where � ,  is the colour of pixel ,  in image . This is Equation 1 from 

Eng et al. (2003). A clean background image constructed using a temporal 

median filter is shown in Figure 2.22. 
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Figure 2.22. A clean background image constructed with a temporal median filter from a sequence 

of images that contained a swimmer (Chan 2013, p82 and p85). 

 
Two approaches to constructing a model of a foreground object, i.e. a swimmer, 

were reported. Eng et al. (2003) and Lu and Tan (2004) used the same 

approach they used to model the background, i.e. clustering in colour space. In 

contrast, Wang et al. (2004) and Chan (2013) did not directly model the 

swimmers. Instead, a pixel not considered to be part of a background object 

was a swimmer. 

The modelling described so far was colour-based. Wang et al. (2004) and Chan 

(2013) did an additional modelling step, which characterised how a pixel’s 

colour changed over a sequence of images. This was called pixel motion 

frequency and was used to identify certain classes of background or foreground 

objects. 
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Wang et al. (2004) classified pixels as low, medium or high frequency. The 

background was low and noise was high. The medium class contained a 

mixture of non-static background objects and the foreground objects. These 

classes were used to determine which filter to apply to a pixel. Low frequency 

pixels were not filtered, noise was supressed by applying a spatial mean filter, 

and a temporal median filter reduced specular reflections for the medium 

frequency class. 

Chan (2012) used pixel motion frequency to define a search window that 

identified the most likely location of the swimmers in the image. A periodogram 

was used to characterise the frequencies; this is a histogram of frequency for a 

certain class of object. A periodogram for a swimmer’s head is shown in Figure 

2.23. Classes were no motion, random motion, water ripple and swimmer’s 

head, upper trunk and hand. Pixels were classified by comparing the amplitude, 

frequency and mode of its distribution to the learnt periodograms. 

 

Figure 2.23. Periodogram for a point on swimmer’s head calculated over thirty frames (Chan 2013, 

p79). 

Classification of pixels 

The logic used by Eng et al. (2003) to classify pixels as belonging to either a 

background or foreground object is shown in Figure 2.24. 
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Figure 2.24. Pixel classification logic for Eng et al. (2003). 

 
The distances between a pixel and the block-based background and foreground 

models (i.e. db and df in Figure 2.24) were calculated for an eight-connected 

region of blocks. The block that enclosed the pixel and the eight blocks that 

surrounded it were used. The minimum distance between the pixel’s colour and 

the centroids in these nine blocks was found; this gave db and df. 

Pixels for which df was less than db were classified as belonging to a foreground 

object. Other pixels were subjected to a thresholding scheme. All pixels whose 

db value was above a lower threshold were considered to be candidate 

foreground pixels. These were formed into connected regions. If such regions 

contained a certain fraction of pixels whose db value was above an upper 
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threshold, then all the pixels in that region were classified a part of a foreground 

object. All other pixels were classified as background. 

Lu and Tan (2004) used similar logic to Eng et al. (2003). This is shown in 

Figure 2.25. 

 

Figure 2.25. Pixel classification logic for Lu and Tan (2004). 

 
The probability that a pixel was part of a background or foreground object was 

calculated. This gave pb and pf (in Figure 2.25). If pf was greater than pb, then 

the pixel was initially classified as belonging to a foreground object. All other 

pixels were classified as being part of the background. The candidate 

foreground pixels were subjected to a further test. This used the pixel’s HSVV, 

i.e. the intensity of the pixel. If the intensity was less than 0.9 of the average 

intensity of the background, then the pixel was classified as a foreground object, 
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i.e. a swimmer. This was based on the observation that a swimmer’s intensity 

was less than that of the water and the splashes created by the swimmer’s 

presence. An illustration of this is in Figure 2.26. 

 

Figure 2.26. HSVV of pixels in region around a swimmer (Lu and Tan 2004, p165). 

 
Wang et al. (2004) used a similar classification scheme to Eng et al. (2003). 

Key differences were the pre-processing of images using pixel motion 

frequency and no swimmer models. This gave the logic shown in Figure 2.27, 

i.e. after pixel motion frequency filtering, the pixels were subjected to the 

thresholding scheme used by Eng et al. (2003). 
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Figure 2.27. Pixel classification logic for Wang et al. (2004). 

 
Chan (2013) used pixel motion frequency to perform an initial classification of 

pixels. This produced a motion map in which pixels most likely to be part of a 

swimmer were set to white. An example motion map is shown in Figure 2.28. 

 
 

 
 

Figure 2.28. Motion map (Chan 2013, p81 and p83). The pixels most likely to belong to the swimmer 

were set to white.  

 
The difference between the RGB colours of the pixels in the motion map’s white 

region and the background model were calculated. A 5 by 5 grid of blocks in the 

background model, centred on the one that enclosed the pixel, was used. Any 
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pixel for which this difference was less than a threshold was classified as part of 

the background and the other pixels were said to belong to a foreground object. 

Chan’s (2013) process for classifying pixels is shown in Figure 2.29. 

 

Figure 2.29. Pixel classification logic for Chan (2013). 

Tracking of swimmers 

The first step in tracking swimmers was to label the connected regions of 

foreground pixels. Then, two methods of identifying the same swimmer in two 

consecutive frames were used. Eng et al. (2003) and Wang et al. (2004) 

associated the swimmers that had the minimum Mahalanobis distance between 

them. Lu and Tan (2004) used a Kalman filter, which characterised a swimmer 

as a current position and an estimated inter-frame displacement. The swimmer 
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that was closest to the predicted position was said to be the same swimmer. 

Chan (2013) did not track swimmers. 

Updating models of background and foreground objects 

The background models were periodically updated. Chan (2013) provided an 

explanation of how this was done: the model was updated, if needed, every fifth 

frame; this involved a weighted adjustment to the mean and standard deviation 

of the distributions in each block using a weighted average method similar to 

that presented in Equation 2.24. 

Advantages 

The drowning prevention systems had the following advantages: 

 Advanced models of the background and foreground objects. Clustering 

captured the object’s main characteristics. This, with the use of the 

smallest distance between a pixel and the clusters that surrounded it, 

supressed small variations in the images. In effect, the dominant objects 

were identified, modelled and searched for. Pixel motion frequency was 

used to remove known problems, e.g. noise and specular reflections. In 

addition, it was used to define a search window where the swimmer was 

most likely to be; this removed most non-swimmer pixels at an early 

stage. Altogether, these advanced models increased the likelihood of a 

correct classification of pixels. 

 Use of clean background images. The background models were 

constructed from an image that averaged out temporal variations. In 

general, a value that is the average of several measurements is more 

likely to represent the true value than is a single measurement. 



64 
 

Therefore, it can be expected that this approach better characterises the 

background than does a single image. 

 Regular model updates. This accounted for the highly dynamic nature of 

the swimming pool environment. 

 Reduced memory requirement. Representing the background and 

foreground objects as clusters in colour space required less memory 

than would have been needed to store the colour of all pixels. 

 Swimmers as connected regions. It was recognised that swimmers must 

be a connected region of foreground pixels that was a certain size. This 

was used to inform the classification of pixels. 

Disadvantages 

The drowning prevention systems had the following disadvantages: 

 Complexity. The construction, use and update of the advanced models of 

the background and foreground objects are not easy to understand or 

implement. As a result, specialist knowledge and software, e.g. MATLAB 

with the statistics toolbox, would be required. 

 Large execution time. This complexity had another cost: high execution 

time. Chan et al. (2013) reported the execution time for their system, 

which ran in MATLAB on a computer with a 2.1 GHz CPU and 1 GB of 

RAM. It took 21 minutes and 6 seconds to process 60 frames. In 

contrast, Eng et al. (2003) ran their simpler system in real time at a frame 

rate of 4 Hz. 

2.4.5 Conclusions 

Section 2.2 identified that competition performance analysis used manual 

digitisation. This section reviewed ways of automatically doing this and found: 
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 A key challenge is how to use digital image processing techniques to 

identify swimmers in video footage where the background is not static. 

 A regularly updated model of the background is probably needed. Such 

models can be complex and may have large execution times. 

 The camera that captures the footage must have a fixed view. Ideally, a 

single camera would be used. 

2.5 Summary 

The clean swimming phase was identified as a key phase in a race. This phase 

is at least 30 m long in the X axis. 

Automated digitisation of the swimmers in the clean swimming phase of a race 

should be possible. Digital image processing techniques could achieve this. The 

highly dynamic nature of the swimming pool needs to be modelled. 

A single-camera system is preferable to a multi-camera one. In addition, for 

automated digitisation, the camera must have a fixed view. 

The nonlinear calibration procedure is probably the best way of measuring 

distances for such a system. The accuracy and precision with which it could do 

this has not been assessed. Figure 2.30 identifies the different errors in 

reconstructed distances that should be considered. 
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Figure 2.30. Errors in distances reconstructed using the 2D-DLT and nonlinear calibration 

procedures. 

 
The errors in Figure 2.30 are described below: 

 Calibration model. A calibration model is used to convert distances in the 

video footage to distances in the swimming pool. So, calibration model 

error is caused by not using the correct relationship between distances in 

the video footage and the swimming pool. 

 Control point. A calibration model is calculated from control points. These 

provide information about the relationship between distances in the video 

footage and the swimming pool. The control points must be measured 

and are therefore subject to error. So, control point error quantifies how 

uncertainty in the measurement of the control points propagates to error 

in reconstructed distances. 

 Calibrated plane. This is the combination of calibration model and control 

point errors. It shows how sensitive a calibration model is to uncertainties 

in the measurement of the control points that is was calculated from. 

 Swimmer point. A swimmer point is the point on a swimmer that was 

digitised. As a measured value, it is subject to error. So, swimmer point 
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error quantifies how uncertainty in the digitisation of a swimmer 

propagates to error in reconstructed distances. 

 Total. This is the combination of all other errors. It shows how errors in 

the construction of a calibrated plane and the digitisation of swimmers on 

that plane propagate to error in reconstructed distances. 

2.6 Aim and objectives 

2.6.1 Aim 

To establish a process to enable the confident, accurate and precise use of a 

wide field of view for measuring distance and speed in sports analysis. 

2.6.2 Objectives 

1. To establish a process for determining the accuracy and precision with 

which distance and speed can be measured from video footage of a 

sports competition that was captured with a wide field of view. 

2. To demonstrate how a wide field of view can be used to measure the 

performance of elite athletes in a competition. 

3. To show how to automate the measurement of an athlete’s speed from 

video footage of a sports competition that was captured with a wide field 

of view. 
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3 Calibration model error 

3.1 Introduction 

This chapter calculated calibration model error. This was the error that was 

caused by a calibration model not having the correct relationship between 

distances in the pixel and world coordinate systems. Figure 3.1 shows its place 

in the hierarchy of errors; all the other errors in this hierarchy were fixed at zero 

in this chapter. 

 

 

Figure 3.1. Chapter 3 calculated calibration model error. Control point and swimmer point errors 

were fixed at zero. 

 
Calibration model error was calculated for different viewpoints. A viewpoint 

encapsulated the camera location, orientation, external lens and settings that 

were used to capture video footage of a swimming pool. Distinctions between 

viewpoints were: 

 Single- or multi-camera. A multi-camera viewpoint had a view of only part 

of a swimming pool; this represented the traditional approach to 

competition performance analysis in which two or more cameras were 
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used (e.g. Arellano et al. 1994, Hellard et al. 2008). A single-camera 

viewpoint captured footage of the whole swimming pool. 

 Perpendicular or non-perpendicular. A perpendicular viewpoint had the 

optical axis perpendicular to the swimming direction whereas a non-

perpendicular one did not. 

 Fisheye or non-fisheye. A fisheye viewpoint used a fisheye lens 

converter to fit the whole swimming pool into the camera’s view whereas 

a non-fisheye one did not. 

In addition to different viewpoints, calibration model error was also calculated 

for a variety of calibration models. The 2D-DLT and nonlinear calibration 

procedures were used to construct these models. 

The benchmark calibration model error was from Veiga et al. (2010). A three 

camera system was used in this study. The viewpoints were multi-camera, 

perpendicular and non-fisheye and the 2D-DLT calibration procedure was used. 

Calibration model error was 46 x 10-3 m. Veiga et al. (2010) used a real 

swimming pool to calculate calibration model error. Control points were fixed 

landmarks on the pool deck and test distances were on the floating lane ropes. 

In contrast, this chapter used a checkerboard scale swimming pool, which is 

shown in Figure 3.2. Control points and test distance endpoints were 

checkerboard corners. This approach was chosen as it offered highly accurate 

and precise world and pixel coordinates for the control points and test distance 

endpoints, an accessible and controlled environment (especially in terms of 

lighting) for filming, and the choice of any realistic viewpoint. 
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Figure 3.2. Experimental setup used to calculate calibration model error. A checkerboard scale 

swimming pool was used to calculate this error. 

 
This chapter also calculated a quantity called distortion. This was used to 

highlight the effect that a fisheye lens converter had on the video footage 

captured with it. In this way, it gave an indication of what a calibration model 

had to account for when reconstructing distances. An example of the distortion 

caused by a fisheye lens converter is shown in Figure 3.3. 

 

Figure 3.3. Distortion caused by a fisheye lens converter. 
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3.2 Method 

A summary of the method is given below. Each of these steps is described in 

more detail in the following subsections. 

1. A scale 50 m by 25 m swimming pool was created. See the Scale 

swimming pool section. 

2. Video footage of this calibrated plane was captured from four single-

camera viewpoints and a multi-camera viewpoint. The world and pixel 

coordinates of four control points and test distance endpoints were 

determined from this footage. See the Viewpoints section. 

3. Calibration models were calculated from control point coordinates and, 

for the nonlinear calibration models, video footage of a planar calibration 

object. There were twenty one calibration models for the fisheye 

viewpoints and thirty three for the non-fisheye viewpoints. Each 

calibration model used either a different calibration procedure (i.e. 2D-

DLT or nonlinear) and, for the nonlinear ones, different options when 

estimating intrinsic parameters and distortion coefficients. See the 

Calibration models section. 

4. Each calibration model was used to reconstruct test distances. 

Calibration model error was calculated. An optimal calibration model was 

selected for each viewpoint: this had the best compromise between 

calibration model simplicity and low calibration model error. See the 

Reconstruction section. 

5. Distortion was calculated for the optimal calibration model for each 

viewpoint. See the Distortion section. 
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3.2.1 Scale swimming pool 

A black and white checkerboard pattern was printed onto a flat board. The 

pattern consisted of a twelve by seven grid of 80 x 10-3 m squares. A scale 

factor of 62.5 was used to convert measurements of the checkerboard pattern 

to measurements of a real swimming pool. So, each square was 5 m and the 

central ten by five grid represented the water surface of a 50 m by 25 m 

swimming pool. All measurements in this chapter were scaled by 62.5 to 

characterise measurements of a real swimming pool. 

3.2.2 Viewpoints 

Four single-camera viewpoints (V1 to V4) and a multi-camera viewpoint (V5) 

were chosen. Camera locations for the viewpoints are shown in Figure 3.4. The 

calibrated plane for V1 to V4 was 50 m in the X axis and 25 m in the Y axis. For 

V5 it was 20 m in the X axis and 25 m in the Y axis. 

 

Figure 3.4 Camera locations for viewpoints Vi (i = 1 to 5). 
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V1, V2, V3 and V5 used camera locations that were based on the dimensions of 

the spectator seating at the Ponds Forge International Sports Centre. These 

were representative of viewpoints available at a typical swimming competition 

venue. V4 was based on a camera location used by British Swimming at the 

2012 Olympic Games. This was an atypical viewpoint: the camera was located 

at the top of a temporary stand that was removed post-Games. 

V1 and V2 needed a fisheye lens converter to fit the calibrated plane into the 

image. To test the effect of different lenses on calibration model error, V1 used 

a 0.30 multiplier fisheye lens converter and V2 a 0.42 multiplier fisheye lens 

converter. The camera location for V3 was selected to fit the calibrated plane 

into the image without the need for a fisheye lens converter. V4, due to the 

distance between the camera and calibrated plane, did not require a fisheye 

lens converter. V5 captured an image of the calibrated plane that was 20 m in 

the X axis; this was the largest length that could be captured from the camera’s 

location without using a fisheye lens converter. In addition, it was representative 

of the size of calibrated plane used in the literature (e.g. Arellano et al. 1994, 

Hellard et al. 2008). The viewpoints are summarised in Table 3.1. 

Table 3.1. Summary of viewpoints Vi (i = 1 to 5). 

 V1 V2 V3 V4 V5 

Camera X (m) 25 25 -15 25 25 
Camera Y (m) -15 -15 -15 -65 -15 
Camera Z (m) 10 10 10 42 10 
Calibrated plane X (m) 50 50 50 50 20 
Perpendicular viewpoint? Yes Yes No Yes Yes 
Fisheye viewpoint? Yes Yes No No No 

 

A Sony HDR-PJ260VE (Sony 2015) camcorder was used to capture Full High-

Definition (FHD) video footage of the calibrated plane and a planar calibration 
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object. First, the camcorder was positioned and orientated for V1. Next, it was 

zoomed and focused. Then, the camera’s settings were locked and footage of 

the calibrated plane and a planar calibration object was captured. This process 

was then repeated for V2 to V5 to give footage of the calibrated plane and 

calibration object for each viewpoint. Example images from the footage of the 

calibrated plane are shown in Figure 3.5. 

 
 

 
 

 
 

 
 

 
 

Figure 3.5. Images of the calibrated plane taken from the four single-camera viewpoints (V1 to V4) 

and multi-camera viewpoint (V5). 

 
The four corners of the calibrated plane were used as control points, Ci (i = 1 to 

4). This was the smallest number of control points that enclosed the calibrated 

plane and the minimum required to calculate a calibration model. The remaining 

corners were used to construct test distances. Each test distance was between 
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consecutive corners in the X axis and had a ground truth distance of 5 m. V1 to 

V4 had fifty six test distances and V5 had twenty. The control points and test 

distances are shown in Figure 3.6. 

 
 

 
 

Figure 3.6. Control points, Ci (i = 1 to 4), in red, test distances in pink, and test distance endpoints 

in blue. 

 
The world coordinates of the control points and test distance endpoints were 

known from the checkerboard geometry and the scale. The pixel coordinates 

were calculated by a semi-automated and sub-pixel accurate MATLAB 

(MathWorks 2014) function provided by Bouguet (2013). This function required 

the user to provide an initial estimate of the control points’ pixel coordinates and 

the number of grid squares in the calibrated plane. The function then used 

digital image processing techniques to automatically determine the sub-pixel 

accurate pixel coordinates of the control points and test distance endpoints. 

3.2.3 Calibration models 

Different calibration models were used to reconstruct the test distances for each 

viewpoint. The first was calculated using the 2D-DLT calibration procedure. The 

others used the nonlinear calibration procedure. In total, twenty nonlinear 

calibration models were calculated for the fisheye viewpoints and thirty two for 

the non-fisheye ones. The nonlinear distortion coefficients used matched the 

viewpoint, i.e. the fisheye ones used �  (i = 6 to 9) and the non-fisheye ones 

used �  (i = 1 to 5). Each nonlinear calibration model varied which intrinsic 
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parameters and distortion coefficients were calculated: a fixed radial distortion 

coefficient was fixed at zero, not calculating tangential distortion fixed �  and �  

at zero, the fixed principal point was at the image centre, and the fixed aspect 

ratio was one. The different options used when calculating nonlinear calibration 

models are summarised in Table 3.2. The term |k| was used to represent the 

number of radial distortion coefficients that were calculated. 

Table 3.2. The nonlinear calibration models varied which intrinsic parameters and distortion 

coefficients were calculated. 

 V1, V2 V3, V4, V5 
|k| 0, 1, 2, 3 or 4 0, 1, 2 or 3 
Calculate tangential? N/A Yes or No 
Calculate principal point? Yes or No Yes or No 
Calculate aspect ratio? Yes or No Yes or No 

Count 20 32 
 

 

 
 

MATLAB scripts from the International Society of Biomechanics (2014), 

Bouguet (2014) and Dunn et al. (2012) were used to do calculate the calibration 

models. Reprojection error (as described in Section 2.3.7) was calculated for 

each nonlinear calibration model. 

3.2.4 Reconstruction 

Each calibration model was used to reconstruct the test distances. The 

reconstruction was done using Equations 2.5 and 2.6 for the 2D-DLT calibration 

models and 2.18 to 2.23 for the nonlinear ones. These equations were 

implemented in MATLAB scripts from the International Society of Biomechanics 

(2014), Bouguet (2014) and Dunn et al. (2012). 
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Calibration model error was calculated for each calibration model. It was 

calculated as the RMSE of  reconstructed distances: 

√ ∑ ′ −=  3.1 

where ′ was a reconstructed distance and  was the ground truth distance. 

The error in a single reconstructed distance, i.e. ′ − , was called 

reconstructed distance error, or RDE. 

An optimal calibration model was selected for each viewpoint. This was the one 

that was the best compromise between low calibration model error and 

simplicity. A 2D-DLT calibration model was deemed to be simpler than a 

nonlinear one and when comparing different nonlinear calibration models the 

one with the fewest estimated distortion coefficients and intrinsic parameters 

was considered the simplest. 

3.2.5 Distortion 

Distortion was calculated for the optimal calibration models using the following 

steps: 

1. Defined the pixel coordinates of undistorted points, which were at the 

centre of 120 pixel squares in a 1920 pixel wide and 1080 pixel high 

image. This gave a total of 144 points. 

2. Transformed the points’ pixel coordinates to normalised image 

coordinates using Equation 2.18. 

3. Added distortion using Equations 2.11 to 2.13 for non-fisheye viewpoints 

and Equations 2.14 to 2.16 for fisheye viewpoints. 
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4. Transformed to pixel coordinates using Equation 2.17. 

5. Calculated distortion as the Euclidean distance between corresponding 

points from step 1 and step 4. 

These steps were implemented in a MATLAB script adapted from Bouguet 

(2013). 

3.3 Results 

Calibration model error for all viewpoints is in Appendix 15.1. 

3.3.1 V1 

This was one of the perpendicular and fisheye viewpoints. It used a 0.30 

multiplier fisheye lens converter. 

2D-DLT gave the highest calibration model error (1018.3 x 10-3 m) followed by 

the nonlinear calibration models with a |k| of zero (96.8 x 10-3 m to 144.7 x 10-3 

m). Once these models were discounted then calculating the principal point 

always led to the lowest calibration model errors (16.0 x 10-3 m to 16.6 x 10-3 m) 

and a |k| of one resulted in the smallest calibration model error. Calculating 

aspect ratio did not reduce calibration model error. So, the optimal calibration 

model was nonlinear with a |k| of one, a calculated principal point and a fixed 

aspect ratio. Calibration model error for this calibration model was 16.0 x 10-3 

m. 

3.3.2 V2 

This was one of the perpendicular and fisheye viewpoints. It used a 0.42 

multiplier fisheye lens converter. 

2D-DLT gave the highest calibration model error (1353.5 x 10-3 m) followed by 

the nonlinear calibration models with a |k| of zero and one (83.6 x 10-3 m to 
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627.0 x 10-3 m). Once these models were discounted then fixing the principal 

point at the image centre always led to the lowest calibration model error (20.4 x 

10-3 m to 32.2 x 10-3 m). A |k| of three or four resulted in the smallest calibration 

model error. An increase in |k| from three to four did not result in a large 

difference in calibration model error (20.4 x 10-3 m for a |k| of three and 20.5 x 

10-3 m for a |k| of four). So, the optimal calibration model was nonlinear with a 

|k| of three and a fixed principal point and aspect ratio. Calibration model error 

for this calibration model was 20.5 x 10-3 m. 

3.3.3 V3 

This was the non-perpendicular and non-fisheye viewpoint. 

2D-DLT gave the highest calibration model error (46.1 x 10-3 m). Nonlinear 

calibration models that had a |k| of zero and estimated tangential distortion had 

the lowest calibration model error (38.9 x 10-3 m to 40.2 x 10-3 m). There were 

only small differences in calibration model error between the four models that 

met these criteria. So, the optimal calibration model was nonlinear with a |k| of 

zero, calculated tangential distortion and fixed principal point and aspect ratio. 

Calibration model error for this calibration model was 39.3 x 10-3 m. 

3.3.4 V4 

This was the perpendicular and non-fisheye viewpoint. It was based on a 

camera location used by British Swimming at the 2012 Olympic Games. 

2D-DLT gave a calibration model error that was higher than 24 of the 32 

nonlinear calibration models (10.3 x 10-3 m for 2D-DLT and 14.9 x 10-3 m for the 

highest nonlinear). Nonlinear models with a |k| of two or three had the lowest 

calibration model error (4.3 x 10-3 m to 12.4 x 10-3 m). Of these, calibration 

models that calculated tangential distortion and fixed aspect ratio had, in 
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general, the lowest calibration model error (4.3 x 10-3 m to 4.6 x 10-3 m). There 

were only small differences in calibration model error between the four models 

that met these criteria. So, the optimal calibration model was nonlinear with a |k| 

of two, calculated tangential distortion and fixed principal point and aspect ratio. 

Calibration model error for this calibration model was 4.6 x 10-3 m. 

3.3.5 V5 

This was the multi-camera viewpoint. 

2D-DLT gave the highest calibration model error (14.6 x 10-3 m) followed by the 

nonlinear calibration models with a |k| of zero and one (9.9 x 10-3 m to 14.3 x 

10-3 m). Once these models were discounted then fixing the principal point and 

aspect ratio and not calculating tangential distortion gave two of the lowest 

three calibration model errors. A |k| of three gave the smallest calibration model 

error (7.2 x 10-3 m). Increasing |k| from two to three did not result in a large 

increase in calibration model error (7.7 x 10-3 m for a |k| of two). So, the optimal 

calibration model was nonlinear with a |k| of two, no tangential distortion and a 

fixed principal point and aspect ratio. Calibration model error for this calibration 

model was 7.7 x 10-3 m. 

3.3.6 Summary 

The optimal calibration models for each viewpoint are summarised in Table 3.3. 

All of these used the nonlinear calibration procedure. 
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Table 3.3. Summary of the optimal calibration models. 

 Viewpoint 
 V1 V2 V3 V4 V5 
|k| 1 3 0 2 2 
Calculate tangential? N/A N/A Yes Yes No 
Calculate principal point? Yes No No No No 
Calculate aspect ratio? No No No No No 
Reprojection error n 1296 1332 1296 1188 1332 
Reprojection error (pixels) 0.60 0.80 0.51 0.46 0.52 
RDE n 56 56 56 56 20 
RDE mean (10-3 m) 10.0 5.7 -6.3 0.0 -0.2 
RDE std. dev. (10-3 m) 12.6 19.8 39.1 4.7 7.9 
Calibration model error (10-3 m) 16.0 20.4 39.3 4.6 7.7 
Distortion n 144 144 144 144 144 
Distortion max. (pixels) 263.3 267.4 2.8 6.5 3.4 

 

 

 
 

Figure 3.7 shows how absolute RDE varied across the calibrated plane for each 

viewpoint. In general, a regular pattern was not found but V3 had a weak trend 

toward higher RDE as distance from the camera increased. The two adjacent 

large RDE for this viewpoint at 25 m in the Y axis were both underestimations of 

the ground truth distance: the test distances were reconstructed as 4.88 m and 

4.91 m. So, it was not a single error in the reconstruction of their shared point at 

(35, 25, 0) that caused these two large RDE. 
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Figure 3.7. Pattern of absolute RDE. The black dotted line is the outline of the calibrated plane. The 

distances in the grey hatched areas at the corners were not reconstructed. 
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Figure 3.8 shows the pattern of distortion for each viewpoint. In general, the 

lowest distortion was in the centre of the image and the highest toward the 

edges. 

 
 

 
 

 
 

 
 

 
 

 

Figure 3.8. Pattern of distortion. Each heat map had its own scale with blue representing the 

viewpoint’s minimum and red the maximum. 
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3.4 Discussion 

3.4.1 Comparison of single- and multi-camera viewpoints 

V1 to V4 were the single-camera viewpoints and V5 was the multi-camera 

viewpoint. 

Calibration model error for V1 to V4 was lower than that found for the 

benchmark multi-camera viewpoint. Veiga et al. (2010) reported a value of 46 x 

10-3 m. V1 to V4 were in the range 5 x 10-3 m to 39 x 10-3 m. This was an 

unexpected result: intuition suggested that increasing the size of the calibrated 

plane in the X axis should have led to an increase in calibration model error. 

A key factor in this was the difference in methods. Veiga et al. (2010) chose a 

real swimming pool whereas this study used a checkerboard scale swimming 

pool. The scale swimming pool had highly accurate and precise control point 

and test distance coordinates. This isolated the calibration model error, i.e. RDE 

was due to an incorrect relationship between distances in the pixel and world 

coordinate system rather than errors in the measurement of the control points or 

test distances. This may not have been the case for a real swimming pool; for 

example, the test distances, being located on the floating lane ropes, may have 

had changeable world coordinates. Furthermore, the checkerboard scale 

swimming pool used a semi-automated and sub-pixel accurate method of 

calculating pixel coordinates; such a method was probably not possible with a 

real swimming pool. Therefore, it is likely that the calibration model error found 

by Veiga et al. (2010) also contained error in the measurement of the control 

points and test distances. How such uncertainties affect reconstruction is the 

subject of Chapters 5, 6, 7, 8, 10 and 11. 
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An additional factor was image size. V1 to V4 used FHD footage, i.e. images 

that were 1920 pixels wide and 1080 pixels high. Veiga et al. (2010) did not 

explicitly state the size of their images. Their camera, a JVC GY-DV500E (JVC 

2014), recorded to Digital Video (DV) format, which typically gives Standard-

Definition (SD) images that are 720 pixels wide by 576 pixels high. So, although 

V1 to V4 had a larger calibrated plane in the X axis than Veiga et al. (2010), the 

image captured of it was also larger in width and height. As a result, the 

disparity in resolution (i.e. the number of pixels that represented a metre) 

between the images for V1 to V4 and Veiga et al. (2010) was lower than if the 

same resolution were used in both cases. The differences in size between FHD 

and SD images are highlighted in Figure 3.9. 

 

Figure 3.9. An SD sized viewport superimposed on a FHD image of the calibrated plane taken from 

V2. 

 
The region of the calibrated plane inside the viewport in Figure 3.9 was similar 

in size to the calibrated plane used by Veiga et al. (2010), i.e. between 10 m 

and 20 m in the swimming direction for all swimming lanes. This gave a visual 
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confirmation that the resolution for V1 to V4 was similar to what Veiga et al. 

(2010) had. Resolution is examined in more detail in Chapter 4.  

V5 used the same experimental set-up and image size as the single-camera 

viewpoints. If calibration model error were positively related to the size of the 

calibrated plane in the X axis, then V5 should have had the lowest calibration 

model error. This was not the case: it was 4.6 x 10-3 m for V4 and 7.7 x 10-3 m 

for V5. It was not clear what led to this result. A possibility is that V4 and V5 are 

examples of an underlying limit on the accuracy with which distances could be 

reconstructed by the nonlinear calibration procedure and the difference between 

them was due to factors such as noise in the world and image coordinates of 

the control points and test distances. The results showed that increasing the 

size of a calibrated plane in the X axis does not inevitably lead to an increase in 

calibration model error. 

3.4.2 Comparison of 2D-DLT and nonlinear calibration models 

For all viewpoints, the 2D-DLT calibration model was bettered by a nonlinear 

one. A key difference between them was the additional information about the 

relationship between pixel and world coordinate systems that the nonlinear 

models got from the images of the calibration object. The 2D-DLT models had 

only the world and pixel coordinates of the control points to establish this 

relationship. 

V1 and V2 were fisheye viewpoints. 

The difference between the 2D-DLT and nonlinear calibration models was most 

apparent for V1 and V2. For these two viewpoints, the calibration model error 

was 1018.3 x 10-3 m to 1353.5 x 10-3 m for the 2D-DLT models and 16.0 x 10-3 

m to 20.4 x 10-3 m for the optimal nonlinear models. To understand why this 
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was the case the 2D-DLT calibration model for V1 was examined in more detail. 

The distance between C1 and C2 (i.e. at 0 m in the Y axis) was 1767 pixels so 

a linear mapping between pixels and metres would make each 5 m test 

distance about 177 pixels. Although the actual lengths ranged from 126 pixels 

to 264 pixels two were close to 177 pixels. This is shown in Figure 3.10. 

 

Figure 3.10. Test distance length in pixels between control points C1 and C2 for V1. A linear 

mapping between pixels and metres made each 5 m test distance about 177 pixels. 

 
A test distance’s RDE was positively correlated with the disparity, in pixels, 

between the length predicted by a linear mapping and its actual length. This is 

shown in Figure 3.11. The two test distances whose length was similar to the 

linear mapping value had the smallest RDE and the RDE for the others 

reflected how far they were from the linear mapping length. 
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Figure 3.11. Pattern of absolute RDE for the 2D-DLT calibration model for V1. The black dotted line 

is the outline of the calibrated plane. The distances in the grey hatched areas at the corners were 

not reconstructed. 

 

3.4.3 Comparison of single-camera viewpoints 

V1, V2 and V4 were the perpendicular viewpoints and V3 the non-perpendicular 

viewpoint. 

V3 had a noticeably higher calibration model error than did V1, V2 and V4. 

Figure 3.7 showed that the highest RDEs for V3 tended to be for the test 

distances that were furthest from the camera. As will be shown in Chapter 4, 

these test distances were shorter in pixels than those that were closer to the 

camera and those in V1, V2 and V4. This suggested that RDE was negatively 

correlated with a test distance’s length in the pixel coordinate system. In 

conclusion, that V3 was a non-perpendicular viewpoint led to a predominance of 

short test distances and this led to high calibration model error. 

3.5 Conclusion 

This chapter calculated calibration model error and found: 

 Calibration model error for four single-camera viewpoints was lower than 

that reported in the literature for a multi-camera viewpoint. 
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 Increasing the size of the calibrated plane in the swimming direction did 

not always lead to higher calibration model error. 

 A correctly chosen nonlinear calibration model produced lower calibration 

model error than did 2D-DLT. 

 If the swimming competition venue allowed it, the best viewpoint was 

perpendicular and non-fisheye. This viewpoint had the lowest calibration 

model error. 

 A perpendicular and fisheye viewpoint should be chosen over a non-

perpendicular and non-fisheye one. 

The next chapter highlights a potential disadvantage of using a single-camera 

viewpoint instead of a multi-camera one: resolution, i.e. the number of pixels per 

metre. 
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4 Resolution 

4.1 Introduction 

This chapter calculated the relationship between the size of objects in the pixel 

and world coordinate systems. This relationship was called resolution and was 

defined as the number of pixels per metre. Two objects with different resolutions 

are shown in Figure 4.1. 

 

Figure 4.1. Distances a and b were the same length in metres but different lengths in pixels. So, 

they had different resolutions. 

 
Resolution was calculated for the single-camera viewpoints described in 

Chapter 3. These results were compared to two multi-camera viewpoints: one 

that represented the viewpoints described in the competition performance 

analysis literature (e.g. Arellano et al. 1994, Hellard et al. 2008) and a viewpoint 

that used the same experimental set-up as the single camera ones. 
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4.2 Method 

The number of pixels per metre (pixels m-1) was calculated for the viewpoints 

introduced in Chapter 3. The following steps were done for each corner on the 

checkerboard scale swimming pools shown in Figure 3.5: 

1. Line endpoints ± 0.5 m in the X and Y axis of the ground truth world 

coordinates of the corner were projected using Equations 2.7 to 2.17 and 

the optimal nonlinear calibration models listed in Table 3.3. An example 

of this projection is shown in Figure 4.2. 

 

Figure 4.2. Points were projected ± 0.5 m of a grid square corner. The length of the line in 

pixels was the hypotenuse of a right-angled triangle, whose opposite and adjacent were 

aligned with the pixel coordinate system’s U and V axes. 

 
2. Calculated the length of these lines in pixels using trigonometry to give 

pixels m-1 in the X and Y axes. 

3. Calculated the resultant pixels m-1, i.e. the square root of the sum of the 

squared X and Y pixels m-1. 
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V5 was a FHD and multi-camera viewpoint. 

A Standard Definition (SD) viewpoint, called V6, was created. It was based on 

V5. Pixels m-1 for V6 was calculated using the steps described above. At step 1 

the ground truth world coordinates, intrinsic parameters and distortion 

coefficients for V5 were used. Then, at step 2, pixels m-1 in the X axis was 

multiplied by 720/1920 and pixels m-1 in the Y axis was multiplied by 576/1080. 

This converted the pixels m-1 values from FHD to SD. In this way, the 

resolutions for V6 were representative of that found in the competition 

performance analysis literature (e.g. Arellano et al. 1994, Hellard et al. 2008). 

4.3 Results 

The mean ± standard deviation of the resolution in the X axis and resultant 

direction is in Table 4.1. V5 had the highest resolutions. V6 had resolutions that 

were similar to, but slightly lower than, V1 to V4. 

Table 4.1. Mean ± standard deviation of the resolution in the X axis and resultant direction. 

Viewpoint n X axis (pixels m-1) Resultant (pixels m-1) 

V1 66 26.4 ± 8.9 32.0 ± 10.0 

V2 66 27.5 ± 10.9 33.3 ± 11.5 

V3 66 23.2 ± 11.8 37.3 ± 11.4 

V4 66 30.7 ± 2.6 34.5 ± 3.6 

V5 30 59.0 ± 16.9 65.5 ± 22.3 

V6 30 22.1 ± 6.3 26.8 ± 10.1 
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In general, resolution in the X axis reduced with increasing distance in X and Y 

from the camera location. This is illustrated in Figure 4.3. 

  

 
 

 
 

 
 

 

Figure 4.3. Pattern of resolution in the X axis. The colour of each heat map square represented the 

mean of the pixels m-1 calculated for its corners. As a result, n = 4 for each of the squares in each 

heat map. 
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For all viewpoints, resolution in the resultant direction had a similar pattern to 

that found for the X axis but V1 and V2 had larger regions of low resolution 

whereas V3 had a smaller one. This is illustrated in Figure 4.4. 

  

 
 

 
 

 
 

 

Figure 4.4. Pattern of resolution in the resultant direction. The colour of each heat map square 

represented the mean of the pixels m-1 calculated for its corners. As a result, n = 4 for each of the 

squares in each heat map. 
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Resolution in the resultant direction at the four control points is given in Table 

4.2. In general, it reduced with increasing distance in X and Y from the camera 

location. This was not the case for V2: it was similar for all control points. 

Table 4.2. Resolution in the resultant direction for the four control points, Ci (i = 1 to 4). 

Viewpoint 
Resultant (pixels m-1) 

C1 C2 C3 C4 

V1 30.9 30.5 19.9 20.0 

V2 22.8 22.8 20.6 20.6 

V3 74.5 30.8 22.1 47.3 

V4 40.4 40.5 30.0 29.9 

V5 110.4 109.3 41.7 42.0 

V6 48.2 47.9 16.4 16.5 
 

 

 

 

 
 

 

 

4.4 Discussion 

V1 to V5 were FHD viewpoints and V6 was the SD viewpoint. V1 to V4 were 

single-camera viewpoints and V5 and V6 were multi-camera viewpoints. 

As expected, for a constant image size, increasing the size of the calibrated 

plane in the swimming direction led to a decrease in pixels m-1. For example, 

Figure 4.3 and Figure 4.4 showed that pixels m-1 in the X axis and resultant 

direction across the entire calibrated plane for V4 were less than the lowest 

pixels m-1 for V5. 

Clearly, when the calibrated plane and image size were both increased by a 

similar scale, as was the case when V1 to V4 are compared to V6, then the 

pixels m-1 remained largely unchanged. The typical viewpoint reported in the 



96 
 

literature is perpendicular, non-fisheye, multi-camera and SD. In this study, V6 

was used to approximate this. It had a calibrated plane that was 20 m in the X 

axis, i.e. 40% of the size of V1 to V4. It also had an image width that was 720 

pixels, which was 37.5% of that for V1 to V4. This led to similar resolutions for 

V6 and V1 to V4, which showed that increasing the size of the calibrated plane 

in the X axis was compensated for by increasing the image size. 

A key cause of the pattern of resolution was perspective projection. An outcome 

of this type of projection is that an object that is close to the camera appears 

larger in the pixel coordinate system than it would if it were further from the 

camera. This led to a negative correlation between pixels m-1 and distance from 

the camera. This effect is clearest for V5 and V6 in Figure 4.3 and Figure 4.4 

and was caused by Equation 2.10, i.e. the transformation from world to camera 

coordinate systems, which is a perspective projection. 

V1 and V2 were the fisheye viewpoints. 

Another factor combined with perspective projection to cause the pattern of 

resolution for V1 and V2: distortion. The barrel distortion caused by the fisheye 

lens converter decreased magnification as the Euclidean distance from the 

principal point increased. This meant that toward the edges of the calibrated 

plane more of the world was fitted into the same sized area of the image. The 

result of this was low pixels m-1 in the X axis and resultant direction in the 

regions of highest distortion. 

The combined effect that perspective projection and distortion had on pixels m-1 

in the X axis and resultant direction was most apparent in the regions around 

control points C1 and C2 for V2. When considering perspective projection, the 

pixels m-1 near to C1 and C2 would be equal to or greater than anywhere on the 
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rest of the calibrated plane. The distortion near C1 and C2 was so extreme that 

the pixels m-1 near these control points was actually low compared to the rest of 

the calibrated plane. 

4.5 Conclusion 

This chapter examined the effect that single and multi-camera viewpoints had 

on the number of pixels that represented a metre on the calibrated plane, and 

found: 

 For a constant image size, increasing the size of the calibrated plane in 

the swimming direction led to a decrease in pixels m-1. As a result, pixels 

m-1 for a single-camera viewpoint would be lower than it was for a multi-

camera one. 

 Increasing the size of the image of a calibrated plane from SD to FHD 

compensated for an increase in the size of the calibrated plane in the X 

axis from 20 m to 50 m. This made the pixels m-1 for a single-camera 

viewpoint comparable with that found in the competition performance 

analysis literature. 

 Perspective projection and distortion are key factors in pixels m-1. 

In the next chapter the effect of uncertainty in the control point coordinates on 

RDE is examined. It will be shown that pixels m-1, especially in the regions 

around the control points, was a key factor in this. 
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5 Control point error 

5.1 Introduction 

This chapter calculated control point error. This was the error in reconstructing a 

distance that was caused by uncertainty in the measurement of the control 

points used to calculate a calibration model. Figure 5.1 shows its place in the 

hierarchy of errors; all the other errors in this hierarchy were fixed at zero in this 

chapter. 

 

Figure 5.1. Chapter 5 calculated control point error. Calibration model and swimmer point errors 

were fixed at zero. 

 
Control point error was calculated using a computer simulation of the four 

single-camera viewpoints and scale swimming pool introduced in Chapter 3. 

5.2 Method 

The following steps were performed. Each of these steps is described in more 

detail in the following subsections. 

1. A way of simulating the uncertainty in the measurement of a control 

point’s world and pixel coordinates was established. For this, 
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distributions that described the likely uncertainty were created. See the 

World coordinate system uncertainty and Pixel coordinate system 

uncertainty sections. 

2. Control point error was calculated using a computer simulation of the four 

single-camera viewpoints and scale swimming pool introduced in 

Chapter 3. See the Simulation section. 

5.2.1 World coordinate system uncertainty 

Uncertainty in the measurement of a control point’s X coordinate was modelled 

as a Gaussian half-normal distribution. A half-normal one was chosen as a 

result of FINA rule FR 2.2.1 (FINA 2013a), which stated that a competition pool 

must measure at least 50 m in this axis. As a result, the half normal distribution 

ensured that uncertainty in an X coordinate only led to a distance of 50 m or 

more. Uncertainty in the measurement of a control point’s Y coordinate was 

modelled as a Gaussian normal distribution; the FINA rules did not provide 

tolerances for measurements in this axis. 

The standard deviation of these distributions was based on the precision of a 

low-cost laser distance measurement device: a Leica Geosystems DISTRO D2. 

The device’s standard deviation was 0.750 x 10-3 m for measurements up to 10 

m with a maximum increase of 0.075 x 10-3 m per metre for distances above 

this (Leica Geosystems 2014). So, the X coordinate distribution was given a 

standard deviation of 3.750 x 10-3 m and the Y coordinate distribution a 

standard deviation of 1.875 x 10-3 m. Both distributions had a mean of 0 x 10-3 

m. 

These distributions were used to simulate the measurement of a control point. 

Four measurements were simulated: two in the X axis and two in the Y axis. 
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This reflected how the measurements would be taken in reality, i.e. the 

measurement of a distance between pairs of adjacent control points in a certain 

axis. A control point’s world coordinates were simulated using the steps 

described below and shown in Figure 5.2. 

The process for simulating the measurement in the X axis between control 

points i and j was: 

1. Initialised Xi to 0 m and Xj to 50 m. This gave the ground truth 

coordinates. 

2. Drew a random sample  from a half-normal Gaussian distribution with a 

mean of 0 x 10-3 m and a standard deviation of 3.750 x 10-3 m. 

3. Drew a random sample � from a uniform distribution with a range of zero 

to one. 

4. Translated Xi and Xj along the X axis by −�  and − �  respectively. 

The process for simulating the measurement in the Y axis between two control 

points i and j was: 

1. Initialised Yi to 0 m and Yj to 25 m. This gave the ground truth 

coordinates. 

2. Drew a random sample  from a normal Gaussian distribution with a 

mean of 0 x 10-3 m and a standard deviation of 1.875 x 10-3 m. 

3. Drew a random sample � from a uniform distribution with a range of zero 

to one. 

4. Translated Yi and Yj along the Y axis by −�  and − �  respectively. 
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Figure 5.2. Method of simulating the measurement of a control point in the X and Y axes. 

5.2.2 Pixel coordinate system uncertainty 

An assessment of intra-analyst precision in control point digitisation was carried 

out. Four control points in two images of a 50 m by 25 m swimming pool were 

repeatedly digitised by one analyst. The control points were the corners of the 

swimming pool at the water surface. The images were captured from two single-

camera viewpoints (one fisheye and one non-fisheye). Each control point in 

each image was manually digitised twenty times with at least twenty-four hours 

between repeats. The mean U and V coordinate of each control point was taken 

as the best estimate of its ground truth pixel coordinates. The digitised points 

were randomly spread about the mean; this is shown for two of the control 

points, one from each image, in Figure 5.3. 
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Figure 5.3. Visualisation of the repeated digitisation of two control points. The cross is the mean of 

the digitisations. A square shows the difference between an individual digitisation and the mean. 

 
The Euclidean distance between each digitised coordinate and the mean for the 

corresponding control point was calculated. The standard deviation of these 

distances was 0.19 pixels to two decimal places. This was used to create a 

distribution that described the uncertainty in the measurement of a control 

point’s U and V coordinates. A Gaussian normal distribution was used. It had a 

mean of zero pixels and a standard deviation of 0.19 pixels. 

Four measurements in the pixel coordinate system were simulated: one for 

each control point. The process for simulating a measurement of control point i 

was: 

1. Initialised Ui and Vi to their ground truth value. 

2. Drew a random sample  from a normal Gaussian distribution with a 

mean of 0 pixels and a standard deviation of 0.19 pixels. 

3. Drew a random sample  from a uniform distribution with a range of 0° to 

359°. 

4. Translated Ui along the U axis by cos  and Vi along the V axis by sin . 
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Figure 5.4. Simulating uncertainty in the measurement of a control point in the U and V axes. 

5.2.3 Simulation 

A computer simulation of the four single-camera viewpoints (i.e. V1 to V4) and 

scale swimming pool introduced in Chapter 3 was developed. The coordinates 

of the control points and the test distance endpoints for each viewpoint were 

based on those used in Chapter 3. Test distances in this chapter had projected 

pixel coordinates; this removed calibration model error, i.e. initial RDE was zero. 

Two scenarios were simulated for each viewpoint. In the first, uncertainty was 

added to the world coordinates of the four control points, but not the pixel 

coordinates. The second did the opposite. These are referred to as the world 

and pixel scenarios. Ten thousand independent trials were done for each 

scenario: each one measured the control points (using the methods illustrated 

in Figure 5.2 and Figure 5.4), calculated a nonlinear calibration model, 

reconstructed the test distances, and calculated their RDE. The simulation used 

the intrinsic parameters and distortion coefficients of the optimal nonlinear 

calibration models listed in Table 3.3. 

5.3 Results 

The mean ± standard deviation of the control point error is shown in Table 5.1. 

The standard deviation of the control point error was much larger in the pixel 
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scenario than it was in the world scenario. Control point error had zero bias for 

the pixel scenario while the world scenario had a small bias. 

Table 5.1. Mean ± standard deviation of the control point error. 

Scenario n V1 V2 V3 V4 

World (10-3 m) 560000 0.2 ± 0.3 0.3 ± 0.3 0.3 ± 0.3 0.3 ± 0.2 

Pixel (10-3 m) 560000 0.0 ± 4.6 0.0 ± 4.5 0.0 ± 2.8 0.0 ± 0.7 
 

 

 
 

5.4 Discussion 

Four control points were used when simulating the calculation of a nonlinear 

calibration model. This was the minimum required to do this, which meant that 

the solution for the extrinsic parameters was not over-determined and error 

minimisation was not possible. As a result, uncertainty in the four control points 

propagated to error in the reconstructed distances. 

The mechanism with which it propagated was not straightforward. Consider the 

trial that led to eight of the ten largest control point errors for its viewpoint. It did 

not have the largest control point uncertainties: over 10% of the trials had larger 

ones. In addition, the largest uncertainties did not act mainly in the swimming 

direction. On the contrary, as shown in Figure 5.5, they acted perpendicular to 

it. This was counter to intuition: the test distances were in the X axis and it was 

expected that the largest control point errors would have resulted from control 

point uncertainties that also acted in this axis. 

This highlighted why a computer simulation method was chosen. For a 

nonlinear calibration model, it was difficult to predict how uncertainty in control 

point measurements would propagate to control point error. So, ten thousand 

trials were simulated. This quantified the systematic and random error in 
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reconstructed distances that would be caused by measurement of the 

swimming pool and digitisation of the control points. 

 
 

 
 

Figure 5.5. Trial that had eight of the ten largest control point errors for its viewpoint. Black arrows 

show the uncertainty in the control point’s pixel coordinates; these were scaled 400:1 for 

illustration purposes. The black dotted line is the outline of the calibrated plane. The distances in 

the grey hatched areas at the corners were not reconstructed. 

 
In general, control point error was small. The mean of the control point error 

was less than 0.3 x 10-3 m and the standard deviation was less than 5 x 10-3 m, 

i.e. under 0.1%. So, errors in reconstructed distances caused by uncertainty in 

the measurement of control points were likely to be small. 

The pixel scenario had higher variability in the control point error than did the 

world scenario. For three out of the four viewpoints, this disparity was an order 

of magnitude or more. So, the current method used to measure the pool, i.e. a 

low-cost laser distance measurement device, was deemed fit for purpose. In 

contrast, control point digitisation could be improved. Such improvements may 

lead to reductions in control point error and hence improved precision when 

reconstructing distances. 
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5.5 Conclusion 

This chapter calculated control point error and found, for four single-camera 

viewpoints, which used nonlinear calibration models to reconstruct distances: 

 Confirmation that uncertainty in a control point’s coordinates would 

propagate to error in reconstructed distances. This error was likely to be 

small. So, when using a nonlinear calibration model to reconstruct 

distances, uncertainties in the measurement of the swimming pool and 

digitisation of the control points were likely to have a small impact on the 

accuracy and precision of the reconstructed distances. 

 Measuring a 50 m by 25 m swimming pool using a low-cost laser 

distance measurement device was deemed an appropriate method. 

 An improved method of determining a control point’s pixel coordinates 

could be beneficial. 

This last point provided the motivation for the next chapter in which an improved 

method of determining a control point’s pixel coordinates was developed. Then, 

in Chapter 7, the effect that this new method had on control point error was 

calculated. 
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6 Reducing uncertainty in control point pixel coordinates 

6.1 Introduction 

The previous chapter showed that uncertainty in a control point’s world and 

pixel coordinates propagated to error in reconstructed distances. In general, 

these errors were small. However, it was identified that an improvement to the 

current method of determining a control point’s pixel coordinates had the 

potential to make them even smaller. 

Due to the size of the error in reconstructed distances caused by control point 

digitisation, the new method needed to be quick and easy as a time-consuming 

or complex method may not have been worth the marginal improvements it may 

achieve. The new method developed in this chapter achieved this by using the 

physical features of a swimming pool and a simple error minimisation technique. 

In an undistorted image of a swimming pool, the water surface is bound by four 

straight lines. If the control points were at the corners of the swimming pool, 

then they would be at the intersections of these lines. Furthermore, if more than 

two points on each line were given, simple linear regression, which minimises 

error in a least squares sense, could be used to calculate each line’s equation 

and hence the intersections. These steps were the basis of the new method, 

which was called the line-line method and is illustrated in Figure 6.1. It was 

postulated that the line-line method would improve the precision of a control 

point’s pixel coordinates compared to the current method. This was tested in a 

computer simulation. 
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Figure 6.1. Line-line method for calculating the pixel coordinates of a control point, which was at 

the intersection of lines that bounded a swimming pool. 

 

6.2 Method 

The following steps were performed. Each of these steps is described in more 

detail in the following subsections. 

1. A way of simulating the uncertainty in the digitisation of a point on a 

swimming pool’s boundary was established. For this, distributions that 

described the likely uncertainty were created. See the Pixel coordinate 

system uncertainty section. 

2. Line-line error was calculated using a computer simulation of the four 

single-camera viewpoints and scale swimming pool introduced in 

Chapter 3. See the Simulation section. 

6.2.1 Pixel coordinate system uncertainty 

Uncertainty in the digitisation of points on a swimming pool’s boundary was 

modelled as a Gaussian normal distribution with a mean of 0 pixels and a 

standard deviation of 0.19 pixels. The same distribution was used to add 

uncertainty to the digitisation of a control point in Chapter 5. 
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6.2.2 Simulation 

A computer simulation of the four single-camera viewpoints (i.e. V1 to V4) and 

scale swimming pool introduced in Chapter 3 was developed. The coordinates 

of the points on the boundary of the scale swimming pool for each viewpoint 

were based on those used in Chapter 3. These are shown in Figure 6.2. The 

points on the boundary had projected pixel coordinates; this removed calibration 

model error. 

 

Figure 6.2. Points on the scale swimming pool’s boundary. The intersections of these lines were 

used to estimate the pixel coordinates of control points, Ci (i = 1 to 4). 

 
Ten thousand independent trials were done for each viewpoint. Each trial did 

the following steps for each of the four control points: 

1. Added a randomly selected uncertainty to each point on the two 

intersecting lines. The method illustrated in Figure 5.4 was used to do 

this. 

2. Transformed the pixel coordinates of the points on the two intersecting 

lines to undistorted normalised image coordinates using Equations 2.18 
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to 2.21. This converted the coordinates into a rectilinear coordinate 

system. The intrinsic parameters and distortion coefficient for the optimal 

nonlinear calibration models in Table 3.3 were used to do this. 

3. Calculated a simple linear regression for each line using the undistorted 

normalised image coordinates to give line equation = + . 

4. Found the intersection between the two lines using: 

= −−  6.1 

= +  6.2 

where = +  and = +  are the equations of the two lines 

that intersected (as shown in Figure 6.1). 

5. Transformed the intersection’s coordinates from undistorted normalised 

image coordinates to pixel coordinates using Equations 2.11 to 2.17. 

6. Calculated the distance, in the U and V axes, between the coordinates 

from step 5 and the sub-pixel accurate coordinates for Ci (i = 1 to 4) that 

were found in Chapter 3. This was called the line-line error. 

7. Calculated the standard deviation of the Euclidean distance between the 

coordinates from step 5 and the sub-pixel accurate coordinates for Ci (i = 

1 to 4) that were found in Chapter 3. This was called the line-line 

precision. 

6.3 Results 

The mean ± standard deviation of the line-line error for the four control points Ci 

(i = 1 to 4) in all viewpoints is shown in Table 6.1. The line-line error in the V 

axis was similar for all control points and smaller than it was in the U axis. 
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Table 6.1. Mean ± standard deviation of the line-line error in the U, V, X and Y axes. n = 10000 for 

each control point. 

Viewpoint Control point 
U axis 
(pixels) 

V axis 
(pixels) 

X axis 
(10-3 m) 

Y axis 
(10-3 m) 

V1 

C1 0.00 ± 0.13 0.00 ± 0.07 -0.2 ± 8.7 0.0 ± 3.5 

C2 0.00 ± 0.13 0.00 ± 0.07 0.2 ± 8.9 0.1 ± 3.5 

C3 0.00 ± 0.21 0.00 ± 0.08 -0.1 ± 12.4 0.2 ± 14.7 

C4 0.00 ± 0.21 0.00 ± 0.08 0.2 ± 11.9 0.1 ± 14.7 

V2 

C1 0.00 ± 0.11 0.00 ± 0.07 -0.2 ± 10.4 0.0 ± 3.5 

C2 0.00 ± 0.11 0.00 ± 0.07 0.1 ± 10.5 0.1 ± 3.5 

C3 0.00 ± 0.22 0.00 ± 0.08 -0.1 ± 12.6 0.2 ± 13.8 

C4 0.00 ± 0.21 0.00 ± 0.08 0.2 ± 12.3 0.0 ± 13.8 

V3 

C1 0.00 ± 0.14 0.00 ± 0.09 0.0 ± 2.8 0.0 ± 2.5 

C2 0.00 ± 0.19 0.00 ± 0.09 0.6 ± 23.5 0.0 ± 4.2 

C3 -0.01 ± 0.33 0.00 ± 0.07 -0.4 ± 27.1 0.2 ± 12.4 

C4 0.00 ± 0.18 0.00 ± 0.08 0.0 ± 3.8 0.0 ± 8.5 

V4 

C1 0.00 ± 0.11 0.00 ± 0.08 0.0 ± 3.3 0.0 ± 4.0 

C2 0.00 ± 0.11 0.00 ± 0.08 0.0 ± 3.3 0.1 ± 4.0 

C3 0.00 ± 0.10 0.00 ± 0.08 0.0 ± 3.9 0.1 ± 6.6 

C4 0.00 ± 0.10 0.00 ± 0.08 0.1 ± 3.9 0.0 ± 6.7 
 

 

 

 
 

 

 
The line-line precision was 0.11 pixels, 0.11 pixels, 0.14 pixels and 0.07 pixels 

for V1, V2, V3 and V4 (respectively). 

6.4 Discussion 

Calculating control point pixel coordinates using the line-line method led to an 

increase in precision for all viewpoints. The repeatability study conducted in 

Chapter 5 showed that the existing method, i.e. digitising control points, could 

be done to a precision of 0.19 pixels. The line-line precision was between 0.07 

and 0.14 pixels, which was an improvement of between 26% and 63%. 

A key factor in this improvement was the use of an error minimisation 

technique. The use of more than two points to define a line provided extra 
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spatial information about the line. Simple linear regression used this to minimise 

the effect that uncertainty in the points’ coordinates had on the line calculated 

from them and hence the line-line intersections. 

The line-line error in the U axis was larger than it was in the V axis. This was 

due to there being fewer points on the lines at 0 m and 50 m in the X axis than 

there were on those at 0 m and 25 m in the Y axis. As a result, for the lines at 0 

m and 50 m in the X axis there was less spatial information to use when 

minimising the effect of uncertainty, which led to greater variability in an 

intersection’s U coordinates. The disparity in point count was caused by the 

scale swimming pool used in this study. For a real swimming pool, the number 

of points could be the same on all lines and this should lessen this effect. 

V3 was the non-perpendicular and non-fisheye viewpoint. C3 was the control 

point furthest from the camera.  

The line-line method gave the smallest increase in precision for V3. For this 

viewpoint, C3 had the highest line-line error in the U axis. In the undistorted 

normalised image coordinate system, the angle between the two lines used to 

calculate C3 was the most obtuse. Table 6.2 has the angles between the lines 

in the undistorted normalised image coordinate system for all control points and 

viewpoints. 

  



113 
 

Table 6.2. Angle between the two lines used to calculate the line-line intersection at control points, 

Ci (i = 1 to 4). These angles were calculated in the undistorted normalised image coordinate 

system. 

 

Viewpoint 
Angle (degrees) 

C1 C2 C3 C4 

V1 23 23 157 157 

V2 23 23 157 157 

V3 134 30 163 33 

V4 63 62 117 118 
 

 

 

 
 

 

 
Consider the case shown in Figure 6.3. Line B had no error, but line A did. The 

error in line A, i.e. e1, moved line A to be line A’. Because the two lines 

intersected at 90°, the error in the intersection between the two lines was e1. 

 

Figure 6.3. Effect of error on a line-line intersection when angle between lines was 90°. 

 
If the angle between the two lines was not 90°, then the error in the intersection 

between the two lines would be greater than e1. This is shown in Figure 6.4. 

The error in the intersection, i.e. e2, was the length of the hypotenuse of the 

triangle between the two lines and the error in the line.  
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Figure 6.4. Effect of error on a line-line intersection when angle between lines was not 90°. 

 
The angle between the intersecting lines at C3 for V3 was 163˚. Figure 6.5 

shows that at this angle e2 was almost four times greater than e1. As a result, 

the low precision for C3 in V3 was partially caused by the highly obtuse angle 

between the lines used to calculate the intersection. 

 

Figure 6.5. Relationship of the ratio of e2 to e1 and the angle between intersecting lines. 

 
The mean of the line-line error in the U and V axes was small. It was zero pixels 

for all but one control point in one viewpoint. Line-line error was the distance 

between a control point’s pixels coordinates when calculated by the line-line 

method and the sub-pixel accurate coordinates that were found in Chapter 3. 

So, the line-line method had a near-zero bias.  
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It is noteworthy that the line-line method would not be possible with the 2D-DLT 

calibration procedure. This is because the only rectilinear coordinate system in 

the 2D-DLT procedure is the world coordinate system and the transformation to 

this coordinate system requires control point pixel coordinates, which are 

calculated by the line-line method. 

In practise the line-line method would require the digitisation of two or more 

points on each of the swimming pool’s four bounding edges. A factor in how 

easy this would be is whether the edges could be clearly identified in the video 

footage. Anecdotally, as shown in Figure 6.6, some edges are well-defined 

whilst others can be obscured (by, in this case, advertising hoardings). 

 
 

 
 

Figure 6.6. Example of swimming pool edges from competition analysis video footage. 
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6.5 Conclusion 

This chapter presented a new method for determining a control point’s pixel 

coordinates and found: 

 For all viewpoints, the line-line method improved the precision with which 

a control point’s pixel coordinates could be calculated. Improvements of 

between 26% and 63% were found. 

 The line-line method should probably be used in preference to the 

current method of digitising a control point. 

 The line-line method gave larger improvements for the perpendicular 

viewpoints than it did for the non-perpendicular one. So, improvements in 

control point error should be greater for the perpendicular viewpoints 

than they are for the non-perpendicular one. 

In the next chapter, the effect that the line-line method has on control point error 

is quantified. This will confirm whether the line-line method should be preferred 

over the current method. 
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7 Control point error resulting from improved precision in a 

control point’s pixel coordinates 

7.1 Introduction 

This chapter quantified the effect that the line-line method developed in Chapter 

6 had on control point error. This was the error in reconstructing a distance that 

was caused by uncertainty in the measurement of the control points used to 

calculate a calibration model. Figure 7.1 shows its place in the hierarchy of 

errors; all the other errors in this hierarchy were fixed at zero in this chapter. 

 

Figure 7.1. Chapter 7 re-calculated control point error. Calibration model and swimmer point errors 

were fixed at zero. 

 
Control point error was calculated using a revised version of the computer 

simulation first described in Chapter 5. The simulated uncertainty in a control 

point’s pixel coordinates was set by the results from the line-line method in 

Chapter 6. 
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7.2 Method 

The study described in Chapter 5 was repeated, with the following 

modifications: 

 Pixel coordinate system uncertainty. In Chapter 5, one distribution was 

used. In this chapter, one distribution per viewpoint was used. Each was 

a Gaussian normal distribution with a mean of zero pixels and a standard 

deviation given by the line-line precision from Chapter 6, i.e. 0.11 pixels, 

0.11 pixels, 0.14 pixels and 0.07 pixels for V1, V2, V3 and V4 

(respectively). 

 Uncertainty was not added to the world coordinates of the control points. 

One aspect not modified were the set of pixel coordinate error angles used in 

Chapter 5 (i.e.  in Figure 5.4). Using the same values in this chapter meant 

that only the magnitude of the uncertainty (i.e.  in Figure 5.4) was changed. 

This isolated the effect on control point error of the improved precision given by 

the line-line method. 

7.3 Results 

The mean ± standard deviation of the control point error is shown in Table 7.1. 

Values for the current method of digitising a control point and the line-line 

method are given. Mean values were unchanged, but the standard deviation 

was reduced. 

  



119 
 

Table 7.1. Mean ± standard deviation of the control point error for the current and line-line method 

of calculating a control point’s pixel coordinates. 
 

Method n V1 V2 V3 V4 

Current (10-3 m) 560000 0.0 ± 4.6 0.0 ± 4.5 0.0 ± 2.8 0.0 ± 0.7 

Line-line (10-3 m) 560000 0.0 ± 2.7 0.0 ± 2.6 0.0 ± 2.1 0.0 ± 0.3 
 

 

 
 
 
For V1, V2 and V4 the highest control point errors were in the outermost test 

distances. For V3 the highest were in the test distances that were furthest from 

the camera. This is shown in Figure 7.2. 

  

 
 

 
 

 

Figure 7.2. Pattern of the mean of the absolute control point error. The black dotted line is the 

outline of the calibrated plane. The distances in the grey hatched areas at the corners were not 

reconstructed. n = 10000 for each of the 56 squares in each heat map. Each heat map had its own 

scale with blue representing the viewpoint’s minimum error and red the maximum. 

 

7.4 Discussion 

Overall, the improvement in the precision with which a control point’s pixel 

coordinates could be calculated led to a reduction in control point error. The 

standard deviation of the control point error fell by 27% to 63%. So, the line-line 

method led to a reduction in control point error. 
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V1, V2 and V4 were perpendicular viewpoints and V3 was a non-perpendicular 

viewpoint. 

The pattern of the absolute control point error was radial for V1, V2 and V4. The 

average control point error increased with distance from the centre of the 

calibrated plane. The uncertainties in the control points had the largest impact 

on the test distances that were closest to them. So, the largest RDEs in V1, V2 

and V4 would be in the first and last 5 m of each lap. A similar radial pattern 

was not as clear for V3. Resolution was a key factor in this: the shorter test 

distances in pixels had higher average control point error. So, the largest RDEs 

in V3 would be between 45 m and 50 m in the X axis. 

It is noteworthy that the largest RDEs were, in general, in the region of the 

calibrated plane occupied by the start, turn and finish phases. As a result, 

measurement of distances for the clean swimming phase would be less affected 

by uncertainty in a control point’s pixels coordinates than would measurements 

of the other phases.  

7.5 Conclusion 

This chapter calculated control point error that resulted from using the line-line 

method to calculate a control point’s pixel coordinates and found: 

 The line-line method led to an improvement in control point error of 

between 27% and 63%. 

 The line-line method should be preferred over the current method of 

digitising a control point. 

 Control point error was likely to have a smaller impact on the 

measurements of distance in the clean swimming phase than it would in 

the other phases. 
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In the next chapter the combined effects of calibration model error (described in 

Chapter 3) and control point error (from this chapter and Chapter 5) are 

assessed. This gave the error in reconstructed distances that was due to the 

calibrated plane. 
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8 Calibrated plane error 

8.1 Introduction 

This chapter calculated calibrated plane error. This was the combination of 

calibration model and control point errors. It showed how sensitive a calibration 

model was to uncertainties in the measurement of the control points that it was 

calculated from. Figure 8.1 shows its place in the hierarchy of errors; swimmer 

point error was fixed at zero in this chapter. 

 

Figure 8.1. Chapter 8 calculated calibrated plane error. This was a combination of calibration model 

and control point errors. Swimmer point error was fixed at zero. 

 
Calibrated plane error was calculated using a revised version of the computer 

simulation first described in Chapter 5. The main change to this simulation was 

the inclusion of calibration model error, which meant that RDE was a 

combination of calibration model and control point errors. 

8.2 Method 

The study described in Chapter 5 was repeated, with the following 

modifications: 
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 Inclusion of calibration model error. When calculating control point error 

in Chapters 5 and 7 the test distances had projected pixel coordinates. 

This removed calibration model error. In this chapter, the test distances 

had the pixel coordinates that were used when calculating calibration 

model error in Chapter 3. 

 Pixel coordinate system uncertainty. In Chapter 5, one distribution was 

used. In this chapter, one distribution per viewpoint was used. Each was 

a Gaussian normal distribution with a mean of zero pixels and a standard 

deviation given by the results from Chapter 6, i.e. 0.11 pixels, 0.11 pixels, 

0.14 pixels and 0.07 pixels for V1, V2, V3 and V4 (respectively). 

 Uncertainty was added to both the pixel and world coordinates of the 

control points. 

 RDE is called calibrated plane error in this chapter. 

8.3 Results 

The mean ± standard deviation of the calibrated plane error and the errors that 

were combined to make it are in Table 8.1. The values for calibration model 

error and calibrated plane error were similar. 

Table 8.1. Mean ± standard deviation of the calibration model error, control point errors (for 

uncertainty in world and pixel coordinates of control points), and calibrated plane error. 

Error n V1 V2 V3 V4 

Calibration model (10-3 m) 56 10.0 ± 12.6 5.7 ± 19.8 -6.3 ± 39.1 0.0 ± 4.7 

Control point world (10-3 m) 560000 0.2 ± 0.3 0.3 ± 0.3 0.3 ± 0.3 0.3 ± 0.2 

Control point pixel (10-3 m) 560000 0.0 ± 2.7 0.0 ± 2.6 0.0 ± 2.1 0.0 ± 0.3 

Calibrated plane (10-3 m) 560000 10.3 ± 12.8 6.0 ± 19.7 -6.0 ± 38.8 0.3 ± 4.6 
 

 

 
 



124 
 

The pattern of the mean of the absolute calibrated plane error in Figure 8.2 was 

similar to that for calibration model error shown in Figure 3.7. 

  

 
 

 
 

 

Figure 8.2. Pattern of the mean of the absolute calibrated plane error. The black dotted line is the 

outline of the calibrated plane. The distances in the grey hatched areas at the corners were not 

reconstructed. n = 10000 for each of the 56 squares in each heat map. 

 

8.4 Discussion 

The results showed that the nonlinear calibration models were not sensitive to 

uncertainties in the control points they were calculated from. These results 

supported the findings from Chapters 5 and 7, i.e. that a low-cost laser distance 

measurement device and the line-line method are appropriate methods of 

measuring control points. 

8.5 Conclusion 

This chapter calculated calibrated plane error and found: 

 Nonlinear calibration models are not sensitive to uncertainties in the 

control points they were calculated from. 
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 If the swimming competition venue allowed it, the best viewpoint was 

perpendicular and non-fisheye. This viewpoint had the lowest calibrated 

plane error. 

 A perpendicular and fisheye viewpoint should be chosen over a non-

perpendicular and non-fisheye one. 

This chapter marked the end of the assessment of the error in a reconstructed 

distance that was due to the calibrated plane. In the next chapter a calibrated 

plane was used to calculate the speed of swimmers in a competition. 
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9 Clean swimming speed from manual digitisation 

9.1 Introduction 

The use of the nonlinear calibration procedure and a single-camera viewpoint 

were assessed in Chapters 3 to 8. This chapter used these to calculate speed 

in the clean swimming phase at a major national competition. This was the 

British Gas Swimming Championships 2013; Figure 9.1 shows the filming 

position at this competition. 

 

Figure 9.1. Filming position at the British Gas Swimming Championships 2013. 

 
The races in one session were filmed and manually digitised. This session had 

a mix of races: men and women, all four competitive swimming strokes and 

sprint and middle distance races. The digitised points were reconstructed and 

used to calculate a swimmer’s speed in the clean swimming phase. This 

demonstrated the use of a nonlinear calibration procedure and a single-camera 
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viewpoint for competition performance analysis. A sample of data that resulted 

from this is presented. 

9.2 Method 

With institutional ethics approval the racing at the British Gas Swimming 

Championships 2013 was filmed. The competition was held at the Ponds Forge 

International Sports Centre. It was the national championships, and for British 

swimmers, the main qualifying competition for the 2013 FINA World 

Championships. As a result, the best British swimmers competed. 

9.2.1 Races 

The finals in the last session of the competition, which was on the 30th July 

2013, were filmed. This sample had at least one race per stroke, a mixture of 

distances and both sexes. A total of 206 laps swum by 71 swimmers were 

filmed. The races are summarised in Table 9.1. 

Table 9.1. Races and number of laps used in the manual tracking study. The swimmer in lane 8 of 

the women’s 100 m freestyle race did not start. 

Stroke Men Women Laps 

Backstroke 200 m 50 m 40 

Breaststroke 100 m 200 m 48 

Butterfly 100 m 50 m 24 

Freestyle 100 m 100 m 30 

Individual Medley 400 m - 64 

 

9.2.2 Filming 

A Sony HDR-PJ260VE camcorder fitted with a 0.42 multiplier fisheye lens 

converter was used to film the racing. The camera was located at approximately 

15 m from the near edge and 10 m above the pool’s surface. A staircase 

prevented the camera being positioned at the preferred central location. So, a 
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location at 27 m in the X axis was used. The central eight of ten swimmer lanes 

were used. Lane 1 was closest to the camera and lane 8 was furthest from it. 

Races of 100 m and over started at 0 m in the X axis whereas the 50 m races 

started at 50 m in the X axis. Start strobes, which lit when a race was started, 

were placed in the camera’s view. The camera location and pool layout are 

shown in Figure 9.2. 

 

Figure 9.2. Camera location and layout of the pool at the British Gas Swimming Championships 

2013. 

 
The camcorder recorded at a frame rate of 50 Hz and captured FHD footage, 

i.e. images that were 1920 pixels wide by 1080 pixels high. The footage was 

recorded in the Advanced Video Codec High Definition format and stored in an 

.MTS file. After the competition, frames were extracted from the video file and 

stored as Portable Network Graphic (PNG) image files. The filename of each 

was set using the frame number, e.g. frame 100 was stored in file 000100.PNG. 

9.2.3 Official results 

Data from the competition’s timing and results system, which included lane 

allocations, split times (i.e. time at the end of each lap) and finishing positions 
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(i.e. first, second, third, etc.), were downloaded from the British Swimming 

website (British Swimming 2014). 

9.2.4 Digitisation 

The swimmers were manually digitised in a custom software coordinate digitiser 

(a screenshot of which is in Figure 9.3). For each race, split times and video 

time were linked by identifying the frame in which the start strobes first lit: this 

was 0 s in video time. Then, the footage of the race was replayed frame-by-

frame and the swimmers in each lane were digitised. 

 

Figure 9.3. Screenshot of the custom software coordinate digitiser. 

 
The centre of a swimmer’s head was digitised using a variable diameter circular 

digitisation cursor. First, the footage was zoomed to enlarge the view of the 

swimmer’s head; in the example shown in Figure 9.3 an eight times zoom was 

used. Next, the cursor’s diameter was adjusted to match that of the outline of 

the swimmer’s head. Then, the cursor was aligned with the outline of the 

swimmer’s head. Lastly, when the mouse was clicked, the pixel coordinates at 

the centre of the cursor’s circle were recorded. 
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A consideration when doing this was to ensure that the centre of a swimmer’s 

head was on the calibrated plane when it was digitised. For backstroke and 

freestyle, digitisation began when the swimmer’s head first emerged after the 

post-start or post-turn underwater swim. It ended on the last hand entry before 

the turn or end of the race. For breaststroke and butterfly, digitisation also 

began on the first head emersion after the post-start or post-turn underwater 

swim. It ended on the last head emersion before the turn or end of the race. 

This was the same approach as that used by Veiga et al. (2012). For 

backstroke and freestyle, a swimmer was digitised in every frame between the 

start and end actions. For breaststroke and butterfly a swimmer was only 

digitised when the centre of their head was on the calibrated plane as it moved 

upward in each stroke cycle; so, only one digitisation per stroke cycle was 

attempted for these strokes. 

9.2.5 Reconstruction  

A nonlinear calibration model was used to reconstruct the digitised coordinates 

of the swimmers. The nonlinear calibration model was calculated using the 

process described in Section 2.3. Control points were at the corners of the 

swimming pool at the water surface. 

Reconstructed distance error (RDE) could not be assessed in the same way 

that it had been in Chapters 3, 5, 6, 7 and 8. This was because ground truth 

world and pixel coordinates of points on the calibrated plane were not known. 

So, another approach was sought. British Swimming attended the competition 

and constructed a lane rope map, as described in Section 2.3. This map 

calculated that each float was between 0.08 m and 0.09 m in the X axis. In 

addition, it identified the floats on the lane ropes that were at 5 m, 10 m, 15 m, 
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25 m, 35 m, 40 m and 45 m in the X axis; this is shown in Figure 9.4. The lane 

ropes were between a half and two floats out of alignment. 

 

Figure 9.4. Lane rope floats at key distances in the X axis.  

 
RDE was calculated for distances on the lane ropes. The floats at 5 m, 10 m, 15 

m, 25 m, 35 m, 40 m and 45 m in the X axis on nine lane ropes were digitised. 

These were the lane ropes for the central eight lanes in the pool. The 

digitisations were reconstructed and RDE for distances between adjacent floats 

was calculated to give six RDE for each lane rope. 

9.2.6 Swimmer speed 

Speed per lap in the clean swimming phase, or v, was calculated from the 

reconstructed coordinates using simple linear regression: the reconstructed X 

coordinates were plotted against time in the race and the gradient of the linear 

trend line through the points gave v. 

9.3 Results 

The v for all laps in all races is in Appendix 15.2. A sample is repeated in Table 

9.2: these are for the men’s and women’s 100 m freestyle races. The swimmers 

in lane 4 won the races, the woman in lane 7 on lap 1 could not be tracked, and 

the woman in lane 8 withdrew from the race. 
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Table 9.2. v in the men’s and women’s 100 m freestyle races. 

Lane Lap Men v (m s-1) Women v (m s-1) 

1 
1 2.037 1.821 

2 1.856 1.633 

2 
1 2.046 1.802 

2 1.875 1.692 

3 
1 2.051 1.835 

2 1.937 1.700 

4 
1 2.114 1.813 

2 1.903 1.737 

5 
1 2.016 1.802 

2 1.941 1.736 

6 
1 2.002 1.824 

2 1.879 1.686 

7 
1 1.990 - 

2 1.867 1.717 

8 
1 2.010 - 

2 1.847 - 

 

The mean ± standard deviation of the time to digitise a swimmer in a lap is 

shown in Table 9.3. On average, it took two to three times longer to digitise a 

lap from a backstroke or freestyle race than it did for the other two strokes. The 

total time taken was 29 hours, 11 minutes and 6 seconds. 

Table 9.3. Mean ± standard deviation of the time to digitise a swimmer in a lap. 

Stroke n Time (min:sec) 

Backstroke 56 12:49 ± 3:53 

Breaststroke 64 4:46 ± 1:34 

Butterfly 40 5:27 ± 1:20 

Freestyle 44 11:36 ± 2:57 

 

The RMSE of the calibrated plane error was 85.3 x 10-3 m (n = 54). 
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9.4 Discussion 

9.4.1 Digitisation 

Indistinct swimming caps, splash, background objects and low resolution made 

choosing the frame to digitise and positioning the digitisation cursor 

problematic. Examples of these problems are in Figure 9.5. 

 
 

 
 

 
 

 
 

Figure 9.5. Problems encountered during digitisation. The swimmer’s head was approximately 

central in each image. 

 
An indistinct cap made it hard to identify the swimmer’s head and hence size 

and position the circular digitisation cursor. Blue caps were similar in colour to 

the water and red and yellow ones were similar in colour to the swimmer’s skin 

and the splash created by the swimmer. In addition, caps with detailing (e.g. a 

swimmer name, club name or a club logo) were harder to identify than a solid 

colour cap. Solid white caps were the easiest to identify and position the 

digitisation cursor around. An example of a white cap is in Figure 9.6. 
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Figure 9.6. Solid white swimming caps were the easiest to identify and position the digitisation 

cursor around. 

 
It was found that the swimmer’s cap was quite often obscured by splash. There 

seemed to be more splash in the sprint races than there was in the middle 

distance races. There was typically less splash in the breaststroke races than 

there was for the other strokes. If the head was fully obscured by splash then 

the head was not digitised, but if it was only partially obscured then it was 

sometimes possible to align the circular digitisation cursor with the visible parts 

of the head and digitise the swimmer. This was the reason this type of cursor 

was used. 

A further problem was that the swimmer’s head sometimes merged with, or was 

obscured by, a background object. In certain locations on the calibrated plane 

the swimmer’s head joined with the black line on the pool’s floor. This was 

caused by the relative position and orientation between camera, swimmer and 

background object. Another, more frequent, occurrence was the lane rope 

obscuring the view of a swimmer’s head. This was most common in backstroke 

when a swimmer swam beside the lane rope nearest to the camera. As with 

splash, it was sometimes possible to overcome this problem by aligning the 

circular digitisation cursor with the visible parts of the head. 
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The final problem was low resolution. As shown in Figure 4.4, resolution in the 

resultant direction for a perpendicular and fisheye viewpoint was lowest toward 

the start and turn ends and in the lanes most distant from the camera. In these 

regions, a swimmer’s head, which was a fixed size in the world coordinate 

system, was smaller than elsewhere on the calibrated plane. This led to 

difficulties in choosing the frame to digitise for breaststroke and butterfly and 

uncertainty in where to position the circular digitisation cursor for all strokes. 

A result of these problems was incomplete tracking. In most cases, some 

digitisations were missed in each lap. At worst no tracking was possible, which 

was the case for 2 of the 206 laps. In one of these laps, the swimmer was in a 

far lane, wore a red cap and swam adjacent to the lane rope nearest to the 

camera. In the other, the swimmer was also in a far lane and produced a large 

amount of splash. The cumulative effect of these problems prevented tracking. 

Overall, swimmers were successfully tracked in 204 of the 206 laps, which was 

a failure rate of less than 1%. 

9.4.2 Reconstruction 

It was not possible to definitively identify the source of the RDE. Likely sources 

were: British Swimming’s measurements, movement of the lane ropes after 

measurement, digitisation of floats, calibration model error or control point error. 

It is probable that these all contributed. Nevertheless, the error was relatively 

small: it was about one lane rope float. 

A further visual assessment of the calibrated plane was made. This involved 

undistorting an image of the swimming pool. The resultant image showed that 

lines which were straight in the world, e.g. edges of the pool and lane ropes, 

were also straight in the undistorted image. The undistorted image is shown in 



136 
 

Figure 9.7. This gave further confirmation that the calibrated plane was 

acceptable; critically, it showed that the radial distortion that resulted from using 

a fisheye lens converter had been successfully accounted for. 

 

Figure 9.7. Undistorted image of the calibrated plane. Straight lines in the world, which were curved 

in the video footage, became straight in the undistorted image.  

9.4.3 Case studies 

One swimmer in two races was selected for in-depth analysis. One race was 

the women’s 50 m butterfly and the other was the women’s 100 m freestyle. 

Both involved the same swimmer, who won both races. The swimmer was in 

lane 3 for the butterfly race and lane 4 for the freestyle race. These cases were 

selected as the swimmer was one of the world’s best: she had the 4th best race 

time in 50 m butterfly in 2013 (FINA 2015b). 

Three plots were created for each lap. First, reconstructed X coordinate was 

plotted against time. A simple linear regression line was plotted on this to 

highlight the method used to calculate v. Secondly, the rate of change of the 

reconstructed X coordinate was calculated as: 
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= + − −+ − −  9.1 

where +  and −  were the reconstructed X coordinate in frame � + � and � −� (respectively), +  and −  the times for these frames, and � the window 

size. For the butterfly race � was one; due to the proximity of adjacent 

digitisations in the freestyle race, � was set at twenty-five. An order two 

polynomial trend line was fitted to the  data. The third, and final, plot was 

residual against distance. Residual was the difference between a reconstructed 

X coordinate and that predicted by the simple linear regression used to 

calculate v. An order two polynomial trend line was fitted to the residual data. 

The plots for the butterfly case study are shown in Figure 9.8. 

 
 

 
 

 
 

 

Figure 9.8. Women 50 m butterfly case study. The black dashed lines are trend lines through the 

points. 

 
Distance against time formed an approximately straight line. The R2 for the 

simple linear regression was 0.99964. The two other plots showed that the 
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swimmer did not appear to maintain a constant speed throughout the clean 

swimming phase. The order two polynomial trend line for  suggested a 

gradual decrease in speed as the race progressed, which caused the residual 

plot to have an inverted U shape. Residual in the final digitised frame was about 

0.63 m. This distance was the equivalent of seven to eight lane rope floats. 

Given the checks of the calibrated plane described above, it was most likely that 

the swimmer did reduce speed toward the end of this lap. An alternative 

explanation was that the residual was due to error in the calibrated plane. An 

error of this size would have been obvious when the calibrated plane was 

checked. 

A gradual decrease in speed as the race progressed fitted intuition: the sprinter 

started quickly and attempted, but failed, to maintain a high speed throughout 

the race. In addition, when she was approximately 40 m (or 20 s) into the race, 

she was at least half a body length clear of the other swimmers. As such, she 

may have decided to reduce her speed at this distance. 
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The plots for the freestyle case study are shown in Figure 9.9. 

Lap one Lap two 
 

 

 

 
 

 

 

 
 

 
 

 

 
 

Figure 9.9. Women’s 100 m freestyle case study. The black dashed lines are trend lines through the 

points. 

 
The freestyle case study had similarities with the butterfly one: distance against 

time plots were approximately straight and had high R2 of 0.99964 and 0.99996 

for laps 1 and 2 (respectively) and the residual had an inverted U shape. There 

were clear differences between laps 1 and 2: lap 1 was similar to the butterfly 

case study but lap 2 was not. In lap 2 the swimmer’s initial  was lower than it 

was in lap 1 and there was lower variability in this measure throughout the lap. 

This was reflected in the residual, which showed that the swimmer remained in 
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close proximity to the trend line throughout lap 2. An interpretation of this is that 

the swimmer gave a near maximal effort in the first lap and then, whilst fatigued, 

attempted to maintain her highest v in the second lap. An additional factor may 

have been that the start phase contributed to a high initial  in lap 1, but 

clearly not lap 2. 

These case studies illustrated some advantages of using a single-camera 

viewpoint and digitising the swimmer as often as possible. First, an insight into 

speed within a lap was gained. Contrast this with the competition performance 

analysis reported in the literature: the swimmer is digitised twice, i.e. once at the 

start and once at the end of the clean swimming phase and so such insight is 

not possible. Secondly, an observation of the case studies suggested that 

calculating speed using simple linear regression helped to minimise the effect 

on the calculated speed of uncertainty in swimmer digitisations. This 

observation is tested in Chapter 11. 

These advantages come at a cost. Each swimmer had to be digitised more than 

twice in each lap. This took about five to twelve minutes per lap. How this 

compares to the methods reported in the literature is not clear, as digitisation 

time is typically not reported. It may be that the times found in this study are 

typical for competition performance analysis. Indeed, it is likely that digitisation 

time for a lap would take minutes rather than seconds irrespective of the 

method used. 

9.5 Conclusion 

This chapter calculated clean swimming speed at a major national competition 

and found: 
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 Digitising the swimmer was not always straightforward. In particular, 

indistinct swimming caps, low resolution, splash and background objects 

made choosing the frame to digitise and positioning the digitisation 

cursor problematic. 

 Swimmers may not maintain a constant speed throughout the clean 

swimming phase. This is a new finding that was made possible by the 

use of a nonlinear calibration procedure and a single-camera viewpoint. 

The next chapter looks at the impact of uncertainty in swimmer digitisations. It 

shows how the digitisation problems identified in this chapter could propagate to 

errors in reconstructed distances and hence calculation of speed. 
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10 Swimmer point error 

10.1 Introduction 

This chapter calculated swimmer point error. This was the error in 

reconstructing a distance that was caused by uncertainty in the digitisation of a 

swimmer. Figure 10.1 shows its place in the hierarchy of errors; all the other 

errors in this hierarchy were fixed at zero in this chapter. 

 

Figure 10.1. Chapter 10 calculated swimmer point error. Calibration model and control point errors 

were fixed at zero. 

 
The previous chapter identified digitisation problems. For example, the 

swimmer’s head was sometimes obscured by splash or a lane rope. Veiga et al. 

(2010) recognised that such problems could lead to uncertainty in digitisations. 

So, they did an intra-analyst precision study to quantify this. One analyst 

repeatedly digitised the start and end points of a turn in each of eight swimming 

lanes. Thirty repeats were performed for each lane. The standard deviations of 

the turn distances were between 15.5 x 10-3 m and 34.3 x 10-3 m for all eight 

lanes. In general, they found that the standard deviation increased as the 

distance from the camera did. 
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The work in this chapter starts with a study similar to the one done by Veiga et 

al. (2010). The data from this is then used to assess the effect that uncertainty 

in digitisation of a swimmer would have on error in reconstructed distances. A 

revised version of the computer simulation first described in Chapter 5 was 

used to do this. 

10.2 Intra-analyst precision 

10.2.1 Method 

An assessment of precision in swimmer digitisation was carried out. A key 

consideration in the study’s design was ensuring that the four competitive 

swimming strokes and the problems identified in Chapter 9 (e.g. indistinct cap 

colour, low resolution) were considered. 

The men’s 400 individual medley race from the British Gas Swimming 

Championships 2013 was selected. This gave the four swimming strokes. Also, 

the swimmers in this race used a variety of cap colours including those that 

proved easy (i.e. solid white) and difficult (i.e. red with lettering and a logo) to 

isolate from the background. Furthermore, this race had examples of swimmers 

in close proximity to the lane ropes, which often led to problems when digitising. 

Each of the eight lanes was split into three segments in the X axis: 0 m to 15 m, 

15 m to 35 m and 35 m to 50 m. One swimmer point per stroke for each of 

these 24 segments was then selected, at random, from those digitised in 

Chapter 9. This gave a total of 96 swimmer points and ensured that there were 

points in every lane, including the lower resolution segments of each lane. The 

selected points are shown in Figure 10.2. 
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Figure 10.2. The 96 randomly selected swimmer points that were used in the digitisation precision 

study. 

 
The 96 swimmer points were digitised 20 times with at least 24 hours between 

repeats. A custom software coordinate digitiser was used; this was based on 

the one used in Chapter 9 and hence had the same features, e.g. a circular 

digitisation marker. The mean U and V coordinate of the repeats of each 

swimmer point was taken as the best estimate of its ground truth pixel 

coordinates. The digitised points were randomly spread about the mean; this is 

shown for two of the swimmer points in Figure 10.3. 

 

 
 

 

 
 

Figure 10.3. Visualisation of the repeated digitisation of two swimmer points. The cross is the mean 

of the digitisations. A square shows the difference between an individual digitisation and the mean. 

 
The Euclidean distance between each digitised coordinate and the mean for the 

corresponding swimmer point was calculated. This was called digitised 

coordinate distance. 
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10.2.2 Results 

The standard deviation of the digitised coordinate distance for all 96 swimmer 

points was 0.28 pixels to two decimal places. There was little correlation 

between the standard deviation of the digitised coordinate distance and lane 

number: Pearson’s r was 0.063. In addition, Table 10.1 showed that the highest 

standard deviation of the digitised coordinate distance was in one of the nearest 

lanes whilst the lowest was in the second furthest lane. 

Table 10.1. Standard deviation of the digitised coordinate distance in lanes 1 to 8. 

Lane n Std. dev. (pixels) 

1 240 0.21 

2 240 0.22 

3 240 0.38 

4 240 0.27 

5 240 0.26 

6 240 0.32 

7 240 0.17 

8 240 0.30 

 

Furthermore, there wasn’t a consistent pattern of standard deviation of the 

digitised coordinate distance in the three segments that were used to assign 

swimmer points in each lane. This is shown in Figure 10.4. 

 

 

Figure 10.4. Pattern of the standard deviation of the digitised coordinate distance. There weren’t 

any swimmer points in the grey hatched areas. n = 80 for each of the 3 segments per lane. 
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The effect that cap colour had on digitised coordinate distance was tested for 

lanes 6 and 7. The swimmer in lane 6 wore a red cap, which had a club logo 

and either a swimmer name or club name on it. The swimmer in lane 7 wore a 

solid white cap. As discussed in Chapter 9, the cap in lane 6 was amongst the 

hardest to isolate from the background whilst the one in lane 7 was one of the 

easiest. Cohen’s (1992) d index was used to assess effect size: 

= �̅̅ ̅̅ ̅̅ ̅ − ̅̅ ̅̅ ̅̅�  10.1 

� = √�� + �  10.2 

where �̅̅ ̅̅ ̅̅ ̅ and ̅̅ ̅̅ ̅̅ ̅̅  are the mean of the digitised coordinate distance for red 

and white caps (respectively) and �� and �  are the standard deviation of the 

digitised coordinate distance for red and white caps (respectively). d was 0.63, 

which indicated that cap colour had a large effect on intra-analyst precision in 

these two adjacent lanes. 

10.3 Simulation 

10.3.1 Method 

The effect that the intra-analyst precision could have on error in reconstructed 

distances was assessed by a revised version of the computer simulation 

described in Chapter 5. The following modifications were made: 

 Uncertainty in the control points’ world and pixel coordinates were fixed 

at zero. 

 Uncertainty was added to a swimmer point’s pixel coordinates using the 

method illustrated in Figure 5.4, i.e. a random angle in the range 0° to 
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359° and a random magnitude from a Gaussian normal distribution. This 

distribution had a mean of zero pixels and a standard deviation found by 

the intra-analyst precision study, i.e. 0.28 pixels. 

 RDE was called swimmer point error in this chapter. 

Ten thousand independent trials were done. Each trial added uncertainty to the 

test distance endpoints shown in Figure 3.6, reconstructed the test distances, 

and calculated their RDE. 

10.3.2 Results 

The standard deviation of the swimmer point error found by Veiga et al. (2010) 

is in Table 10.2. Analysis of their data showed a positive correlation between 

the standard deviation of the swimmer point error and lane number: Pearson’s r 

was 0.851. 

Table 10.2. Standard deviation of the swimmer point error from Veiga et al. (2010). 

Lane n Std. dev. (10-3 m) 

1 30 15.5 

2 30 20.8 

3 30 24.3 

4 30 27.4 

5 30 31.3 

6 30 25.5 

7 30 27.2 

8 30 34.3 

 

The mean and standard deviation of the swimmer point error from the computer 

simulation are shown in Table 10.3. The computer simulation did not use lane 

numbers, but lane number and test distance Y coordinate are directly related 

(as shown in Figure 3.5). A positive correlation between the standard deviation 

of the swimmer point error and test distance Y coordinate was found: Pearson’s 

r was 0.931, 0.899, 0.956 and 0.997 for V1 to V4 (respectively). 
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Table 10.3. Mean ± standard deviation of the swimmer point error for test distances at 0 m to 25 m 

in the Y axis. 

Y (m) n V1 (10-3 m) V2 (10-3 m) V3 (10-3 m) V4 (10-3 m) 

0 80000 0.0 ± 10.1 0.0 ± 10.2 0.0 ± 33.0 0.0 ± 8.3 

5 100000 0.0 ± 14.6 0.0 ± 14.9 0.0 ± 37.8 0.0 ± 8.9 

10 100000 0.0 ± 16.8 0.0 ± 16.5 0.0 ± 40.0 0.0 ± 9.3 

15 100000 0.0 ± 18.9 0.0 ± 18.3 0.0 ± 42.3 0.0 ± 9.8 

20 100000 0.0 ± 21.2 0.0 ± 20.4 0.0 ± 44.1 0.0 ± 10.3 

25 80000 0.0 ± 19.9 0.0 ± 18.7 0.0 ± 44.2 0.0 ± 10.6 
 

 

 
 

In addition to increasing swimmer point error with increasing test distance Y 

coordinate, Figure 10.5 showed that for V1, V2 and V4 it increased with 

distance from the optical axis, i.e. 25 m in the X axis. 

 
 

 
 

 
 

 
 

 

Figure 10.5. Pattern of the mean of the absolute swimmer point error. The black dotted line is the 

outline of the calibrated plane. The distances in the grey hatched areas at the corners were not 

reconstructed. n = 10000 for each of the 56 squares in each heat map. Each heat map had its own 

scale with blue representing the viewpoint’s minimum error and red the maximum. 

 



149 
 

10.4 Discussion 

10.4.1 Intra-analyst precision 

Almost no correlation between intra-analyst swimmer digitisation precision and 

lane number was found. Results from Chapter 4 showed that the lowest 

resolutions were in the lanes furthest from the camera and, for a fisheye 

viewpoint similar to one used in this study, the first and last 15 m of each lane. 

However, as shown Figure 10.4, these regions of the calibrated plane did not 

exhibit a consistent pattern of low precision swimmer point digitisations. This 

suggested that resolution was not a central factor in intra-analyst swimmer 

digitisation precision. 

Swimmer’s cap colour was shown to have a large effect on intra-analyst 

swimmer digitisation precision. A solid white cap in lane 7 was easy to isolate 

from the background and, despite the low resolution in this lane, the analyst 

could reliably digitise the swimmer points. This led to the highest intra-analyst 

precision. Contrast this with the swimmer is lane 6: the red cap merged with the 

background, this led to it being hard to reliably isolate from the background and 

therefore digitise. A low precision resulted. 

Lane 3, and in particular the segment between 15 m and 35 m in the X axis, 

had the lowest intra-analyst precision. In this segment, two backstroke swimmer 

points had standard deviations of 0.81 pixels and 0.56 pixels, which were the 

highest in the study. These two swimmer points are shown in Figure 10.6. The 

reason for this low precision was not initially apparent. There was sufficient 

resolution as it was one of lanes that were closest to the camera, a solid cap 

colour was used, and the head was not merged with a background object nor 
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completely obscured by splash. Therefore, inconsistency on the part of the 

analyst whilst digitising these swimmer points was probably the main factor. 

 
 

 
 

Figure 10.6. Two backstroke swimmer points in the central 20 m segment of lane 3. They had the 

highest standard deviation in the intra-analyst precision study. 

 
In conclusion, these findings led to the use of a single distribution to describe 

the uncertainty of all swimmer points in the computer simulation used to 

calculate swimmer point error. A regular spatial pattern of swimmer point 

uncertainty was not found. Instead, factors such as cap colour and human 

inconsistency dominated. As these could not be predetermined, it was assumed 

that each swimmer point, irrespective of its location on the calibrated plane, 

would be subjected to the same uncertainty. 

10.4.2 Simulation 

The variability of the swimmer point error was similar to that found by Veiga et 

al. (2010). They found a standard deviation of between 15.5 x 10-3 m and 34.3 x 

10-3 m, dependent on lane. This was for a calibrated plane that measured 

between 10 m and 15 m in the X axis. For the four single-camera viewpoints 

simulated in this chapter, the standard deviations of the swimmer point errors 

were between 8.3 x 10-3 m and 44.2 x 10-3 m. This showed that increasing the 

size of the calibrated plane in the X axis did not have a large impact on 

swimmer point error. 
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Veiga et al. (2010) did not report their intra-analyst precision results. Instead, 

they just reported swimmer point error. This made it difficult to determine if their 

swimmer point error was due to intra-analyst precision alone or a combination 

of intra-analyst precision and resolution, which is an integral part of 

reconstruction. Chapter 4 showed that for a multi-camera viewpoint similar to 

that used by Veiga et al. (2010), resolution decreased as distance from the 

camera increased; this is shown in Figure 4.3 and Figure 4.4. In a low resolution 

region, a certain sized error in pixels is a larger error in metres than it is in a 

high resolution region. So, a decrease in resolution would lead to an increase in 

RDE for the same digitisation error. Therefore, it seemed most likely that the 

intra-analyst precision found by Veiga et al. (2010) was roughly similar for each 

lane and that inter-lane differences in reconstructed distances were due to 

differences in resolution. This was the same as that found by the computer 

simulation in this chapter. 

V1, V2 and V4 were the perpendicular viewpoints. V1 and V2 were fisheye 

viewpoints and V4 was the non-fisheye one. 

There were two general trends in the pattern of swimmer point error. It 

increased with distance from the camera for all viewpoints and for V1, V2 and 

V4 it also increased with distance from the optical axis, i.e. 25 m in the X axis. 

The positive correlation between swimmer point error and distance from the 

camera could be explained by resolution. However, the pattern of swimmer 

point error for V1, V2 and V4 did not match that of the resolution. For example, 

V4’s resolution in the swimming and resultant direction was roughly constant at 

each distance from the camera (as shown in Figure 4.3 and Figure 4.4). This 

did not match the pattern of swimmer point error in Figure 10.5. So, a different 
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explanation was sought. The images of the calibrated planes in Figure 3.5 

showed that the pixel and world coordinate systems were quite different. In an 

image, the pixel coordinate system was a uniform, rectilinear and orthogonal 

grid whereas the world coordinate system was not; these features were lost 

when it was projected into the image. As shown in Figure 10.7, something 

similar happened to the pixel coordinate system during reconstruction. A 

consequence of this was that regular shapes in the pixel coordinate system did 

not always maintain their shape when reconstructed. 

 
 

 
 

Figure 10.7. Illustration of the effect of reconstruction on a regular grid of points. A calibration 

model for a camera with a 0.30 multiplier fisheye lens converter was used to do the reconstruction. 

 
In the pixel coordinate system, the uncertainty added to each swimmer point 

was roughly circular. When reconstructed, it was not. In particular, toward the 

edges of the calibrated plane the range of the uncertainty in the X axis was 

larger than it was toward the centre. This is shown in Figure 10.8. So, at the 

centre of the calibrated plane, the added uncertainty had a smaller effect on 

reconstructed distances than it did toward the edges. This led to the observed 

pattern in swimmer point error shown in Figure 10.5. 

  

0

1080

0 1920

V
 (

p
ix

e
ls

)

U (pixels)

0

25

0 50

Y
 (

m
)

X (m)



153 
 

 X = 0 m and Y = 20 m X = 25 m and Y = 20 m 

P
ix

e
l 
c

o
o

rd
in

a
te

 s
y
s

te
m

 (
p

ix
e

ls
)  

 

 

 

W
o

rl
d

 c
o

o
rd

in
a

te
 s

y
s
te

m
 (

1
0

-3
 m

)  

 
 

 

 
 

Figure 10.8. Examples of uncertainty added to a swimmer point. The red squares show the range of 

the X coordinate, which were 225 x 10-3 m and 76 x 10-3 m. 

 
 
It is noteworthy that the largest swimmer point errors were, in general, in the 

region of the calibrated plane occupied by the start, turn and finish phases. As a 

result, measurement of distances for the clean swimming phase would be less 

affected by uncertainty in a swimmer point’s pixels coordinates than would 

measurements of the other phases.  
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V3 was a non-perpendicular and non-fisheye viewpoint. 

The largest swimmer point error was for V3. It was -336.4 x 10-3 m and occurred 

in the test distance between 40 m and 45 m in the X axis and at 25 m in the Y 

axis. The magnitudes of the uncertainties added to the test distance’s endpoints 

were 1.05 pixels and 0.46 pixels. These were 3.75 and 1.64 times the standard 

deviation found in the intra-analyst precision study. The pattern of absolute 

swimmer point error for this trial is shown in Figure 10.9. A combination of 

factors led to this error: the test distance was in a low resolution region of the 

calibrated plane and the uncertainties were large and both acted to shorten the 

test distance; the endpoint at 40 m in the X axis was reconstructed as 40.2328 

m and the one at 45 m in the X axis as 44.8964 m. 

 
 

 

Figure 10.9. Trial that had the highest swimmer point error. Black arrows show the uncertainty; 

these were scaled (100:1) for illustration purposes. The black dotted line is the outline of the 

calibrated plane. The distances in the grey hatched areas at the corners were not reconstructed. n 

= 1 for each of the fifty six squares in the heat map. 
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10.4.3 Limitations 

A limitation of this chapter is that it did not assess the effect on swimmer point 

error of inter-analyst precision. The utilised approach was consistent with that of 

Veiga et al. (2010). 

10.5 Conclusion 

This chapter calculated swimmer point error and found: 

 Swimmer cap colour and inconsistency on the part of the analyst were 

major causes of uncertainty in swimmer digitisation. 

 The effect this uncertainty had on RDE for a single-camera viewpoint 

was similar to that reported in the literature for a multi-camera viewpoint. 

 Increasing the size of the calibrated plane in the swimming direction did 

not lead to higher swimmer point error. 

 The choice of single-camera viewpoint and the effect this had on 

reconstruction was the main factor in the pattern and magnitude of the 

swimmer point error. 

 If the swimming competition venue allowed it, the best viewpoint was 

perpendicular and non-fisheye. This viewpoint had the lowest swimmer 

point error. 

 A perpendicular and fisheye viewpoint should be chosen over a non-

perpendicular and non-fisheye one. 

 For all viewpoints, swimmer point error was likely to have a smaller 

impact on the measurements of distance in the clean swimming phase 

than it would in the other phases. 
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In the next chapter the swimmer point error quantified in this chapter is 

combined with the calibration model and control point errors from Chapters 3, 5 

and 7. 
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11 Total error 

11.1 Introduction 

This chapter calculated total error. This was the combination of all other errors. 

It showed how errors in the construction of a calibrated plane and digitisation of 

swimmers on that plane propagated to error in reconstructed distances. Figure 

11.1 shows its place in the hierarchy of errors. 

 

Figure 11.1. Chapter 11 calculated total error. 

 
Total error was calculated using a revised version of the computer simulation 

first described in Chapter 5. The main change to this simulation was the 

inclusion of calibration model and swimmer point error. This meant that RDE 

was a combination of calibrated plane and swimmer point errors. 

This chapter also calculated how total error propagated to error in measurement 

of a swimmer’s speed. Whether a meaningful change in speed could be 

identified, given the error in the measurement, was of interest. Pyne, Trewin 

and Hopkins (2004) found that an enhancement in race time of 1% both in the 

year leading up to a major competition and in the competition itself (i.e. between 
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heat and final) ensured that a swimmer stayed in contention for a medal. So, 

this chapter assessed whether an enhancement of 1% could be identified given 

the likely errors in speeds caused by total error. It was assumed that a swimmer 

would make an equal enhancement in all parts of the race, which would sum to 

a 1% enhancement in race time. 

11.2 Method 

The study described in Chapter 5 was repeated, with the following 

modifications: 

 Inclusion of calibration model error. When calculating control point error 

in Chapters 5 and 7 the test distances had projected pixel coordinates. 

This removed calibration model error. In this chapter, the test distances 

had the pixel coordinates that were used when calculating calibration 

model error in Chapter 3. 

 Control point pixel coordinate system uncertainty. In Chapter 5, one 

distribution was used. In this chapter, one distribution per viewpoint was 

used. Each was a Gaussian normal distribution with a mean of zero 

pixels and a standard deviation given by the results from Chapter 6, i.e. 

0.11 pixels, 0.11 pixels, 0.14 pixels and 0.07 pixels for V1, V2, V3 and V4 

(respectively). 

 Inclusion of swimmer point error. Uncertainty in a swimmer point’s pixel 

coordinates were modelled by the distribution from Chapter 10, i.e. a 

Gaussian normal with a mean of zero pixels and a standard deviation of 

0.28 pixels. 

 Uncertainty was added to the pixel and world coordinates of the control 

points and the pixel coordinates of the swimmer points. 
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 Test distances of different lengths. In previous chapters test distances of 

5 m were used. In this chapter test distances of length 5 m to 50 m in 5 

m increments were used. 

 RDE was called total error in this chapter. 

 Calculation of speed. Speed was calculated using two methods: two-

point and simple linear regression. The two-point method calculated 

speed as d’ / t, where d’ was the reconstructed distance and t the time to 

swim the ground truth distance at the ground truth speed. The simple 

linear regression method used the reconstructed X coordinates of all 

swimmer points on a track between and including a test distance’s 

endpoints; the gradient of the estimated line gave the swimmer speed. 

 Calculation of error in speeds. Speed error for a test distance was the 

difference between its reconstructed and ground truth speeds. Speed 

error was calculated for a baseline speed of 1.6 m s-1 and an enhanced 

speed of 1.616 m s-1, i.e. a 1% enhancement of the baseline speed. The 

baseline speed was the mean of those calculated in Chapter 9 (when 

rounded to one decimal place). 

 Assessment of whether a 1% enhancement in speed could be identified. 

The method described by Bland and Altman (1984) was used to 

calculate a lower limit, upper limit and limits range for baseline and 

enhanced speed for each test distance length in each viewpoint. If there 

was a gap between the limits range for baseline and enhanced speeds, 

then an enhancement in swimmer speed could be identified. This is 

illustrated in Figure 11.2. 
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Figure 11.2. Identifying a 1% improvement in speed. If there was a gap between the limits range for 

baseline and enhanced speeds then an enhancement could be identified. If the ranges overlapped, 

then speeds in the overlap could be due to either speed error or an enhancement. 

 

11.3 Results 

11.3.1 Total error 

The total error for all viewpoints and lengths of test distance are in Appendix 

15.3. For test distances of length 5 m, the mean ± standard deviation of the total 

error and the errors that were combined to make it are in Table 11.1. The mean 

of the total error and the calibrated plane error were the same, but their 

standard deviations differed: total error’s was larger. 

Table 11.1. Mean ± standard deviation of total error and the errors that were combined to make it. 

These results are for test distances of length 5 m. 

 

 
n V1 V2 V3 V4 

Calibrated plane (10-3 m) 560000 10.3 ± 12.8 6.0 ± 19.7 -6.0 ± 38.8 0.3 ± 4.6 

Swimmer point (10-3 m) 560000 0.0 ± 17.4 0.0 ± 16.9 0.0 ± 40.5 0.0 ± 9.6 

Total (10-3 m) 560000 10.3 ± 21.6 6.0 ± 26.0 -6.0 ± 56.2 0.3 ± 10.6 
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The pattern of the mean of the absolute total error in Figure 11.3 was similar to 

that for calibrated plane error shown in Figure 8.2. 

 
 

 
 

 
 

 
 

 

Figure 11.3. Pattern of the mean of the absolute total error for test distances of length 5 m. The 

black dotted line is the outline of the calibrated plane. The distances in the grey hatched areas at 

the corners were not reconstructed. n = 10000 for each of the 56 squares in each heat map. 
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The pattern of the standard deviation of the total error in Figure 11.4 was similar 

to that of the swimmer point error shown in Figure 10.5. 

 
 

 
 

 
 

 
 

 

Figure 11.4. Pattern of the standard deviation of the total error. The black dotted line is the outline 

of the calibrated plane. The distances in the grey hatched areas at the corners were not 

reconstructed. n = 10000 for each of the 56 squares in each heat map. Each heat map had its own 

scale with blue representing the viewpoint’s minimum error and red the maximum. 

 

11.3.2 Speed error 

The speed error for all viewpoints and lengths of test distance are in Appendix 

15.4 (for the two-point method) and Appendix 15.5 (for the simple linear 

regression method). 

The mean ± standard deviation of the absolute differences between the speeds 

calculated by the two methods is shown in Table 11.2. The differences were 

small. 
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Table 11.2. Mean ± standard deviation of the absolute difference between speeds calculated by the 

two-point and simple linear regression methods. 

Test distance 
length (m) 

n 
Difference between methods (m s-1) 

V1 V2 V3 V4 

5 560000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 

10 500000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 

15 440000 0.000 ± 0.001 0.000 ± 0.001 0.001 ± 0.001 0.000 ± 0.000 

20 380000 0.000 ± 0.001 0.001 ± 0.001 0.001 ± 0.002 0.000 ± 0.000 

25 320000 0.001 ± 0.001 0.001 ± 0.001 0.001 ± 0.002 0.000 ± 0.000 

30 260000 0.001 ± 0.001 0.001 ± 0.001 0.002 ± 0.002 0.000 ± 0.000 

35 200000 0.001 ± 0.001 0.001 ± 0.001 0.002 ± 0.002 0.000 ± 0.000 

40 140000 0.001 ± 0.001 0.001 ± 0.001 0.002 ± 0.002 0.000 ± 0.000 

45 80000 0.001 ± 0.001 0.001 ± 0.001 0.002 ± 0.002 0.000 ± 0.000 

50 40000 0.001 ± 0.001 0.001 ± 0.001 0.001 ± 0.002 0.000 ± 0.000 
 

 

 
 

11.3.3 Identifying a 1% enhancement in swimmer speed 

The 95% limits of agreement for all viewpoints and lengths of test distance are 

in Appendix 15.6 (for the two-point method) and Appendix 15.7 (for the simple 

linear regression method). 

For a 1% enhancement to be identified required the standard deviation (σ) of 

the speed error to be less than 0.004 m s-1. This gave a 2σ (i.e. a 95% limit of 

agreement) of 0.008 m s-1, which was half the gap between baseline and 

enhanced speeds. The bias did not affect this as it was the same for baseline 

and enhanced speed for each combination of viewpoint and length of test 

distance. A visualisation of the gaps for all test distance lengths and both 

methods of calculating speed is in Table 11.3. 
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Table 11.3. Gap, in m s-1, between baseline and enhanced speeds for test distances of length 5 m to 

50 m. Leftmost column for each viewpoint is the gap for the two-point method and rightmost is the 

gap for the simple linear regression method. 

 

 V1 V2 V3 V4 

5 -0.012 -0.012 -0.018 -0.017 -0.056 -0.056 0.002 0.002 

10 0.001 0.001 -0.005 -0.004 -0.036 -0.035 0.008 0.008 

15 0.005 0.005 0.000 0.001 -0.029 -0.029 0.010 0.010 

20 0.007 0.006 0.002 0.004 -0.024 -0.025 0.011 0.011 

25 0.007 0.008 0.004 0.005 -0.019 -0.021 0.012 0.012 

30 0.009 0.009 0.006 0.006 -0.016 -0.018 0.012 0.012 

35 0.009 0.009 0.006 0.007 -0.012 -0.015 0.013 0.013 

40 0.009 0.010 0.007 0.009 -0.007 -0.012 0.013 0.013 

45 0.009 0.010 0.009 0.011 -0.001 -0.006 0.014 0.014 

50 0.011 0.011 0.009 0.011 -0.001 -0.004 0.014 0.014 
 

 

 
 

A 1% enhancement in speed could not be identified in V3. There was one key 

difference between the two methods of calculating speed: for V2, simple linear 

regression could identify a 1% enhancement over 15 m or more whereas two-

point required 20 m or more. 

11.4 Discussion 

11.4.1 Total error 

Total error represented the RDE that was likely to occur during competition 

performance analysis. It combined errors in the calibration model, the control 

points, and the digitisation of the swimmers. How each of these constituent 

errors contributed to the bias and variability in RDE is visualised in Figure 11.5. 
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Figure 11.5. Constituent errors contribution to total error’s bias and variability. 

 
The main source of bias was calibration model error and the main source of 

variability was swimmer point error. Figure 11.3 and Figure 11.4 confirmed this: 

the mean of the absolute total error had the same pattern as the calibrated 

plane error in Figure 3.7 and the calibration model error in Figure 8.2. The 

standard deviation of the total error had the same pattern as the swimmer point 

error in Figure 10.5. As a consequence, control point error contributed relatively 

little to total error. 

11.4.2 Speed error 

There was little difference between the two methods of calculating speed. This 

showed that simple linear regression did not minimise the effect on 

reconstructed speed of error in the calibrated plane and the swimmer points. 

One likely factor in this was the number of coordinates that simple linear 

regression had to work with. For test distances of length 5 m there were two 
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and this made two-point and simple linear regression identical. At maximum, 

there were eleven coordinates. This number of points may have provided 

insufficient spatial information to minimise the effect of total error on calculated 

speeds. 

V3 was the non-perpendicular and non-fisheye viewpoint. 

For the baseline speed, the largest difference between two-point and simple 

linear regression methods was for V3. It was for the test distance at 15 m in the 

Y axis and between 30 m and 50 m in the X axis. The difference between the 

two methods was 0.012 m s-1: two-point calculated 1.606 m s-1 and simple 

linear regression 1.594 m s-1. The errors in the reconstructed X coordinates 

used to calculate these speeds are shown in Figure 11.6. The X coordinate at 

30 m had a small negative error and the one at 50 m had a positive error. This 

led to an overestimation of speed by the two-point method as the reconstructed 

distance was approximately 20.08 m. The largest errors in the reconstructed X 

coordinates were at 35 m and 45 m. Consequently, they did not affect the two-

point method, but they did have a large influence on the simple linear 

regression method. The error at 35 m pulled the line of best fit upward whilst the 

one at 45 m pushed it downward. As a result, the simple linear regression 

method underestimated the ground truth speed. 
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Figure 11.6. Error in the reconstructed X coordinate of the swimmer points at 15 m in the Y axis 

and between 30 m and 50 m in the X axis. The data is for the trial that led to the largest difference 

between the two methods of calculating speed, which was for V3. The black dashed line shows the 

simple linear regression. 

 
This example highlighted how the simple linear regression method could 

calculate accurate and precise speeds from noisy coordinates. The simple 

linear regression method was subjected to the two largest errors in the 

reconstructed X coordinates. Notably, these errors were an order of magnitude 

higher than one of the two coordinates used by the two-point method. 

Nevertheless, the effect of these was minimised to give the same absolute 

speed error as the two-point method. 
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11.4.3 Identifying a 1% enhancement in swimmer speed 

V3 was the non-perpendicular and non-fisheye viewpoint. 

A 1% enhancement in speed could not be identified in V3. However, if 90% 

limits of agreement are considered instead of 95% ones then it could be 

identified for test distances of length 45 m or more. This is shown in Table 11.4. 

Table 11.4. 90% limits of agreement for V3. The two-point method was used to calculate speed. 

 

Test distance 
length (m) 

Baseline (m s-1) Enhanced (m s-1) Gap (m s-1) 

35 1.587 to 1.611 1.603 to 1.627 -0.008 

40 1.589 to 1.608 1.605 to 1.624 -0.004 

45 1.591 to 1.606 1.607 to 1.622 0.001 

50 1.592 to 1.606 1.608 to 1.622 0.002 
 

 

 
 

 

11.5 Conclusion 

This chapter calculated total error and found: 

 Total error was found to be a straightforward combination of its 

constituent errors: calibrated plane and swimmer point. Calibrated plane 

error determined the bias and swimmer point the variability. 

 Control point error had a relatively minor effect on total error. 

 All the perpendicular viewpoints had lower variability speed error than the 

non-perpendicular one. As a result, a 1% enhancement in speed could 

be identified in the perpendicular viewpoints but not in the non-

perpendicular one. 
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 If the swimming competition venue allowed it, the best viewpoint was 

perpendicular and non-fisheye. This viewpoint had the lowest total and 

speed errors and could identify a 1% enhancement in speed for 

distances of 5 m or more. 

 A perpendicular and fisheye viewpoint should be chosen over a non-

perpendicular and non-fisheye one. 

In the next chapter, a method of calculating clean swimming speed using 

automated digitisation is developed. 
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12 Clean swimming speed from automated digitisation 

12.1 Introduction 

This chapter developed an automated digitisation system and compared its 

results with those from the manual methods used in Chapter 9. The starting 

point for this system was iSwim (Driscoll and Kelley 2013). This represented the 

closest match to the desired system, i.e. it automatically digitised swimmers in 

the clean swimming phase of a race from video footage captured from a single-

camera viewpoint. iSwim’s background model was a single image when the 

pool was empty. Differencing and thresholding of the RGBR values on five 

profile lines, which ran down the centre of each lane, was used to identify the 

swimmers. A weakness in iSwim was that it did not account for the highly 

dynamic nature of a swimming pool: movements such as ripples, splashes and 

reflections were not modelled. The system developed in this chapter did; a 

technique from the drowning prevention systems (such as Eng et al. 2003) was 

used. 

12.2 Method 

12.2.1 Video footage 

The video footage and PNG files used in Chapter 9 were also used in this 

chapter. The footage was split into a training set and a test set. The training set 

was used to develop the automated digitisation system and the test set was 

used to assess it. The men’s 400 m individual medley was the training set and 

the other eight races were the test set. 
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12.2.2 Regions of interest 

Nine regions of interest (ROI) were defined. The first ROI contained the central 

eight swimming lanes and the other eight were for the individual lanes. 

Projection was used to calculate an ROI’s pixel coordinates. The eight lane ROI 

and the ROI for lane one are shown in Figure 12.1. 

 
 

 
 
Figure 12.1. Regions of interest (ROI) for the central eight lanes and one of the eight lanes. 

 

12.2.3 Digital image processing 

The automated digitisation system was implemented as a Microsoft C#.NET 

(Microsoft 2012) application. For each frame fi, the following steps were 

performed: 

1. Read the pixels in the eight-lane ROI for frame fi-k, fi and fi+k (k = 100) into 

memory. Only the RGBr values were stored in memory. 

2. Created a background image, Bi, using a temporal median filter. An 

example of how this worked is shown in Figure 12.2. 
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Figure 12.2. Operation of a temporal median filter for one pixel in frames fi-k, fi and fi+k. 

The pixel in frames fi-k, fi and fi+k had RGBr values of 30, 100 and 40. The 

temporal median filter found which of these values had the smallest sum 

of differences from the other two using Equation 2.25. The results of the 

filter’s calculations are shown in Table 12.1. As fi+k had the smallest sum, 

the background image pixel had value 40. 

Table 12.1. Sum of differences between RGBr values for frames fi-k, fi and fi+k in Figure 12.2. 

 fi-k fi fi+k Sum 

RGBr 30 100 40 - 

Diff. fi-k 0 70 10 80 

Diff. fi 70 0 60 130 

Diff. fi+k 10 60 0 70 

 
The construction of a background image using a temporal medial filter is 

illustrated in Figure 12.3. The three frames that were used to construct 

the background image, i.e. fi-k, fi and fi+k, are shown in this figure. 
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Figure 12.3. An extract from a background image that was constructed from three frames 

using a temporal median filter. 

 
3. Subtracted frame fi from Bi. This was a pixel-by-pixel subtraction, e.g. 

pixel (0, 0) in fi was subtracted from pixel (0, 0) in Bi. If a result was 

negative then that pixel’s intensity was set to zero. In this way, only those 

pixels whose RGBr was greater in fi than it was in Bi were greater than 

zero in the resulting difference image. An example difference image is in 

Figure 12.4. 

 

Figure 12.4. Difference image. 

 
4. Thresholded the difference image at an intensity level selected by Otsu’s 

automated method (Otsu 1979). AForge’s implementation of this method 

was used (AForge 2015). The result was an image in which the 
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background was black and foreground objects, including the swimmers, 

were white. An example thresholded image is in Figure 12.5. 

 

Figure 12.5. Thresholded image. 

 
5. For each lane, the individual foreground objects in the thresholded image 

were identified and labelled. AForge’s connected region function and the 

lane ROIs were used to do this. This gave a set of foreground objects per 

lane. Figure 12.6 shows two of these for lane one. Each object had 

information such as location and size (e.g. area and bounding rectangle). 

The foreground object with the largest area in pixels was selected and 

the pixel coordinates of its centroid were reconstructed. This gave the 

swimmer’s world coordinates in each lane in fi. 

a) 

 
 

b) 

 
 

c) 

 
 

Figure 12.6. Foreground objects in lane 1: a) all foreground objects; b) and c) two of the 

individual foreground objects. 
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12.2.4 Calculation of clean swimming speed 

The result of steps 1 to 5 was the swimmer’s world coordinates in each lane in 

fi. These coordinates were used to calculate the swimmer’s speed in the clean 

swimming phase of each lap. The first and last digitised frame for the 

corresponding swimmer and lap from Chapter 9 was used to split the frames 

into laps. In this way, the speeds in the manual and automated digitisation 

studies were calculated for the same time period. The automated digitisation 

method used all frames in the clean swimming phase whereas manual used 

only the frames that could be digitised. Speed was calculated in the same way 

as in Chapter 9. Simple linear regression was used, i.e. a straight line was fitted 

through the reconstructed X coordinates and the gradient of this line gave the 

speed. Agreement between the speeds calculated from the manual and 

automated tracking was assessed using Bland and Altman’s (1986) method. 

12.3 Results 

Clean swimming speeds for all laps in all races are in Appendix 15.8. 

The mean ± standard deviation of the execution time for the five digital image 

processing steps is shown in Table 12.2; this data was for the men’s 400 m 

individual medley race. The automated digitisation system was run on a Shuttle 

XPC SH67H3 computer, which had an Intel Core i7-2600 3.4 GHz CPU and 4 

GB of RAM. The largest execution times were for reading pixels from the PNG 

files and construction of the background image. 
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Table 12.2. Mean ± standard deviation of the execution time for the five digital image processing 

steps. 

Operation Execution time (s) 

1. Read pixels 0.216 ± 0.006 

2. Background image 0.136 ± 0.003 

3. Difference image 0.003 ± 0.001 

4. Thresholded image 0.032 ± 0.011 

5. Foreground object 0.024 ± 0.010 

 

The mean ± standard deviation of the time to digitise a lap for manual and 

automated digitisation methods is shown in Table 12.3; this data is for the 

men’s 400 m individual medley race. The manual method data was from 

Chapter 9. 

Table 12.3. Mean ± standard deviation of the time to digitise a lap for manual and automated 

digitisation methods. 

Stroke n Manual time (min:sec) Automated time (min:sec) 

Backstroke 16 14:37 ± 3:55 8:08 ± 0:45 

Breaststroke 16 4:29 ± 1:16 9:34 ± 0:47 

Butterfly 16 4:35 ± 0:55 7:49 ± 0:55 

Freestyle 15 11:41 ± 3:9 8:23 ± 0:41 

 
 
The agreement between the speeds from the manual and automated 

digitisation studies for the training and test sets are summarised in Table 12.4. 

Table 12.4. Agreement between speeds from the manual and automated digitisation methods. 

Set n Mean (m s-1) σ (m s-1) Mean ± 2σ (m s-1) 

Training 63 0.003 0.008 -0.012 to 0.018 

Test 141 0.005 0.015 -0.024 to 0.034 

 
 
In the test set some races had noticeably better agreement between the two 

methods than did others. This is shown in Table 12.5. The agreement was good 

for the men’s 100 m breaststroke but not for the women’s 50 m backstroke. 
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Table 12.5. Agreement between speeds from the manual and automated digitisation methods for 

the test set. 

Race n Mean (m s-1) σ (m s-1) Mean ± 2σ (m s-1) 

Men’s 100 m breaststroke 16 0.001 0.004 -0.008 to 0.009 

Men’s 100 m butterfly 16 0.011 0.018 -0.025 to 0.047 

Men’s 100 m freestyle 16 0.009 0.016 -0.023 to 0.040 

Men’s 200 m backstroke 32 0.004 0.014 -0.023 to 0.032 

Women’s 100 m freestyle 13 0.008 0.009 -0.009 to 0.026 

Women’s 200 m breaststroke 32 -0.003 0.010 -0.023 to 0.016 

Women’s 50 m backstroke 8 0.022 0.025 -0.029 to 0.072 

Women’s 50 m butterfly 8 0.008 0.011 -0.014 to 0.030 

 
The speed profiles produced by the manual and automated digitisation methods 

were compared using the case studies and plots described in Section 9.4.3. 

These are shown in Figure 12.7 to Figure 12.9. The plots for the automated 

method showed higher variability about their regression lines than did the 

manual one. This was especially apparent for the rate of change of the 

reconstructed X coordinate (i.e. ) and residual against distance plots. 
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Manual Automated 

  
 

 
 

 

 
 

 

 
 

 

 
 

Figure 12.7. Comparison of speed profiles produced by the manual and automated digitisation 

methods for the women 50 m butterfly case study. 
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Figure 12.8. Comparison of speed profiles produced by the manual and automated digitisation 

methods for lap one of the women 100 m freestyle case study. 
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Figure 12.9. Comparison of speed profiles produced by the manual and automated digitisation 

methods for lap two of the women 100 m freestyle case study. 

 

12.4 Discussion 

12.4.1 Region of interest 

iSwim processed only one lane whereas the automated digitisation system 

simultaneously processed the swimmers in all lanes. This came at the cost of a 

higher computation burden: more pixels had to be stored in memory and 

processed. The ROI for each lane contained all pixels whereas iSwim used five 

profile lines per lane. Using profile lines could have reduced the computational 
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burden: Table 12.6 shows that over 90% fewer pixels would have been stored 

and processed if they had been used. However, an ROI that uses all pixels is 

more traditional, e.g. all the automated swimmer digitisation systems reviewed 

in Chapter 2, except iSwim, used this approach. In addition, development and 

testing of a system that used the profile line approach proved to be problematic. 

Critically, it was difficult to visualise the results of the five digital image 

processing steps. 

Table 12.6. Number of pixels for an ROI that contained all pixels and for five profile lines. Also 

given is the number of profile line pixels expressed as a percentage of all pixels. 

Lane All pixels Five profile lines 

1 162432 8283 (5.1%) 

2 115162 7927 (6.9%) 

3 88407 7572 (8.6%) 

4 84303 7222 (8.6%) 

5 81838 6889 (8.4%) 

6 76665 6567 (8.6%) 

7 73131 6263 (8.6%) 

8 67375 5981 (8.9%) 
 

 

 
 

12.4.2 Background image 

The main difference between iSwim and the system developed in this chapter 

was the model of the background objects. iSwim used a single background 

image whereas the system developed in this chapter constructed a clean 

background image for each frame. iSwim’s approach proved to be a poor 

representation of the background objects, especially as time into the race 

increased. As shown in Figure 12.10, this made it difficult to distinguish the 

swimmers from the lane ropes and the pool floor markings. 
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Figure 12.10. Thresholded image that resulted from modelling the background objects with a single 

static background image. 

 
These background objects had to be removed at some point. A clean 

background image constructed using a temporal median filter allowed this to be 

done at an early stage. Eng et al. (2003) established the use of a temporal 

median filter to construct a clean background image of a swimming pool. They 

constructed an initial clean background image and then periodically updated it 

using a weighted averaging scheme. A different approach was used in this 

chapter: each fi had its own clean background image, Bi, which was constructed 

from fi-k, fi and fi+k (k = 100). The inspiration for this approach was that the best 

background image would be fi, but without the swimmers in it. In this way, the 

image artefacts caused by the unique background motion in fi would be 

captured. This intuition led to the adopted approach: the temporal median filter 

was centred on fi and used the smallest k that removed the swimmer from the 

resultant background image. It was thought that a small k would give fi-k and fi+k 

that were similar to fi and hence the desired clean background image, i.e. fi but 

without the swimmers. A k of 100 was settled on; this performed adequately for 

men and women, all strokes and speeds in the range 1.1 m s-1 to 2.1 m s-1. A 

downside of the adopted approach was a high computational burden. Each Bi 

required three images to be read from hard disk and stored in memory. In 

addition, the temporal median filter required the processing of each pixel in the 

eight-lane ROI. The burden could have been reduced by using a Bi for more 
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than one fi. Further testing would be required to ascertain how this would affect 

the subsequent processing steps. 

12.4.3 Difference image 

iSwim classified any change in RGBr as a potential swimmer whereas the 

method presented in this chapter looked only for an increase in RGBr. This was 

consistent with the iSwim results, i.e. the presence of a swimmer is 

characterised by an increase in RGBr (Driscoll and Kelley 2013, p16). 

12.4.4 Thresholded image 

The aim of thresholding was to classify the objects in the difference image as 

either foreground or background. It was expected that the swimmer would be 

classified as a foreground object and everything else would be a background 

object but this was not the always the case. An example of this is shown in 

Figure 12.11. It was noted that the non-swimmer objects tended to be smaller 

than the swimmer one and this led to a simple solution for identifying the 

swimmer. 

 

Figure 12.11. Potential foreground objects. The largest object is in the yellow rectangle and the 

other objects are in the red rectangles.  

 

12.4.5 Identifying swimmers 

In each lane, the object in the thresholded image that had the largest area in 

pixels was assumed to be the swimmer. In general, this simple approach 

worked, but it failed when the swimmer split into multiple foreground objects. An 

example of this is the women’s 50 m backstroke. In the first half of this race the 

swimmer in lane 8 regularly split into two or more foreground objects of similar 
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area. This is shown in Figure 12.12. It led to jumps in the swimmer’s 

coordinates of over a metre for certain sequences of frames and as a result this 

race had the worst agreement between manual and automated digitisation 

methods. 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

Figure 12.12. Example of high variability swimmer X coordinate from lane eight of the women’s 50 

m backstroke. This is a sequence of frames between 7.82 s and 7.88 s in the race. Blue crosses are 

the centroid of the foreground object with the largest area in pixels. 

 
Two factors caused this fragmentation. First, the large visible area of swimsuit 

was not classified as a foreground object and this split the swimmer into at least 

two objects. This may have been a consequence of using a subtraction rather 

than an absolute difference when creating the difference image. This problem 

was not identified during development as the training set contained only male 

swimmers. Secondly, in general, the swimmers in the women’s 50 m backstroke 

race generated equal quantities of splash with their arms and legs. This meant 
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that the foreground objects that were their arms and legs were approximately 

equal in size. As a result, two or more equal sized foreground objects were 

created in the thresholded image and small inter-frame changes in area of 

these led to high variability swimmer coordinates. 

Contrast this with the men’s 100 m breaststroke race. This race had the best 

agreement between manual and automated digitisation methods. The men wore 

swimsuits that extended from hip to knee and, due to the nature of the stroke, 

this swimsuit tended to stay below the water surface. This meant that the 

swimmer foreground object tended not to split at the swimsuit. As a result, the 

swimmers in this race were, in general, a single foreground object (as shown in 

Figure 12.13) and this led to low variability swimmer coordinates. 

 

Figure 12.13. Extract from a thresholded image from the men’s 100 m breaststroke race. In this 

race, the swimmers tended to be a single foreground object. 

 

12.4.6 Execution time 

It took less time to automatically digitise a swimmer than it did to manually 

digitise one. The times in Table 12.3 for the automated method were for the 
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digitisation of all eight swimmers in a lap whereas the manual times were for 

one swimmer per lap. So, to compare digitisation time for the two methods, the 

manual times would have to be multiplied by eight. Such multiplication showed 

that the automated method was between three and fifteen times faster than 

manual. 

12.4.7 Agreement between methods 

In general, as shown in Table 12.4, the mean speeds calculated by the 

automated and manual digitisation methods agreed. The 95% limits of 

agreement for the test set was -0.024 m s-1 to 0.034 m s-1. As this range 

spanned zero, there was no evidence of a large systematic difference between 

the two methods, but there were random differences. Many factors could have 

led to this. For example: 

 Digitisation target. The manual method digitised the centre of the 

swimmer’s head whereas the automated one used the centroid of a 

digital image processing entity. 

 Out-of-plane. In the manual method, the digitised points were on the 

calibrated plane and so would not be subject to out-of-plane errors. With 

the automated method, the swimmer’s position was the defined as the 

centroid of a foreground object. In some instances, for example in 

breaststroke, much of the object could be well out-of-plane. 

 Number of digitised frames. The automated method digitised the 

swimmer in every frame in the clean swimming phase. In contrast, the 

manual one used different digitisation strategies for different strokes. 

Also, in some frames, it was not possible to manually digitise the 
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swimmer (due to e.g. splash obscuring the swimmer’s head); automated 

did not have this problem. 

 Error in either method. A source of error in the automated method was 

identified above. There may also have been errors in the manual 

digitisation, e.g. incorrect alignment of the digitisation cursor. 

 Non-linear speed. As shown in Chapter 9, it is likely that a swimmer does 

not maintain a constant speed in a lap. Yet, in the current chapter, two 

speeds calculated using simple linear regression was compared. A 

polynomial regression may have reduced the difference between the two 

methods. 

12.5 Conclusion 

This chapter developed an automated digitisation system and compared its 

results with those from the manual methods used in Chapter 9 and found: 

 A sequence of five digital image processing steps was used to 

automatically digitise swimmers in video footage captured from a single-

camera viewpoint. 

 The highly dynamic nature of a swimming pool was successfully 

modelled using a temporal median filter. 

 The swimmer model was simple: they were the largest connected region 

of pixels that were above an automatically selected threshold level. 

 No large systematic differences between automated and manual 

digitisation methods of calculating speed. 

 The automated digitisation system was between three and fifteen times 

faster than the manual method. 



188 
 

13 Summary 

13.1 Introduction 

This chapter summarises the work that has been described in this document. It 

reviews the errors in reconstructed distances that were investigated. The 

manual and automated digitisation of swimmers in the clean swimming phase of 

a race is also discussed. Finally, the chapter concludes with a discussion of 

possible future work. 

13.2 Summary of work 

13.2.1 Errors in reconstructed distances 

The errors in reconstructed distances illustrated in Figure 13.1 were 

investigated. 

 

Figure 13.1. Errors in reconstructed distances that were investigated. 

  Calibration model error was caused by a calibration model not having the 

correct relationship between distances in the pixel and world coordinate 

systems. A scale swimming pool was used to quantify this error. It was 

quantified for different viewpoints and different 2D-DLT and nonlinear 
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calibration models. The calibration model error for the single-camera 

viewpoints was lower than that reported in the literature for a multi-

camera system. In addition, it was found that a correctly chosen 

nonlinear calibration model always produced lower calibration model 

error than did a 2D-DLT one. 

 Control point error showed how uncertainty in the measurement of the 

control points used to calculate a nonlinear calibration model propagated 

to error in reconstructed distances. A computer simulation was used to 

quantify this. Measurements of a swimming pool using a low-cost laser 

distance measurement device were deemed fit for purpose, but control 

point digitisation was identified as an area for improvement. 

 Control point digitisation was improved by way of the line-line method. 

Six or more points on the straight lines that bounded a swimming pool 

were digitised. Simple linear regression was then used to calculate the 

pixel coordinates of the control points, which were at the intersections 

between pairs of lines. This method led to an improvement in precision 

compared to digitising the control point. The improvement was between 

26% and 63%, dependent on viewpoint. 

 This improvement in precision led to a reduction in control point error of 

between 27% and 63%, dependent on viewpoint. It was found that the 

largest average control point errors were in the distances at the start and 

end of each lap. As a result, measurements of distance in the clean 

swimming phase would be less affected than those in the other phases. 

 Calibrated plane error was the combination of calibration model and 

control point errors. It showed how sensitive a calibration model was to 

uncertainties in the measurement of the control points that it was 
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calculated from. A computer simulation showed that nonlinear calibration 

models were reasonably insensitive to such uncertainties. 

 Swimmer point error was the error in reconstructing a distance that was 

caused by uncertainty in the digitisation of a swimmer. A computer 

simulation was used to quantify this. The swimmer point error for the 

single-camera viewpoints was similar to that reported in the literature for 

a multi-camera system. Also, swimmer point error would have a smaller 

impact on the clean swimming phase than it would on the other race 

phases. 

 Total error was the combination of all other errors. It showed how errors 

in the construction of a calibrated plane and digitisation of swimmers on 

that plane propagated to error in reconstructed distances. This error was 

found to be a straightforward combination of its constituent errors: 

calibrated plane and swimmer point. Calibrated plane error determined 

the bias and swimmer point the variability. 

 How total error propagated to error in measurement of a swimmer’s 

speed in the clean swimming phase was assessed. This was done by 

calculating whether an enhancement of 1% in speed could be identified 

given the likely error in its calculation. An enhancement could not be 

identified for a non-perpendicular viewpoint, but it could for all the 

perpendicular ones. 

 The following recommendations were made for a single-camera 

viewpoint for competition performance analysis: if the swimming 

competition venue allowed it, the best viewpoint was perpendicular and 

non-fisheye; a perpendicular and fisheye viewpoint should be chosen 

over a non-perpendicular and non-fisheye one. 
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13.2.2 Calculation of clean swimming speed 

 Races at the British Gas Swimming Championships 2013 were filmed. 

The video footage was captured from a single-camera viewpoint, which 

used a fisheye lens converter to capture footage of the entire pool. 

 The swimmers were manually digitised as often as possible in the clean 

swimming phase of each lap. This was time consuming: it typically took 

between five and ten minutes to digitise one lap for one swimmer. It gave 

an insight into speed within a lap; data such as this had not been 

previously reported in the literature. 

 An automated digitisation method was developed. A simple sequence of 

digital image processing techniques was used to automatically calculate 

clean swimming speed for all swimmers in a race. This method was 

between three and fifteen times faster than the manual one. 

 Overall, the mean speeds from the manual and automated digitisation 

methods were in good agreement, but the speed profiles less so. 

13.3 Conclusions 

The main findings are summarised below: 

 The existing multi-camera competition performance analysis systems 

could be replaced with a single- camera one. 

 If the competition venue allowed it, the camera’s viewpoint should be 

perpendicular and non-fisheye. This viewpoint could identify a 1% 

enhancement in speed for distances of 5 m or more. 

 A perpendicular and fisheye viewpoint should be chosen over a non-

perpendicular and non-fisheye one. 
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 An automated digitisation method has the potential to replace manual 

digitisation. 

13.4 Future work 

The following are possible areas for future study: 

 4K camcorder. A 4K camcorder captures video footage that is twice as 

wide and twice as high as the one used in this study. This would lead to 

an increase in the resolution, i.e. the number of pixels per metre. It is 

hypothesised that this would, in turn, lead to a decrease in error in 

reconstructed distances. The scale swimming pool and computer 

simulation developed in this study could be used to test this. 

 More single camera viewpoints. In this study, four single camera 

viewpoints were assessed. One viewpoint not considered was a non-

perpendicular and fisheye one. For these, the camera would be 

positioned away from the preferred, central location (i.e. not at 25 m in 

the X axis). Anecdotally, viewpoints such as these are available at most 

competition venues. The scale swimming pool and computer simulation 

developed in this study could be used to quantify error in reconstructed 

distances for these viewpoints. 

 Use of advanced background model. The drowning prevention systems 

reviewed in Chapter 2 used, for example, block-based models of 

background objects, pixel motion frequency, and local search windows. 

Techniques such of these could enhance the automated digitisation 

system developed in Chapter 12. In particular, using a weighted 

averaging scheme to periodically update the clean background image, 
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rather than constructing a new one for each frame, should improve 

execution time. 

 Use of advanced foreground model. A problem found in Chapter 12 was 

classifying the swimsuit as being part of a swimmer. Eng et al. (2003) 

and Lu and Tan (2004) modelled foreground objects by identifying 

clusters in colour space. This approach has the potential to identify a 

swimsuit, which tended to be a single colour. Another method to try 

would be a two-level threshold similar to the one used by Pogalin et al. 

(2007). 

 Reduced frame rate for automated digitisation. The time required to 

process a race could be reduced by not processing every frame. More 

work is required to ascertain how a reduced frame rate would affect the 

accuracy and precision of the calculated speeds. The Bland and Altman 

(1986) method used in Chapter 12 could be used to assess this. 

 Non-linear speed. Currently, speed is calculated using simple linear 

regression. As found in Chapter 9, it is likely that swimmers do not 

maintain a constant speed. So, it may be more appropriate to calculate 

speed with a polynomial regression. 
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15 Appendix 

15.1 Calibration model error 

This section contains reprojection error and calibration model error for each 

calibration model from Chapter 3. The columns |k|, Tangential, Principal point 

and Aspect ratio indicate the intrinsic parameters and distortion coefficients that 

were calculated in each calibration model. 

15.1.1 V1 

Procedure |k| Tangential Principal point Aspect ratio 
Reproj. 

error 
(pixels) 

Cal. model 
error 

(10-3 m) 

DLT N/A N/A N/A N/A N/A 1018.3 

Nonlinear 0 N/A No No 3.80 96.8 

Nonlinear 1 N/A No No 0.77 31.4 

Nonlinear 2 N/A No No 0.72 21.4 

Nonlinear 3 N/A No No 0.72 21.4 

Nonlinear 4 N/A No No 0.72 21.7 

Nonlinear 0 N/A Yes No 3.73 139.9 

Nonlinear 1 N/A Yes No 0.60 16.0 

Nonlinear 2 N/A Yes No 0.55 17.4 

Nonlinear 3 N/A Yes No 0.55 17.4 

Nonlinear 4 N/A Yes No 0.55 17.6 

Nonlinear 0 N/A No Yes 3.42 108.6 

Nonlinear 1 N/A No Yes 0.77 30.2 

Nonlinear 2 N/A No Yes 0.72 19.6 

Nonlinear 3 N/A No Yes 0.72 19.6 

Nonlinear 4 N/A No Yes 0.72 19.9 

Nonlinear 0 N/A Yes Yes 3.33 144.7 

Nonlinear 1 N/A Yes Yes 0.61 16.6 

Nonlinear 2 N/A Yes Yes 0.55 19.0 

Nonlinear 3 N/A Yes Yes 0.55 19.0 

Nonlinear 4 N/A Yes Yes 0.55 19.2 

 

15.1.2 V2 

Procedure |k| Tangential Principal point Aspect ratio 
Reproj. 

error 
(pixels) 

Cal. model 
error 

(10-3 m) 

DLT N/A N/A N/A N/A N/A 1353.5 
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Procedure |k| Tangential Principal point Aspect ratio 
Reproj. 

error 
(pixels) 

Cal. model 
error 

(10-3 m) 

Nonlinear 0 N/A No No 15.61 537.4 

Nonlinear 1 N/A No No 2.22 99.5 

Nonlinear 2 N/A No No 0.88 31.3 

Nonlinear 3 N/A No No 0.80 20.4 

Nonlinear 4 N/A No No 0.80 20.5 

Nonlinear 0 N/A Yes No 15.78 590.9 

Nonlinear 1 N/A Yes No 2.11 83.6 

Nonlinear 2 N/A Yes No 0.79 38.9 

Nonlinear 3 N/A Yes No 0.69 31.9 

Nonlinear 4 N/A Yes No 0.68 31.7 

Nonlinear 0 N/A No Yes 14.15 588.0 

Nonlinear 1 N/A No Yes 2.18 101.9 

Nonlinear 2 N/A No Yes 0.88 32.2 

Nonlinear 3 N/A No Yes 0.80 21.4 

Nonlinear 4 N/A No Yes 0.80 21.5 

Nonlinear 0 N/A Yes Yes 14.04 627.0 

Nonlinear 1 N/A Yes Yes 2.08 84.4 

Nonlinear 2 N/A Yes Yes 0.79 40.3 

Nonlinear 3 N/A Yes Yes 0.69 33.1 

Nonlinear 4 N/A Yes Yes 0.68 32.9 

 

15.1.3 V3 

Procedure |k| Tangential Principal point Aspect ratio 
Reproj. 

error 
(pixels) 

Cal. model 
error 

(10-3 m) 

DLT N/A N/A N/A N/A N/A 46.1 

Nonlinear 0 No No No 0.58 41.0 

Nonlinear 1 No No No 0.56 43.7 

Nonlinear 2 No No No 0.55 44.6 

Nonlinear 3 No No No 0.55 44.8 

Nonlinear 0 Yes No No 0.51 39.3 

Nonlinear 1 Yes No No 0.50 42.2 

Nonlinear 2 Yes No No 0.48 43.7 

Nonlinear 3 Yes No No 0.48 43.9 

Nonlinear 0 No Yes No 0.52 42.3 

Nonlinear 1 No Yes No 0.51 44.0 

Nonlinear 2 No Yes No 0.50 44.8 

Nonlinear 3 No Yes No 0.50 45.0 

Nonlinear 0 Yes Yes No 0.50 38.9 

Nonlinear 1 Yes Yes No 0.49 42.8 

Nonlinear 2 Yes Yes No 0.47 44.9 

Nonlinear 3 Yes Yes No 0.47 45.1 

Nonlinear 0 No No Yes 0.56 41.9 
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Procedure |k| Tangential Principal point Aspect ratio 
Reproj. 

error 
(pixels) 

Cal. model 
error 

(10-3 m) 

Nonlinear 1 No No Yes 0.56 43.2 

Nonlinear 2 No No Yes 0.55 44.0 

Nonlinear 3 No No Yes 0.54 44.1 

Nonlinear 0 Yes No Yes 0.49 40.2 

Nonlinear 1 Yes No Yes 0.49 41.5 

Nonlinear 2 Yes No Yes 0.48 42.9 

Nonlinear 3 Yes No Yes 0.48 43.1 

Nonlinear 0 No Yes Yes 0.51 42.9 

Nonlinear 1 No Yes Yes 0.51 43.7 

Nonlinear 2 No Yes Yes 0.50 44.3 

Nonlinear 3 No Yes Yes 0.50 44.5 

Nonlinear 0 Yes Yes Yes 0.48 39.9 

Nonlinear 1 Yes Yes Yes 0.48 41.8 

Nonlinear 2 Yes Yes Yes 0.47 43.8 

Nonlinear 3 Yes Yes Yes 0.46 44.0 

 

15.1.4 V4 

Procedure |k| Tangential Principal point Aspect ratio 
Reproj. 

error 
(pixels) 

Cal. model 
error 

(10-3 m) 

DLT N/A N/A N/A N/A N/A 10.3 

Nonlinear 0 No No No 0.57 14.8 

Nonlinear 1 No No No 0.54 13.1 

Nonlinear 2 No No No 0.51 12.4 

Nonlinear 3 No No No 0.51 12.3 

Nonlinear 0 Yes No No 0.54 8.6 

Nonlinear 1 Yes No No 0.49 5.5 

Nonlinear 2 Yes No No 0.46 4.6 

Nonlinear 3 Yes No No 0.46 4.5 

Nonlinear 0 No Yes No 0.55 8.6 

Nonlinear 1 No Yes No 0.49 6.2 

Nonlinear 2 No Yes No 0.47 5.2 

Nonlinear 3 No Yes No 0.47 5.2 

Nonlinear 0 Yes Yes No 0.54 7.9 

Nonlinear 1 Yes Yes No 0.49 5.9 

Nonlinear 2 Yes Yes No 0.45 4.5 

Nonlinear 3 Yes Yes No 0.45 4.3 

Nonlinear 0 No No Yes 0.57 14.9 

Nonlinear 1 No No Yes 0.51 14.0 

Nonlinear 2 No No Yes 0.49 12.4 

Nonlinear 3 No No Yes 0.48 12.2 

Nonlinear 0 Yes No Yes 0.54 8.6 

Nonlinear 1 Yes No Yes 0.47 7.6 
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Procedure |k| Tangential Principal point Aspect ratio 
Reproj. 

error 
(pixels) 

Cal. model 
error 

(10-3 m) 

Nonlinear 2 Yes No Yes 0.44 5.3 

Nonlinear 3 Yes No Yes 0.44 5.2 

Nonlinear 0 No Yes Yes 0.55 8.5 

Nonlinear 1 No Yes Yes 0.47 8.4 

Nonlinear 2 No Yes Yes 0.45 6.3 

Nonlinear 3 No Yes Yes 0.45 6.4 

Nonlinear 0 Yes Yes Yes 0.54 7.8 

Nonlinear 1 Yes Yes Yes 0.46 8.1 

Nonlinear 2 Yes Yes Yes 0.43 5.6 

Nonlinear 3 Yes Yes Yes 0.43 5.4 

 

15.1.5 V5 

Procedure |k| Tangential Principal point Aspect ratio 
Reproj. 

error 
(pixels) 

Cal. model 
error 

(10-3 m) 

DLT N/A N/A N/A N/A N/A 14.6 

Nonlinear 0 No No No 0.60 13.6 

Nonlinear 1 No No No 0.55 10.9 

Nonlinear 2 No No No 0.52 7.7 

Nonlinear 3 No No No 0.52 7.2 

Nonlinear 0 Yes No No 0.52 13.1 

Nonlinear 1 Yes No No 0.47 11.4 

Nonlinear 2 Yes No No 0.45 8.8 

Nonlinear 3 Yes No No 0.44 8.5 

Nonlinear 0 No Yes No 0.55 14.1 

Nonlinear 1 No Yes No 0.51 11.6 

Nonlinear 2 No Yes No 0.48 8.2 

Nonlinear 3 No Yes No 0.48 7.8 

Nonlinear 0 Yes Yes No 0.48 11.2 

Nonlinear 1 Yes Yes No 0.43 9.9 

Nonlinear 2 Yes Yes No 0.40 8.0 

Nonlinear 3 Yes Yes No 0.40 7.9 

Nonlinear 0 No No Yes 0.56 13.6 

Nonlinear 1 No No Yes 0.54 11.3 

Nonlinear 2 No No Yes 0.52 7.9 

Nonlinear 3 No No Yes 0.51 7.4 

Nonlinear 0 Yes No Yes 0.49 13.4 

Nonlinear 1 Yes No Yes 0.47 11.7 

Nonlinear 2 Yes No Yes 0.44 9.0 

Nonlinear 3 Yes No Yes 0.44 8.7 

Nonlinear 0 No Yes Yes 0.53 14.3 

Nonlinear 1 No Yes Yes 0.51 12.0 

Nonlinear 2 No Yes Yes 0.48 8.5 
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Procedure |k| Tangential Principal point Aspect ratio 
Reproj. 

error 
(pixels) 

Cal. model 
error 

(10-3 m) 

Nonlinear 3 No Yes Yes 0.48 8.0 

Nonlinear 0 Yes Yes Yes 0.46 11.4 

Nonlinear 1 Yes Yes Yes 0.43 10.1 

Nonlinear 2 Yes Yes Yes 0.40 8.0 

Nonlinear 3 Yes Yes Yes 0.39 7.8 
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15.2 Manual tracking speed 

This section contains speeds that resulted from the manual tracking described 

in Chapter 9. Position is the order in which swimmers finished the race and n is 

the number of swimmer points that were used to calculate speed. 

15.2.1 Men 100 m Breaststroke 

Lane Lap Split time (s) Position n Speed (m s-1) 

1 1 28.72 6 18 1.581 

1 2 61.10 6 22 1.490 

2 1 28.89 4 22 1.606 

2 2 60.99 4 26 1.531 

3 1 28.33 7 23 1.624 

3 2 61.35 7 28 1.494 

4 1 28.45 1 20 1.645 

4 2 59.80 1 24 1.552 

5 1 28.14 3 20 1.658 

5 2 60.11 3 24 1.562 

6 1 28.36 2 19 1.622 

6 2 60.06 2 23 1.531 

7 1 28.87 5 23 1.628 

7 2 61.01 5 26 1.535 

8 1 28.68 8 18 1.604 

8 2 61.39 8 24 1.495 

 

15.2.2 Men 100 m Butterfly 

Lane Lap Split time (s) Position n Speed (m s-1) 

1 1 24.76 7 20 1.867 

1 2 53.77 7 23 1.690 

2 1 24.58 6 19 1.900 

2 2 53.07 6 22 1.725 

3 1 24.19 3 18 1.911 

3 2 52.56 3 20 1.744 

4 1 24.49 1 18 1.904 

4 2 51.97 1 20 1.772 

5 1 24.73 4 18 1.880 

5 2 52.76 4 20 1.768 

6 1 24.52 2 18 1.884 

6 2 52.40 2 20 1.761 

7 1 24.82 5 17 1.864 

7 2 52.78 5 18 1.737 
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Lane Lap Split time (s) Position n Speed (m s-1) 

8 1 25.27 8 19 1.813 

8 2 54.09 8 20 1.704 

 

15.2.3 Men 100 m Freestyle 

Lane Lap Split time (s) Position n Speed (m s-1) 

1 1 24.22 7 88 2.037 

1 2 50.96 7 83 1.856 

2 1 23.90 5 180 2.046 

2 2 50.20 5 300 1.875 

3 1 23.57 3 83 2.051 

3 2 49.48 3 25 1.937 

4 1 22.97 1 92 2.114 

4 2 48.67 1 264 1.903 

5 1 23.91 2 140 2.016 

5 2 49.17 2 210 1.941 

6 1 23.89 4 155 2.002 

6 2 50.13 4 301 1.879 

7 1 24.20 6 115 1.990 

7 2 50.28 6 37 1.867 

8 1 24.51 8 228 2.010 

8 2 51.02 8 154 1.847 

 

15.2.4 Men 200 m Backstroke 

Lane Lap Split time (s) Position n Speed (m s-1) 

1 1 27.88 5 333 1.725 

1 2 57.72 5 407 1.631 

1 3 88.39 5 610 1.582 

1 4 119.52 5 570 1.535 

2 1 27.64 6 329 1.715 

2 2 58.06 6 351 1.581 

2 3 89.48 6 397 1.532 

2 4 120.48 6 365 1.534 

3 1 27.77 4 349 1.700 

3 2 57.93 4 565 1.590 

3 3 87.97 4 463 1.591 

3 4 118.77 4 619 1.541 

4 1 27.29 2 391 1.733 

4 2 56.86 2 498 1.657 

4 3 86.97 2 483 1.618 

4 4 117.20 2 531 1.609 

5 1 28.22 1 501 1.711 
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Lane Lap Split time (s) Position n Speed (m s-1) 

5 2 58.44 1 548 1.606 

5 3 87.66 1 466 1.688 

5 4 116.36 1 413 1.700 

6 1 27.76 8 185 1.746 

6 2 58.08 8 259 1.619 

6 3 89.58 8 238 1.562 

6 4 121.20 8 324 1.532 

7 1 27.05 3 56 1.748 

7 2 56.35 3 54 1.661 

7 3 86.38 3 218 1.630 

7 4 117.23 3 135 1.556 

8 1 27.60 7 108 1.763 

8 2 58.44 7 172 1.607 

8 3 89.60 7 175 1.583 

8 4 120.67 7 326 1.546 

 

15.2.5 Men 400 m Individual Medley 

Due to a combination of factors it was not possible to track the swimmer in lane 

8 on lap 7. 

Lane Lap Split time (s) Position n Speed (m s-1) 

1 1 27.62 7 19 1.685 

1 2 59.23 7 22 1.566 

1 3 93.53 7 850 1.458 

1 4 127.39 7 730 1.420 

1 5 164.05 7 18 1.328 

1 6 201.52 7 19 1.296 

1 7 232.79 7 404 1.617 

1 8 263.33 7 423 1.593 

2 1 27.75 6 20 1.705 

2 2 59.19 6 22 1.580 

2 3 92.12 6 787 1.533 

2 4 124.68 6 869 1.493 

2 5 161.23 6 19 1.345 

2 6 198.30 6 20 1.305 

2 7 229.80 6 602 1.620 

2 8 259.19 6 326 1.661 

3 1 27.35 3 19 1.695 

3 2 57.75 3 22 1.631 

3 3 91.06 3 400 1.510 

3 4 123.76 3 427 1.486 

3 5 159.55 3 19 1.355 
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Lane Lap Split time (s) Position n Speed (m s-1) 

3 6 195.91 3 20 1.339 

3 7 226.47 3 374 1.664 

3 8 255.51 3 138 1.662 

4 1 27.07 2 17 1.735 

4 2 57.44 2 21 1.613 

4 3 91.06 2 543 1.495 

4 4 123.82 2 554 1.473 

4 5 159.15 2 18 1.382 

4 6 194.80 2 20 1.355 

4 7 225.36 2 406 1.667 

4 8 255.22 2 197 1.621 

5 1 26.72 1 18 1.725 

5 2 57.36 1 20 1.619 

5 3 90.19 1 284 1.504 

5 4 123.33 1 386 1.458 

5 5 158.30 1 16 1.351 

5 6 194.51 1 18 1.341 

5 7 224.58 1 400 1.683 

5 8 253.67 1 116 1.656 

6 1 27.25 4 20 1.752 

6 2 58.01 4 23 1.637 

6 3 90.78 4 71 1.551 

6 4 123.19 4 86 1.511 

6 5 160.38 4 17 1.323 

6 6 198.16 4 17 1.309 

6 7 227.99 4 168 1.738 

6 8 257.31 4 25 1.671 

7 1 28.01 5 21 1.686 

7 2 59.02 5 23 1.613 

7 3 91.60 5 460 1.544 

7 4 124.07 5 535 1.501 

7 5 159.98 5 21 1.378 

7 6 195.89 5 22 1.365 

7 7 227.87 5 412 1.587 

7 8 258.97 5 348 1.558 

8 1 28.76 8 15 1.665 

8 2 60.72 8 19 1.589 

8 3 94.77 8 127 1.466 

8 4 128.48 8 38 1.438 

8 5 164.85 8 13 1.352 

8 6 201.62 8 16 1.338 

8 7 233.90 8 N/A N/A 

8 8 265.15 8 43 1.549 

 



216 
 

15.2.6 Women 50 m Backstroke 

Lane Lap Split time (s) Position n Speed (m s-1) 

1 1 30.16 7 232 1.611 

2 1 30.01 6 433 1.645 

3 1 28.82 3 144 1.680 

4 1 28.16 2 130 1.693 

5 1 27.97 1 145 1.722 

6 1 29.44 4 256 1.646 

7 1 29.69 5 64 1.655 

8 1 30.73 8 41 1.610 

 

15.2.7 Women 50 m Butterfly 

Lane Lap Split time (s) Position n Speed (m s-1) 

1 1 27.60 7 16 1.730 

2 1 26.97 5 25 1.773 

3 1 25.91 1 22 1.830 

4 1 26.83 2 12 1.730 

5 1 26.84 3 22 1.769 

6 1 26.87 4 20 1.791 

7 1 27.63 8 19 1.705 

8 1 27.57 6 21 1.724 

 

15.2.8 Women 100 m Freestyle 

Due to a combination of factors it was not possible to track the swimmer in lane 

7 on lap 1. The swimmer in lane 8 did not start the race. 

Lane Lap Split time (s) Position n Speed (m s-1) 

1 1 26.89 7 286 1.821 

1 2 57.05 7 474 1.633 

2 1 26.98 6 403 1.802 

2 2 55.93 6 314 1.692 

3 1 26.53 3 389 1.835 

3 2 55.59 3 524 1.700 

4 1 26.53 1 257 1.813 

4 2 54.82 1 394 1.737 

5 1 26.83 2 203 1.802 

5 2 55.30 2 402 1.736 

6 1 26.31 4 90 1.824 

6 2 55.82 4 316 1.686 

7 1 26.90 4 N/A N/A 
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Lane Lap Split time (s) Position n Speed (m s-1) 

7 2 55.82 4 64 1.717 

 

15.2.9 Women 200 m Breaststroke 

Lane Lap Split time (s) Position n Speed (m s-1) 

1 1 33.36 7 19 1.409 

1 2 71.88 7 20 1.261 

1 3 112.10 7 21 1.213 

1 4 152.67 7 24 1.190 

2 1 33.87 6 23 1.369 

2 2 72.30 6 24 1.279 

2 3 112.06 6 25 1.244 

2 4 152.28 6 26 1.209 

3 1 33.55 3 18 1.411 

3 2 71.90 3 19 1.296 

3 3 110.39 3 19 1.296 

3 4 148.82 3 20 1.292 

4 1 33.74 2 17 1.417 

4 2 71.08 2 18 1.313 

4 3 110.12 2 20 1.297 

4 4 147.71 2 22 1.266 

5 1 32.97 1 17 1.419 

5 2 70.17 1 18 1.319 

5 3 108.03 1 19 1.310 

5 4 147.52 1 20 1.243 

6 1 34.01 5 19 1.363 

6 2 71.58 5 22 1.314 

6 3 110.78 5 22 1.252 

6 4 151.40 5 25 1.201 

7 1 34.18 4 19 1.356 

7 2 72.84 4 20 1.276 

7 3 111.71 4 20 1.269 

7 4 150.15 4 23 1.280 

8 1 34.02 8 20 1.385 

8 2 72.89 8 20 1.269 

8 3 113.00 8 22 1.228 

8 4 154.20 8 23 1.202 
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15.3 Total error 

This section contains the total error described in Chapter 11. 

Viewpoint 
Test distance 
length (m) 

n Mean (10-3 m) Std. dev. (10-3 m) 

V1 5 560000 10.3 21.6 

V1 10 500000 20.5 23.6 

V1 15 440000 32.1 27.3 

V1 20 380000 43.9 30.8 

V1 25 320000 55.6 33.1 

V1 30 260000 67.0 35.6 

V1 35 200000 77.4 38.7 

V1 40 140000 87.6 42.6 

V1 45 80000 99.1 44.4 

V1 50 40000 112.2 39.9 

V2 5 560000 6.0 26.0 

V2 10 500000 16.5 31.8 

V2 15 440000 27.3 35.9 

V2 20 380000 37.2 41.2 

V2 25 320000 47.1 46.5 

V2 30 260000 56.4 51.0 

V2 35 200000 63.2 52.2 

V2 40 140000 66.1 51.7 

V2 45 80000 67.2 51.1 

V2 50 40000 53.3 51.9 

V3 5 560000 -6.0 56.2 

V3 10 500000 -12.3 79.9 

V3 15 440000 -13.9 104.8 

V3 20 380000 -10.4 123.1 

V3 25 320000 -7.2 138.3 

V3 30 260000 -11.5 150.7 

V3 35 200000 -24.6 155.5 

V3 40 140000 -38.3 147.8 

V3 45 80000 -39.9 124.8 

V3 50 40000 -36.0 129.0 

V4 5 560000 0.3 10.6 

V4 10 500000 0.6 11.9 

V4 15 440000 1.5 13.7 

V4 20 380000 3.2 14.9 

V4 25 320000 5.0 16.2 

V4 30 260000 6.0 17.5 

V4 35 200000 6.2 18.3 

V4 40 140000 6.6 17.5 

V4 45 80000 9.5 16.2 

V4 50 40000 9.6 18.1 
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15.4 Speed error: two-point 

This section contains the speed error described in Chapter 11. The two-point 

method was used to calculate speed. 

15.4.1 Baseline speed (1.6 m s-1) 

Viewpoint 
Test distance 
length (m) 

n Mean (m s-1) Std. dev. (m s-1) 

V1 5 560000 0.003 0.007 

V1 10 500000 0.003 0.004 

V1 15 440000 0.003 0.003 

V1 20 380000 0.004 0.002 

V1 25 320000 0.004 0.002 

V1 30 260000 0.004 0.002 

V1 35 200000 0.004 0.002 

V1 40 140000 0.004 0.002 

V1 45 80000 0.004 0.002 

V1 50 40000 0.004 0.001 

V2 5 560000 0.002 0.008 

V2 10 500000 0.003 0.005 

V2 15 440000 0.003 0.004 

V2 20 380000 0.003 0.003 

V2 25 320000 0.003 0.003 

V2 30 260000 0.003 0.003 

V2 35 200000 0.003 0.002 

V2 40 140000 0.003 0.002 

V2 45 80000 0.002 0.002 

V2 50 40000 0.002 0.002 

V3 5 560000 -0.002 0.018 

V3 10 500000 -0.002 0.013 

V3 15 440000 -0.001 0.011 

V3 20 380000 -0.001 0.010 

V3 25 320000 0.000 0.009 

V3 30 260000 -0.001 0.008 

V3 35 200000 -0.001 0.007 

V3 40 140000 -0.002 0.006 

V3 45 80000 -0.001 0.004 

V3 50 40000 -0.001 0.004 

V4 5 560000 0.000 0.003 

V4 10 500000 0.000 0.002 

V4 15 440000 0.000 0.001 

V4 20 380000 0.000 0.001 

V4 25 320000 0.000 0.001 

V4 30 260000 0.000 0.001 

V4 35 200000 0.000 0.001 
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Viewpoint 
Test distance 
length (m) 

n Mean (m s-1) Std. dev. (m s-1) 

V4 40 140000 0.000 0.001 

V4 45 80000 0.000 0.001 

V4 50 40000 0.000 0.001 

 

15.4.2 Enhanced speed (1.616 m s-1) 

Viewpoint 
Test distance 
length (m) 

n Mean (m s-1) Std. dev. (m s-1) 

V1 5 560000 0.003 0.007 

V1 10 500000 0.003 0.004 

V1 15 440000 0.003 0.003 

V1 20 380000 0.004 0.002 

V1 25 320000 0.004 0.002 

V1 30 260000 0.004 0.002 

V1 35 200000 0.004 0.002 

V1 40 140000 0.004 0.002 

V1 45 80000 0.004 0.002 

V1 50 40000 0.004 0.001 

V2 5 560000 0.002 0.008 

V2 10 500000 0.003 0.005 

V2 15 440000 0.003 0.004 

V2 20 380000 0.003 0.003 

V2 25 320000 0.003 0.003 

V2 30 260000 0.003 0.003 

V2 35 200000 0.003 0.002 

V2 40 140000 0.003 0.002 

V2 45 80000 0.002 0.002 

V2 50 40000 0.002 0.002 

V3 5 560000 -0.002 0.018 

V3 10 500000 -0.002 0.013 

V3 15 440000 -0.001 0.011 

V3 20 380000 -0.001 0.010 

V3 25 320000 0.000 0.009 

V3 30 260000 -0.001 0.008 

V3 35 200000 -0.001 0.007 

V3 40 140000 -0.002 0.006 

V3 45 80000 -0.001 0.004 

V3 50 40000 -0.001 0.004 

V4 5 560000 0.000 0.003 

V4 10 500000 0.000 0.002 

V4 15 440000 0.000 0.001 

V4 20 380000 0.000 0.001 

V4 25 320000 0.000 0.001 

V4 30 260000 0.000 0.001 

V4 35 200000 0.000 0.001 
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Viewpoint 
Test distance 
length (m) 

n Mean (m s-1) Std. dev. (m s-1) 

V4 40 140000 0.000 0.001 

V4 45 80000 0.000 0.001 

V4 50 40000 0.000 0.001 
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15.5 Speed error: simple linear regression 

This section contains the speed error described in Chapter 11. The simple 

linear regression method was used to calculate speed. 

15.5.1 Baseline speed (1.6 m s-1) 

Viewpoint 
Test distance 
length (m) 

n Mean (m s-1) Std. dev. (m s-1) 

V1 5 560000 0.003 0.007 

V1 10 500000 0.003 0.004 

V1 15 440000 0.003 0.003 

V1 20 380000 0.004 0.002 

V1 25 320000 0.004 0.002 

V1 30 260000 0.004 0.002 

V1 35 200000 0.004 0.002 

V1 40 140000 0.004 0.002 

V1 45 80000 0.004 0.002 

V1 50 40000 0.004 0.001 

V2 5 560000 0.002 0.008 

V2 10 500000 0.003 0.005 

V2 15 440000 0.003 0.004 

V2 20 380000 0.003 0.003 

V2 25 320000 0.003 0.003 

V2 30 260000 0.003 0.002 

V2 35 200000 0.003 0.002 

V2 40 140000 0.003 0.002 

V2 45 80000 0.003 0.001 

V2 50 40000 0.003 0.001 

V3 5 560000 -0.002 0.018 

V3 10 500000 -0.002 0.013 

V3 15 440000 -0.002 0.011 

V3 20 380000 -0.001 0.010 

V3 25 320000 0.000 0.009 

V3 30 260000 0.000 0.009 

V3 35 200000 0.000 0.008 

V3 40 140000 -0.001 0.007 

V3 45 80000 -0.001 0.005 

V3 50 40000 -0.001 0.005 

V4 5 560000 0.000 0.003 

V4 10 500000 0.000 0.002 

V4 15 440000 0.000 0.001 

V4 20 380000 0.000 0.001 

V4 25 320000 0.000 0.001 

V4 30 260000 0.000 0.001 

V4 35 200000 0.000 0.001 
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Viewpoint 
Test distance 
length (m) 

n Mean (m s-1) Std. dev. (m s-1) 

V4 40 140000 0.000 0.001 

V4 45 80000 0.000 0.001 

V4 50 40000 0.000 0.001 

 

15.5.2 Enhanced speed (1.616 m s-1) 

Viewpoint 
Test distance 
length (m) 

n Mean (m s-1) Std. dev. (m s-1) 

V1 5 560000 0.003 0.007 

V1 10 500000 0.003 0.004 

V1 15 440000 0.003 0.003 

V1 20 380000 0.004 0.002 

V1 25 320000 0.004 0.002 

V1 30 260000 0.004 0.002 

V1 35 200000 0.004 0.002 

V1 40 140000 0.004 0.002 

V1 45 80000 0.004 0.002 

V1 50 40000 0.004 0.001 

V2 5 560000 0.002 0.008 

V2 10 500000 0.003 0.005 

V2 15 440000 0.003 0.004 

V2 20 380000 0.003 0.003 

V2 25 320000 0.003 0.003 

V2 30 260000 0.003 0.002 

V2 35 200000 0.003 0.002 

V2 40 140000 0.003 0.002 

V2 45 80000 0.003 0.001 

V2 50 40000 0.003 0.001 

V3 5 560000 -0.002 0.018 

V3 10 500000 -0.002 0.013 

V3 15 440000 -0.002 0.011 

V3 20 380000 -0.001 0.010 

V3 25 320000 0.000 0.009 

V3 30 260000 0.000 0.009 

V3 35 200000 0.000 0.008 

V3 40 140000 -0.001 0.007 

V3 45 80000 -0.001 0.005 

V3 50 40000 -0.001 0.005 

V4 5 560000 0.000 0.003 

V4 10 500000 0.000 0.002 

V4 15 440000 0.000 0.001 

V4 20 380000 0.000 0.001 

V4 25 320000 0.000 0.001 

V4 30 260000 0.000 0.001 

V4 35 200000 0.000 0.001 
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Viewpoint 
Test distance 
length (m) 

n Mean (m s-1) Std. dev. (m s-1) 

V4 40 140000 0.000 0.001 

V4 45 80000 0.000 0.001 

V4 50 40000 0.000 0.001 
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15.6 95% limits of agreement: two-point 

This appendix shows the 95% limits of agreement for baseline (i.e. 1.6 m s-1) 

and enhanced speed (i.e. 1.616 m s-1) described in Chapter 11. Also shown is 

the gap between these ranges. The two-point method was used to calculate 

speed. 

Viewpoint 
Test distance  
length (m) 

n Baseline (m s-1) Enhanced (m s-1) Gap (m s-1) 

V1 5 560000 1.589 to 1.617 1.605 to 1.633 -0.012 

V1 10 500000 1.596 to 1.611 1.612 to 1.627 0.001 

V1 15 440000 1.598 to 1.609 1.614 to 1.625 0.005 

V1 20 380000 1.599 to 1.608 1.615 to 1.625 0.007 

V1 25 320000 1.599 to 1.608 1.615 to 1.624 0.007 

V1 30 260000 1.600 to 1.607 1.616 to 1.623 0.009 

V1 35 200000 1.600 to 1.607 1.616 to 1.623 0.009 

V1 40 140000 1.600 to 1.607 1.616 to 1.623 0.009 

V1 45 80000 1.600 to 1.607 1.616 to 1.623 0.009 

V1 50 40000 1.601 to 1.606 1.617 to 1.622 0.011 

V2 5 560000 1.585 to 1.619 1.601 to 1.635 -0.018 

V2 10 500000 1.592 to 1.613 1.608 to 1.629 -0.005 

V2 15 440000 1.595 to 1.611 1.611 to 1.627 0.000 

V2 20 380000 1.596 to 1.610 1.612 to 1.626 0.002 

V2 25 320000 1.597 to 1.609 1.613 to 1.625 0.004 

V2 30 260000 1.598 to 1.608 1.614 to 1.625 0.006 

V2 35 200000 1.598 to 1.608 1.614 to 1.624 0.006 

V2 40 140000 1.599 to 1.607 1.614 to 1.623 0.007 

V2 45 80000 1.599 to 1.606 1.615 to 1.622 0.009 

V2 50 40000 1.598 to 1.605 1.614 to 1.621 0.009 

V3 5 560000 1.562 to 1.634 1.578 to 1.650 -0.056 

V3 10 500000 1.572 to 1.624 1.588 to 1.640 -0.036 

V3 15 440000 1.576 to 1.621 1.592 to 1.637 -0.029 

V3 20 380000 1.579 to 1.619 1.595 to 1.635 -0.024 

V3 25 320000 1.582 to 1.617 1.598 to 1.633 -0.019 

V3 30 260000 1.583 to 1.615 1.599 to 1.632 -0.016 

V3 35 200000 1.585 to 1.613 1.601 to 1.629 -0.012 

V3 40 140000 1.587 to 1.610 1.603 to 1.626 -0.007 

V3 45 80000 1.590 to 1.607 1.606 to 1.624 -0.001 

V3 50 40000 1.591 to 1.607 1.606 to 1.623 -0.001 

V4 5 560000 1.593 to 1.607 1.609 to 1.623 0.002 

V4 10 500000 1.596 to 1.604 1.612 to 1.620 0.008 

V4 15 440000 1.597 to 1.603 1.613 to 1.619 0.010 

V4 20 380000 1.598 to 1.603 1.614 to 1.619 0.011 

V4 25 320000 1.598 to 1.602 1.614 to 1.618 0.012 
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Viewpoint 
Test distance  
length (m) 

n Baseline (m s-1) Enhanced (m s-1) Gap (m s-1) 

V4 30 260000 1.598 to 1.602 1.614 to 1.618 0.012 

V4 35 200000 1.599 to 1.602 1.615 to 1.618 0.013 

V4 40 140000 1.599 to 1.602 1.615 to 1.618 0.013 

V4 45 80000 1.599 to 1.601 1.615 to 1.618 0.014 

V4 50 40000 1.599 to 1.601 1.615 to 1.617 0.014 
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15.7 95% limits of agreement: simple linear regression 

This appendix shows the 95% limits of agreement for baseline (i.e. 1.6 m s-1) 

and enhanced speed (i.e. 1.616 m s-1) described in Chapter 11. Also shown is 

the gap between these ranges. The simple linear regression method was used 

to calculate speed. 

Viewpoint 
Test distance 
length (m) 

n Baseline (m s-1) Enhanced (m s-1) Gap (m s-1) 

V1 5 560000 1.589 to 1.617 1.605 to 1.633 -0.012 

V1 10 500000 1.596 to 1.611 1.612 to 1.627 0.001 

V1 15 440000 1.598 to 1.609 1.614 to 1.625 0.005 

V1 20 380000 1.599 to 1.608 1.615 to 1.624 0.006 

V1 25 320000 1.599 to 1.608 1.615 to 1.624 0.008 

V1 30 260000 1.600 to 1.607 1.616 to 1.623 0.009 

V1 35 200000 1.600 to 1.607 1.616 to 1.623 0.009 

V1 40 140000 1.600 to 1.607 1.616 to 1.623 0.010 

V1 45 80000 1.601 to 1.607 1.617 to 1.623 0.010 

V1 50 40000 1.601 to 1.606 1.617 to 1.622 0.011 

V2 5 560000 1.585 to 1.619 1.601 to 1.635 -0.017 

V2 10 500000 1.592 to 1.613 1.608 to 1.629 -0.004 

V2 15 440000 1.595 to 1.610 1.611 to 1.627 0.001 

V2 20 380000 1.597 to 1.609 1.613 to 1.625 0.004 

V2 25 320000 1.598 to 1.609 1.614 to 1.625 0.005 

V2 30 260000 1.598 to 1.608 1.614 to 1.624 0.006 

V2 35 200000 1.599 to 1.608 1.615 to 1.624 0.007 

V2 40 140000 1.599 to 1.607 1.615 to 1.623 0.009 

V2 45 80000 1.600 to 1.605 1.616 to 1.621 0.011 

V2 50 40000 1.600 to 1.605 1.616 to 1.621 0.011 

V3 5 560000 1.562 to 1.634 1.578 to 1.650 -0.056 

V3 10 500000 1.572 to 1.624 1.588 to 1.640 -0.035 

V3 15 440000 1.576 to 1.621 1.592 to 1.637 -0.029 

V3 20 380000 1.579 to 1.619 1.595 to 1.636 -0.025 

V3 25 320000 1.581 to 1.618 1.597 to 1.634 -0.021 

V3 30 260000 1.583 to 1.617 1.599 to 1.633 -0.018 

V3 35 200000 1.584 to 1.615 1.600 to 1.631 -0.015 

V3 40 140000 1.586 to 1.613 1.602 to 1.629 -0.012 

V3 45 80000 1.589 to 1.610 1.605 to 1.626 -0.006 

V3 50 40000 1.589 to 1.609 1.605 to 1.625 -0.004 

V4 5 560000 1.593 to 1.607 1.609 to 1.623 0.002 

V4 10 500000 1.596 to 1.604 1.612 to 1.620 0.008 

V4 15 440000 1.597 to 1.603 1.613 to 1.619 0.010 

V4 20 380000 1.598 to 1.603 1.614 to 1.619 0.011 

V4 25 320000 1.598 to 1.602 1.614 to 1.618 0.012 
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Viewpoint 
Test distance 
length (m) 

n Baseline (m s-1) Enhanced (m s-1) Gap (m s-1) 

V4 30 260000 1.599 to 1.602 1.615 to 1.618 0.012 

V4 35 200000 1.599 to 1.602 1.615 to 1.618 0.013 

V4 40 140000 1.599 to 1.602 1.615 to 1.618 0.013 

V4 45 80000 1.599 to 1.602 1.615 to 1.618 0.014 

V4 50 40000 1.599 to 1.602 1.615 to 1.618 0.014 
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15.8 Automated tracking speed 

This section contains speeds that resulted from the automated tracking 

described in Chapter 12. Position is the order in which swimmers finished the 

race and n is the number of swimmer points that were used to calculate speed. 

15.8.1 Men 100 m Breaststroke 

Lane Lap Split time (s) Position n Speed (m s-1) 

1 1 28.72 6 1059 1.580 

1 2 61.10 6 1288 1.489 

2 1 28.89 4 1177 1.604 

2 2 60.99 4 1320 1.531 

3 1 28.33 7 1097 1.621 

3 2 61.35 7 1354 1.495 

4 1 28.45 1 1075 1.643 

4 2 59.80 1 1264 1.554 

5 1 28.14 3 1113 1.650 

5 2 60.11 3 1326 1.568 

6 1 28.36 2 1049 1.620 

6 2 60.06 2 1259 1.539 

7 1 28.87 5 1088 1.629 

7 2 61.01 5 1279 1.536 

8 1 28.68 8 1042 1.607 

8 2 61.39 8 1318 1.504 

 

15.8.2 Men 100 m Butterfly 

Lane n Split time (s) Position Lap Speed (m s-1) 

1 929 24.76 7 1 1.887 

1 1134 53.77 7 2 1.731 

2 930 24.58 6 1 1.877 

2 1120 53.07 6 2 1.745 

3 928 24.19 3 1 1.917 

3 1089 52.56 3 2 1.741 

4 908 24.49 1 1 1.932 

4 996 51.97 1 2 1.795 

5 938 24.73 4 1 1.864 

5 1005 52.76 4 2 1.800 

6 905 24.52 2 1 1.908 

6 1021 52.40 2 2 1.786 

7 887 24.82 5 1 1.871 

7 991 52.78 5 2 1.729 
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Lane n Split time (s) Position Lap Speed (m s-1) 

8 981 25.27 8 1 1.820 

8 1045 54.09 8 2 1.706 

 

15.8.3 Men 100 m Freestyle 

Lane Lap Split time (s) Position n Speed (m s-1) 

1 1 24.22 7 902 2.023 

1 2 50.96 7 1027 1.850 

2 1 23.90 5 777 2.049 

2 2 50.20 5 1043 1.890 

3 1 23.57 3 802 2.043 

3 2 49.48 3 775 1.927 

4 1 22.97 1 778 2.106 

4 2 48.67 1 992 1.912 

5 1 23.91 2 802 2.028 

5 2 49.17 2 970 1.953 

6 1 23.89 4 897 2.011 

6 2 50.13 4 1024 1.917 

7 1 24.20 6 798 2.010 

7 2 50.28 6 1013 1.906 

8 1 24.51 8 985 2.028 

8 2 51.02 8 1005 1.856 

 

15.8.4 Men 200 m Backstroke 

Lane Lap Split time (s) Position n Speed (m s-1) 

1 1 27.88 5 847 1.726 

1 2 57.72 5 992 1.634 

1 3 88.39 5 1148 1.582 

1 4 119.52 5 1110 1.521 

2 1 27.64 6 877 1.724 

2 2 58.06 6 858 1.572 

2 3 89.48 6 1008 1.532 

2 4 120.48 6 950 1.523 

3 1 27.77 4 962 1.711 

3 2 57.93 4 1042 1.586 

3 3 87.97 4 1037 1.587 

3 4 118.77 4 1083 1.536 

4 1 27.29 2 886 1.744 

4 2 56.86 2 913 1.659 

4 3 86.97 2 1003 1.621 

4 4 117.20 2 1071 1.608 

5 1 28.22 1 866 1.721 
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Lane Lap Split time (s) Position n Speed (m s-1) 

5 2 58.44 1 1023 1.592 

5 3 87.66 1 985 1.689 

5 4 116.36 1 911 1.692 

6 1 27.76 8 896 1.759 

6 2 58.08 8 1062 1.624 

6 3 89.58 8 1153 1.565 

6 4 121.20 8 1183 1.541 

7 1 27.05 3 708 1.791 

7 2 56.35 3 871 1.682 

7 3 86.38 3 871 1.660 

7 4 117.23 3 880 1.562 

8 1 27.60 7 864 1.796 

8 2 58.44 7 989 1.613 

8 3 89.60 7 1066 1.593 

8 4 120.67 7 1141 1.525 

 

15.8.5 Men 400 m Individual Medley 

Due to a combination of factors it was not possible to manually track the 

swimmer in lane 8 on lap 7. As a result, automated tracking was not attempted 

for this lane and lap. 

Lane Lap Split time (s) Position n Speed (m s-1) 

1 1 27.62 7 1084 1.690 

1 2 59.23 7 1313 1.572 

1 3 93.53 7 1337 1.464 

1 4 127.39 7 1297 1.409 

1 5 164.05 7 1466 1.325 

1 6 201.52 7 1524 1.299 

1 7 232.79 7 1302 1.622 

1 8 263.33 7 1248 1.608 

2 1 27.75 6 1097 1.708 

2 2 59.19 6 1286 1.584 

2 3 92.12 6 1212 1.526 

2 4 124.68 6 1237 1.487 

2 5 161.23 6 1454 1.348 

2 6 198.30 6 1544 1.307 

2 7 229.80 6 1327 1.619 

2 8 259.19 6 1263 1.659 

3 1 27.35 3 1030 1.706 

3 2 57.75 3 1250 1.641 

3 3 91.06 3 1236 1.512 
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Lane Lap Split time (s) Position n Speed (m s-1) 

3 4 123.76 3 1218 1.485 

3 5 159.55 3 1386 1.358 

3 6 195.91 3 1444 1.346 

3 7 226.47 3 1270 1.652 

3 8 255.51 3 1221 1.663 

4 1 27.07 2 1024 1.726 

4 2 57.44 2 1286 1.612 

4 3 91.06 2 1263 1.500 

4 4 123.82 2 1291 1.476 

4 5 159.15 2 1421 1.386 

4 6 194.80 2 1474 1.346 

4 7 225.36 2 1269 1.661 

4 8 255.22 2 1176 1.619 

5 1 26.72 1 1019 1.733 

5 2 57.36 1 1211 1.615 

5 3 90.19 1 1174 1.523 

5 4 123.33 1 1207 1.462 

5 5 158.30 1 1344 1.357 

5 6 194.51 1 1397 1.345 

5 7 224.58 1 1219 1.681 

5 8 253.67 1 1206 1.657 

6 1 27.25 4 1089 1.764 

6 2 58.01 4 1289 1.640 

6 3 90.78 4 1157 1.570 

6 4 123.19 4 1062 1.532 

6 5 160.38 4 1258 1.330 

6 6 198.16 4 1225 1.311 

6 7 227.99 4 1067 1.732 

6 8 257.31 4 968 1.657 

7 1 28.01 5 1116 1.689 

7 2 59.02 5 1276 1.607 

7 3 91.60 5 1235 1.553 

7 4 124.07 5 1187 1.499 

7 5 159.98 5 1482 1.380 

7 6 195.89 5 1483 1.370 

7 7 227.87 5 1347 1.598 

7 8 258.97 5 1267 1.573 

8 1 28.76 8 855 1.674 

8 2 60.72 8 1114 1.598 

8 3 94.77 8 1059 1.472 

8 4 128.48 8 885 1.457 

8 5 164.85 8 1124 1.345 

8 6 201.62 8 1359 1.336 

8 7 233.90 8 N/A N/A 

8 8 265.15 8 1317 1.555 
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15.8.6 Women 50 m Backstroke 

Lane Lap Split time (s) Position n Speed (m s-1) 

1 1 30.16 7 968 1.621 

2 1 30.01 6 1007 1.664 

3 1 28.82 3 790 1.671 

4 1 28.16 2 801 1.737 

5 1 27.97 1 829 1.722 

6 1 29.44 4 994 1.658 

7 1 29.69 5 808 1.679 

8 1 30.73 8 830 1.679 

 

15.8.7 Women 50 m Butterfly 

Lane Lap Split time (s) Position n Speed (m s-1) 

1 1 27.60 7 844 1.729 

2 1 26.97 5 1040 1.775 

3 1 25.91 1 997 1.853 

4 1 26.83 2 930 1.744 

5 1 26.84 3 1007 1.781 

6 1 26.87 4 934 1.813 

7 1 27.63 8 934 1.701 

8 1 27.57 6 1053 1.720 

 

15.8.8 Women 100 m Freestyle 

Due to a combination of factors it was not possible to manually track the 

swimmer in lane 7 on lap 1. As a result, automated tracking was not attempted 

for this lane and lap. The swimmer in lane 8 did not start the race. 

Lane Lap Split time (s) Position n Speed (m s-1) 

1 1 26.89 7 1004 1.817 

1 2 57.05 7 1189 1.645 

2 1 26.98 6 1005 1.792 

2 2 55.93 6 1113 1.702 

3 1 26.53 3 1051 1.846 

3 2 55.59 3 1242 1.722 

4 1 26.53 1 1009 1.819 

4 2 54.82 1 1104 1.743 

5 1 26.83 2 1004 1.821 

5 2 55.30 2 1189 1.742 

6 1 26.31 4 933 1.836 
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6 2 55.82 4 1081 1.701 

7 1 26.90 4 N/A N/A 

7 2 55.82 4 896 1.721 

 

15.8.9 Women 200 m Breaststroke 

Lane Lap Split time (s) Position n Speed (m s-1) 

1 1 33.36 7 1342 1.407 

1 2 71.88 7 1620 1.260 

1 3 112.10 7 1703 1.204 

1 4 152.67 7 1775 1.183 

2 1 33.87 6 1349 1.329 

2 2 72.30 6 1561 1.264 

2 3 112.06 6 1613 1.246 

2 4 152.28 6 1664 1.214 

3 1 33.55 3 1251 1.411 

3 2 71.90 3 1502 1.297 

3 3 110.39 3 1495 1.292 

3 4 148.82 3 1476 1.293 

4 1 33.74 2 1213 1.390 

4 2 71.08 2 1521 1.314 

4 3 110.12 2 1618 1.298 

4 4 147.71 2 1652 1.268 

5 1 32.97 1 1211 1.419 

5 2 70.17 1 1422 1.318 

5 3 108.03 1 1446 1.317 

5 4 147.52 1 1549 1.245 

6 1 34.01 5 1322 1.370 

6 2 71.58 5 1497 1.316 

6 3 110.78 5 1566 1.258 

6 4 151.40 5 1724 1.185 

7 1 34.18 4 1268 1.352 

7 2 72.84 4 1470 1.278 

7 3 111.71 4 1519 1.269 

7 4 150.15 4 1526 1.284 

8 1 34.02 8 1385 1.379 

8 2 72.89 8 1614 1.268 

8 3 113.00 8 1702 1.217 

8 4 154.20 8 1707 1.194 
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15.9 Glossary of terms 

Term Description 

Aspect ratio 
Indicates whether the pixels in an image are square. A 
value of 1 indicates they are. 

Background object Everything in an image that is not a swimmer. 

Barrel distortion 
A type of radial distortion, which is common in wide-angle 
and fisheye lens. 

Calibrated plane 
A plane in the world coordinate system for which a 
calibration model is valid. 

Calibration model 
Calculated by a calibration procedure. Used to do 
projection and reconstruction. 

Calibration object An object used in the calculation of a calibration model. 

Calibration 
procedure 

Defines how to calculate a calibration model and the 
equations that the calibration model uses to do projection 
and reconstruction. 

Control point A point used in the calculation of a calibration model. 

Coordinate 
digitiser 

Used to digitise a swimmer in video footage. 

Differencing 
A digital image processing technique. Subtracts an image 
of the background from an image that contains 
background and foreground objects. 

Digitisation 
The process of obtaining the pixels coordinates of a 
swimmer from video footage. 

Distortion 
coefficients 

Describes two types of distortion: radial and tangential. 

Extrinsic 
parameters 

Two matrices (called R and T), which describe a 
camera's pose. 

FHD 
Full High Definition video footage. An image is 1920 
pixels wide by 1080 pixels high. 

Fixed distance 
analysis 

Boundaries between race phases are at fixed distances 
in the swimming direction. 

Foreground object A swimmer in an image. 

Frame or Image 
A still image extracted from video footage. Consists of a 
two dimensional matrix of pixels. 

Image plane The plane in a camera onto which an image is projected. 

Individual distance 
analysis 

Boundaries between race phases are defined by a 
swimmer action, e.g. first hand entry after a period of 
underwater swimming. 

Intrinsic 
parameters 

Focal length, principal point and skew. 

Lane ropes 
Separate the lanes in a swimming pool. Consists of 
hundreds of coloured floats. 

Optical axis 
An imaginary line that is perpendicular to the image 
plane. 

Pixel A picture element. 

Pixel coordinate 
system 

Defines the index of a pixel in an image. The pixel 
coordinate system has U and V axes 

Pool deck The dry-land area that surrounds a swimming pool. 
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Term Description 

Principal point 
Intersection of the optical axis and image plane. It is also 
the centre of the radial distortion. 

Projection 
The transformation from world to pixel coordinate 
systems. 

Race phase 
One of the four parts that an analysis divides a race into: 
a start, turns, a finish and clean swimming. 

Race time The time taken to complete a race. 

Radial distortion Results from differences in magnification across a lens. 

RDE 
Reconstructed Distance Error. The difference between 
the ground truth and reconstructed length of a test 
distance. 

Reconstruction 
The transformation from pixel to world coordinate 
systems. 

Resolution The number of pixels in an image that represent a metre. 

RMSE 
Root Mean Square Error. A measure of reconstruction 
accuracy. 

ROI A region of interest in an image of a swimming pool. 

SD 
Standard Definition video footage. An image is 720 pixels 
wide by 576 pixels high. 

Skew Angle between pixel coordinate system axes. 

Tangential 
distortion 

Caused by the misalignment of a camera’s lens and 
image plane. 

Test distance 
A distance used to assess the accuracy of a 
reconstruction. 

Test point A point used to assess the accuracy of a reconstruction. 

Thresholding 
Classifies as background each pixel that is less than a 
certain value, which is called the threshold. The other 
pixels are part of a foreground object. 

Viewpoint 
Encapsulates the camera location, orientation, external 
lens and settings that were used to capture video footage 
of a swimming pool 

World coordinate 
system 

Represents 3D points and distances in the real world and 
has X, Y and Z axes. 

 

 

 


