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Abstract: Drowning is a major health issue worldwide. The World Health Organization’s global
report on drowning states that the highest rates of drowning deaths occur among children aged
1–4 years, followed by children aged 5–9 years. Young children can drown silently in as little as 25 s,
even in the shallow end or in a baby pool. The report also identifies that the main risk factor for
children drowning is the lack of or inadequate supervision. Therefore, in this paper, we propose a
novel 5G and beyond child drowning prevention system based on deep learning that detects and
classifies distractions of inattentive parents or caregivers and alerts them to focus on active child
supervision in swimming pools. In this proposal, we have generated our own dataset, which consists
of images of parents/caregivers watching the children or being distracted. The proposed model can
successfully perform a seven-class classification with very high accuracies (98%, 94%, and 90% for
each model, respectively). ResNet-50, compared with the other models, performs better classifications
for most classes.

Keywords: deep learning; 5G and beyond; child drowning prevention; network slicing architecture

1. Introduction

Drowning is a major health problem worldwide. According to the World Health
Organization (WHO, Geneva, Switzerland), in 2015, around 360,000 people died from
drowning [1]. More than half of these deaths are of people younger than 25.

The WHO Global report on drowning [2] states that the highest rates of drowning
deaths occur among children aged 1–4, followed by children aged 5–9 years. In fact, in
countries like Australia, drowning is the leading cause of unintentional injury death in
children aged 1–3 years, and in the USA, drowning is responsible for more deaths among
children aged 1–4 years than any other cause (except birth defects) [3]. Furthermore,
drowning is the third leading cause of death worldwide for those aged from 5 to 14. In the
Western Pacific Region, children aged 5–14 years die more frequently from drowning than
from any other cause.

Drowning happens quickly and quietly and its signs often go unnoticed. Young
children can drown silently in as little as 25 s, even in the shallow end or in a baby pool [4].
For all of these reasons, it is important for parents and caregivers to actively supervise their
children around water, even if lifeguards are present.

The same report identifies the absence of or inadequate supervision as key risk factors
for the drowning of children [1]. Another report [5] from the Royal Life Saving Society
Australia (RSLA, Sydney, Australia) linked distracted parents to 77.8% of drownings in
children aged 5–9 years in public and commercial pools between 1 July 2005 and 30 June
2015. In the cases of drowning without supervision, the parent or caregiver of the child was
missing, or physically near the child but distracted (talking to another adult or attending to
another child in his/her care). Furthermore, the German Lifeguard Association (DLRG,
Bad Nenndorf, Germany) (the biggest organization of its kind in the world) reported that
more than 300 people died in Germany during 2018 (from the beginning of the year through
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the summer) and associated the growing number of children drowning to their parents’
obsession with mobile phones [6]. In addition, Royal Life Saving Australia reported that,
between 2002 and 2017, 447 children under the age of four drowned. Roughly 5% of those
deaths were a direct result of a failure to supervise owing to the use of electronic devices
(smartphone, tablet, laptop, and so on) [7].

In order to solve the problem of inadequate child supervision, in this paper, we propose
a novel 5G and beyond child drowning prevention system based on deep learning that
detects and classifies distractions of inattentive parents or caregivers. It can be deployed
in indoor swimming pools or outdoor locations such as beaches or aquatic recreation
locations aided by unmanned aerial vehicle (UAV) (drones). The system detects distracted
parents/caregivers in charge of a minor and alerts them to concentrate on the supervision
task. A 5G network slicing architecture for child drowning prevention has also been
introduced. To the best of our knowledge, this is the first paper that aims to avoid child
drowning by detecting and classifying distractions of parents in charge of a minor in aquatic
recreational spaces; it is also the first paper to use digital technologies such as artificial
intelligence and modern communication technologies (such as 5G and beyond) to detect
and alert distracted parents or caregivers. The main contributions of this study are as
follows:

• The proposal of a real-time distraction detection system that takes place in an aquatic
recreational environment (swimming pools).

• The collection of our own distracted parent/caregiver image dataset by harvesting
images of real people at a swimming pool being distracted or supervising children.

• The implementation and evaluation of three types of well-known convolutional neural
networks (CNNs) for the classification and detection system to determine the most
suitable architecture for distraction detection.

• The development of a voice alert system, pager, or wearable device that reminds the
parent or caregiver to focus on the task of child supervision.

The experimental results prove the feasibility of the child drowning prevention system.
The proposed model can successfully perform a seven-class classification with very high
accuracies (98%, 94%, and 90% for each model, respectively).

The paper is structured as follows. In Section 2, we introduce our proposed 5G-enabled
child drowning prevention system. In Section 3, we identify the most relevant key per-
formance indicators (KPIs). In Section 4, we explain the 5G-service-based architecture. In
Section 5, we discuss the proposed 5G network slicing architecture for child drowning
prevention from a technical perspective. In Section 6, we briefly describe the convolu-
tional neural network architectures used in this research. The experiments and results are
presented in Section 7. Finally, Section 8 concludes the paper and highlights some future
research directions.

Related Work

Monitoring and supervision at swimming pools or aquatic recreation locations has
drawn the attention of the research community [8], particularly for drowning prevention
and early detection of possible drowning [9,10].

Some proposed drowning detection systems [11–13] employ underwater cameras to
detect motionless drowned victims sunk at the bottom of the pool using techniques such as
background extraction [13], which consists of detecting the moving objects by identifying
the difference between the current frame and a reference frame, often called a ‘background
image’ or ‘background model’; however, these systems are limited to the victims that have
sunk to the bottom of the pool, thus wasting precious time, as they are unable to detect the
victims prior to them drowning.

Other proposed methods consist of overhead cameras mounted around the pool (such
as our proposed system) [14–16]; these systems consist of two main parts: a vision compo-
nent that can detect and track swimmers and an event-inference (water crisis) module that
analyzes swimmer observation sequences for possible drowning behavior signals. Several
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studies have been carried out regarding the detection of swimmers based on overhead
cameras [17,18]. This task is still challenging owing to disturbances at the water’s sur-
face (e.g., water exhibits random homogeneous blob movements, which could be easily
misidentified as foreground objects) [19,20]. In addition, lightning and color variations
over time due to ambient brightness even further complicate automated monitoring based
on video surveillance. Several works apply background subtraction to solve the swimmer
detection problem [13,19,20]. Currently, the development of wearable devices has become
a very common practice. It has allowed researchers to develop sensor systems to mon-
itor the physiological signals of high-performance swimming athletes [21,22], to detect
pre-drowning symptoms and alert rescue staff [23], and to supervise children. Wearable
sensor systems for infants can perceive external threats such as falls or drowning; the
methods and techniques applied in wearable sensor systems are analyzed and discussed
in [24]. In [20], a real-time detection method for constant monitoring of swimmers at an
outdoor swimming pool is presented. A background subtraction scheme is introduced,
where the background has been modeled as a composition of homogeneous region pro-
cesses. Furthermore, to solve the foreground (swimmer) detection problem, a devised
thresholding scheme has been proposed to attain a good trade-off between maximizing
target detection while minimizing background noises. In addition, to enhance the visibility
of the foreground (swimmer), a pre-processing filtering scheme able to classify each pixel of
a current frame into different pixel types has been proposed; this way, appropriate filtering
actions such as color compensation can be applied when necessary. In [19], a background
subtraction scheme based on motion and intensity information has been developed to
identify swimmers in each video frame. Image pixels are classified according to motion
as random/stationary, ripple, and swimming. A motion map is developed through the
computation of dense optical flow that characterizes the motion contents of image pixels
over a short sequence of video frames rather than a single image. Intensity information has
been modeled using a block-based mixture of Gaussians (MoG). However, these systems
([19,20]) only specify how to detect a swimmer; they do not specify how to detect if he/she
is drowning.

Current improvements in computing power have enabled the use of deep learning
algorithms for human detection and other computer-vision-related problems. Most state-of-
the-art object detectors use deep learning algorithms to extract features from input images
(or videos) and perform classification and localization, respectively [25]. In [26], a method to
detect swimmers in low-quality video using two convolutional neural networks (YOLOv2
and Tiny-YOLO) has been proposed. Our proposed 5G and beyond child drowning
prevention system is also based on deep learning (convolutional neural networks), but
focuses on the detection of distracted parents/caregivers, not swimmer detection (as
in [26]). In [27], a real-time vision system to detect drowning incidents using overhead
cameras at an outdoor swimming pool is presented. The system uses a model comprising
data fusion and hidden Markov modeling to learn of drowning events early. They focus
on (1) foreground swimmer silhouette extraction and (2) behavioral recognition. The
foreground detection module has already been reported in [20]. The system has analyzed
water crisis episodes consisting of victims that suffer distress incidents (victims exhibit
involuntary movements such as active struggling or waving [28]) and drowning incidents
understood as suffocation. The detection of distress and early drowning episodes is based
on visual indicators (instinctive response with repetitive arm movements of extending out
and pressing down, perpendicular body (vertical up) in water with small movements in
horizontal and diagonal directions). The experiments try to differentiate between three
events (water crisis, treading, and normal swimming); the best testing errors obtained are
15.15% and 15.57%, with support vector machine (SVM) and reduced model (RM) classifier,
respectively. Furthermore, the false alarm rate is at about one to five cases for each camera
in a day. In addition, one challenge of their proposed system is that a drowning incident
may happen in a way that is different from the learned instinctive drowning response
model. In this case, it must be determined how the system will react to an event for which
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it is not trained [27]. Furthermore, specialists emphasize that drowning happens quickly
and quietly, and its signs often go unnoticed (see Section 1). For this reason, in our current
paper, we propose a novel technique to detect child drowning episodes that focuses on
the caregivers of the children. To improve swimming pool safety, we use deep learning
to detect a distracted caregiver of a child in a swimming pool, similarly to the detection
of drivers’ distractions on the road. The behavior of a driver is essential for traffic safety.
On-road distractions deteriorate the driver’s performance and may lead to the loss of
vehicular control and traffic accidents. A distraction is anything that diverts the driver’s
attention from the primary task of navigating the vehicle and responding to critical events.
The authors in [29–31] use deep learning to detect distracted driver behaviors such as
texting, operating the radio, drinking, fixing hair and makeup, talking on the phone, and
so on.

2. The Proposed 5G and Beyond Child Drowning Prevention System

In the proposed scenario, families need to register when they arrive at the swimming
pool. A facial image of each family member is acquired to recognize them. The swimming
pool database registers the age of each child and links the photos of the children with their
parents and/or other family member/s. The family decides who is going to be the primary
caregiver that is going to watch the children and be responsible for their safety inside the
swimming pool and a pager is given to him/her. This task can be shared between the
parents (or other family members 18 years or older) simultaneously, which means that none
of them should be distracted. It is also possible that there is only one primary caregiver
during a certain time slot and another during the next time slot (e.g., the father is the
primary caregiver from 15:00 to 17:00 and the mother from 17:00 to 19:00).

After all of these decisions are made using the swimming pool app, the family can
access the swimming pool area. The proposed 5G and beyond child drowning prevention
system is shown in Figure 1.

If the primary caregiver decides to supervise the children outside of the pool, a specific
seat will be assigned to him/her close to the swimming pool. This guarantees that he/she
will have a good sight of the swimming pool to supervise the children. In addition, a video
camera will be directly facing him/her to detect distractions. The cameras are strategically
located at an optimal distance in a way not to obstruct people. In the case of multiple
primary caregivers, the same or multiple video cameras can be facing them. Real-time
video will be transmitted to the command center. Distractions of primary caregivers will
be detected using a deep learning algorithm.

If the primary caregiver decides to supervise the child inside the pool, different video
cameras mounted surrounding the pool will detect him/her using computer vision. For
this purpose, a high-quality monitoring system is required that consists of video cameras
with multiple high-end lenses that can zoom and steer around to detect critical details. The
video cameras need to coordinate with each other to be able to track the primary caregivers
at any time to detect possible distractions. The video cameras will identify the primary
caregiver from different perspectives inside the pool. Automated analysis of the video
footage will be carried out. A caregiver can be considered as ‘distracted’ if the convolutional
neural network analyzes the images from all of the video cameras that are simultaneously
capturing his/her behavior and he/she is characterized as being ‘distracted’ by most of
them. That is, the images of the parents/caregivers are not combined, but the images from
each camera are classified into a category. It is decided if the parent/caregiver is distracted
or not by analyzing which category is repeated the most.
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Figure 1. Proposed 5G-enabled child drowning prevention system.

When a distraction event is detected, an alert will warn the primary caregiver so that
he/she focuses on active child supervision. We assume that alerts will be sent immediately
if the kids to supervise are 5 years old or under. For kids that can swim (usually older than
5 years), parents will be alerted if the convolutional neural network detects a continuous
distracted behavior for more than 10 s, because drowning accidents happen very quickly.
Alert messages can be sent to a pager. The pager lights up or vibrates in case the caregiver
is distracted. Alert messages can also be heard through the swimming pool speakers
located in the closest vicinity of the caregiver. Furthermore, lifeguards will also get these
notification messages and act accordingly. This information will be, for example, useful
if certain caregivers are notified several times; in this case, lifeguards can supervise the
associated children much closer and talk to the parents/caregivers or take other necessary
steps if no change in their attitude is observed.
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3. Related Key Performance Indicators

The proposed 5G-enabled child drowning prevention system can be identified as a
mission critical communications (MCC) service because it requires real-time and reliable
communications for a large number of users, as well as strong security and pre-emption
handling [32]. Table 1 summarizes the major key performance indicators (KPIs) for child
drowning prevention. The end-to-end latency can be measured as the time interval required
to send the packages from a source to a destination, measured at the application level.

Table 1. Main KPIs for child drowning prevention.

End-to-End Latency Data Rate
(Uplink/Downlink) Reliability

5G-enabled child drowning
prevention system 20 ms

40 Mbit/s for one
video camera/1 Mbps

for remote control
99.999%

Mission critical: A quality or characteristic of a communication activity, application,
service, or device that requires low setup and transfer latency, high availability and reliabil-
ity, the ability to handle large numbers of users and devices, strong security, and priority
and pre-emption handling.

It would be possible for our use case to connect to the nearest edge server via Wi-Fi 7
(802.11be), because this standard will support a maximum throughput of at least 30 Gbps.
Features operating at both the MAC (medium access control) layer and the physical layer
(PHY) such as multi-access point coordinated beamforming, time-sensitive networking,
and multi-link operation will bring Wi-Fi 7 latency performance into the sub-10 ms realm.
These characteristics would be enough to support our high-throughput low-latency child
drowning prevention use case. However, the IEEE task group announced draft 2.0 of
802.11be, and the final version will be released in 2024.

IEEE 802.11ax (Wi-Fi 6) received final approval from the IEEE Standards Board on 1
February 2021. This standard offers a theoretical speed of up to 9.6 Gbps and 10 ms latency.
Wi-Fi 6 does not perform well in large-scale outdoor coverage scenarios and cannot meet
the ultra-low latency requirements (<10 ms).

It has been shown in [33] that Wi-Fi 6 can achieve ultra-reliable low latency perfor-
mance (i.e., <1 ms packet latency at 99.999% reliability) only when optimized and operating
in a low load up to 0.16 bps/Hz that is not appropriate for our use case.

On the other hand, 5G can reach up to 10 Gbps (only slightly higher than Wi-Fi 6), but
this technology has been designed to address the requirements of ultra reliable and low-
latency communications (URLLC). URLLC has stringent requirements for capabilities such
as latency, reliability, and availability. Some use cases include wireless control of industrial
manufacturing or production processes, remote medical surgery, and transportation safety.
It has been demonstrated in [33] that 5G NR (new radio)-FDD (frequency division duplex)
has superior URLLC performance and meets the sub-ms delay requirement at >5× higher
load than Wi-Fi 6.

Therefore, 5G is the appropriate technology for our use case thanks to its better
latencies. The proposed system requires that real-time video is backhauled from the video
cameras to the command center for remote control and analysis. The number of video
cameras will vary depending on the size of the swimming pool. Moreover, 5G can be
deployed in indoor swimming pools or even in outdoor locations such as beaches or
aquatic recreation locations that extend several kilometers. In these cases where so many
video images need to be processed as quickly and efficiently as possible, a 5G network is
required to provide sufficiently high uplink data throughput and transmission reliability as
well as sufficiently low latency. The short end-to-end latency will enable alert messages to
be sent as fast as possible if necessary as drowning happens quickly. Reliability is critical to



Sensors 2022, 22, 7684 7 of 24

detect incidents, which means that performance should not be compromised irrespective
of the channel conditions.

4. 5G Service-Based Architecture

Next, the 5G system architecture of the non-roaming case is illustrated in Figure 2 [34].
The user plane (UP) and control plane (CP) are decoupled to obtain scalable and flexible
deployments. Whereas the CP is used for network signaling, the UP carries only user
traffic.
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The user equipment (UE) in the user plane is connected to either the radio access
network (RAN) or a non-3GPP access network (e.g., wireless local area network, WLAN)
as well as to the access and mobility management function (AMF).

Next, we explain the network functions (NFs) of the 5G core network (see the upper
part of the figure):

• Access and mobility management function (AMF): it is responsible for UE registration,
reachability and mobility.

• Session management function (SMF): it offers UE IP address allocation and manage-
ment, policy enforcement and quality of service, user plane function (UPF) selection,
and control.

• User plane function (UPF): it is the anchor point for intra and inter radio access
technology (RAT) mobility, packet routing, and forwarding.

• Policy control function (PCF): it integrates a policy framework for network slicing.
• Application function (AF): it is responsible for different services provided after the

interaction with the core network.
• User data management (UDM): it is responsible for subscriptions and many services

related to users.
• Authentication server function (AUSF): it performs the UE authentication service.
• Network slice selection function (NSSF): it offers an optimal selection of network

instances serving the users.
• Network exposure function (NEF): it collects, stores, and exposes the services and

capabilities provided by 3GPP NFs in a secure manner.
• NF repository function (NFR): it maintains and provides the deployed NF instances; it

also supports the service discovery function.
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5. A 5G Network Slicing Architecture for Child Drowning Prevention

Network slicing refers to the division of a physical network into multiple logical
networks (network slices), so that each logical network can provide specific network
characteristics for a particular use case. Network slicing provides services across multiple
network segments and different administrative domains. A 5G slice can combine resources
that belong to different infrastructure providers [35]. Network slicing is the best way for
network operators to build and manage a network that meets the requirements from a
wide range of users. Network slicing provides service flexibility and the ability to deliver
services faster with high security, isolation, and according to the quality of service (QoS)
requirements of the different applications. This way, network operators can manage their
network resources efficiently and provide differentiated and scalable services.

Slices are isolated from each other, which means that faults or errors in one slice do
not affect the proper functioning of another slice.

Next, we introduce the main design elements of our proposed 5G network slicing
architecture for child drowning prevention (see Figure 3).
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It is divided into three layers plus an additional management and orchestration layer,
whose basic functionalities are summarized as follows:

Infrastructure layer: It refers to all of the parts of the physical network, because slices
should be end-to-end. This layer includes the IoT networks, telecommunication networks,
satellites, edge computing technologies, and the cloud. It provides the allocation of virtual
or physical resources such as computing, storage, network, or radio.

We assume that all network devices are software defined networking (SDN)-enabled
switches managed by SDN controllers that are able to program their routing tables.
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The 5G core is generally divided into ‘core—user plane’ in charge of bearer delivery
and ‘core—control plane (CP)’ in charge of control functions. Core—control plane will stay
in the central cloud (network function virtualization, (NFV)), but ‘core—user plane (UP)’
will be distributed to its tens of edge nodes nationwide and be installed in edge clouds
(NFV). Security, reliability, and latency will be critical for a 5G slice supporting the child
drowning prevention case. For such a slice, all of the necessary (and potentially dedicated)
network functions should be instantiated at the edge node. We consider that all the 5G
core functions/units (UP) should be in the edge cloud close to the users. Multi-access
edge computing (MEC) drastically reduces the latency between network nodes and remote
servers in the cloud [36] because video processing servers are placed right where the core
functions/units are located. This way, we can minimize the transmission delay to match
the requirements of our delay-critical slice for such an MCC application. Furthermore,
machine learning is crucial in supporting MCC by enabling a local decision making process
at the edge servers [37].

Network function layer: It encapsulates all of the operations related to the configura-
tion and life cycle management of the network functions that offer an end-to-end service.
Network function virtualization (NFV) [38] and SDN (software-defined networking) [39]
are two fundamental technologies to configure the virtual network resources. NFV de-
couples specific network functions from dedicated and expensive hardware platforms.
This technology can provide software building blocks named VNFs (virtualized network
functions) for the data plane that can be connected and chained according to the service
type. SDN technology enables the separation of the control plane from the data plane to
offer a flexible resource management.

Service layer: This layer provides a unified vision of the service requirements. Each
service is represented by a service instance, which embeds all of the network characteristics
that satisfy the SLA (service level agreement) requirements such as throughput or latency.
A network slice instance (NSI) is a managed entity created by an operator’s network with a
lifecycle independent of the lifecycle of the service instance(s) [40]. An NSI provides the
network characteristics required by a service instance. It is also possible that an NSI is
shared across multiple service instances of a network operator.

Based on the main KPIs (see Section 3) and functional requirements of our use case, child
drowning prevention, we propose that the drowning prevention slice has ultra-reliable and
low-latency communications (URLLC) requirements. URLLC use cases (such as mission-
critical applications) have stringent latency, reliability, and availability requirements.

Management and Orchestration (MANO): It is the framework for the management
and orchestration of all network resources (computing, networking, storage, and virtual
machine) in the cloud. It comprises three functional blocks: NFV orchestrator (NFVO),
VNF manager (VNFM), and virtualized infrastructure manager (VIM). NFVO performs on-
boarding of new network service and VNF packages, network service lifecycle management,
and resource management. VNFM manages the lifecycle of VNF instances. VIM controls
and manages the lifecycle of virtual resources as requested by the NFVO in an NFV
infrastructure (NFVI) domain.

6. Convolutional Network Models

Convolutional neural networks (CNNs): They were created out of the need to be
able to process images effectively and efficiently; nowadays, they are also used for speech
recognition. However, their strength is in image processing. Next, we describe the CNNs
used in our research.

VGG model: This architecture was proposed by Karen Simonyan and Andrew Zis-
serman [41]; it was the winner of the ImageNet Large-Scale Visual Recognition Challenge
2012 (ILSVRC12). It was designed with 16 hidden layers in VGG-16 and 19 hidden layers
in VGG-19 versions. The architecture processes input images of size 224 × 224 pixels with
three channels for color images (RGB). The image is passed through five convolutional
blocks (Figure 4). In VGG-19, the first two blocks incorporate two convolutional layers
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and the remainders incoporate four convolutional layers. Each convolutional layer uses
3 × 3 filters and rectified linear unit (ReLU) as an activation function; the convolutional
blocks also incorporate maxpooling layers to reduce image size and prevent overfitting
problems; the upper layers are composed of two full-connected layers with 4096 neurons
each, at the top, one output layer for image classification into 1000 different categories.
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Figure 4. VGG-16 and VGG-19 architecture. 

ResNet model: It is a type of advanced convolutional neural network; this model was 
proposed by Kaiming He in his 2016 document [42]. The ResNet-50 version consists of 50 
layers. This model is based on the idea of residual and identity blocks that use skip con-
nections (shortcut) (Figure 5), where the input is passed to a deeper layer. In other words, 
the simple deep convolutional neural network is inspired by VGG with 3 × 3 filters and a 
ReLU activation function, which is modified to become a residual network by adding skip 
connections to define residual blocks. On the top, the architecture contains a fully con-
nected output layer with a softmax activation function for classification. Figure 6 shows 
the general configuration of the residual network architecture, including ResNet-50, Res-
Net-101, and ResNet-152. 
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Figure 4. VGG-16 and VGG-19 architecture.

ResNet model: It is a type of advanced convolutional neural network; this model
was proposed by Kaiming He in his 2016 document [42]. The ResNet-50 version consists
of 50 layers. This model is based on the idea of residual and identity blocks that use
skip connections (shortcut) (Figure 5), where the input is passed to a deeper layer. In
other words, the simple deep convolutional neural network is inspired by VGG with
3 × 3 filters and a ReLU activation function, which is modified to become a residual
network by adding skip connections to define residual blocks. On the top, the architecture
contains a fully connected output layer with a softmax activation function for classification.
Figure 6 shows the general configuration of the residual network architecture, including
ResNet-50, ResNet-101, and ResNet-152.
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Figure 4. VGG-16 and VGG-19 architecture. 

ResNet model: It is a type of advanced convolutional neural network; this model was 
proposed by Kaiming He in his 2016 document [42]. The ResNet-50 version consists of 50 
layers. This model is based on the idea of residual and identity blocks that use skip con-
nections (shortcut) (Figure 5), where the input is passed to a deeper layer. In other words, 
the simple deep convolutional neural network is inspired by VGG with 3 × 3 filters and a 
ReLU activation function, which is modified to become a residual network by adding skip 
connections to define residual blocks. On the top, the architecture contains a fully con-
nected output layer with a softmax activation function for classification. Figure 6 shows 
the general configuration of the residual network architecture, including ResNet-50, Res-
Net-101, and ResNet-152. 
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Figure 6. Configuration of residual network architecture, including ResNet-50, ResNet-101, and Res-
Net-152. 

Inception-v3 model: This convolutional neural network was developed by Google. 
The first version of inception, called “GoogLeNet”, was presented in the ImageNet Large-
Scale Visual Recognition Challenge 2014 (ILSVRC14) [43]. This first version of the archi-
tecture is made up of 22 layers including convolutional, pooling, and a characteristic layer 
called inception; the latter is a type of convolutional layer, but it is characterized using 
only 1 × 1, 3 × 3, and 5 × 5 filters simultaneously (Inception blocks) (Figure 7); this way, 
the number of parameters to calculate is greatly reduced. This was achieved with what 
Google called bottlenecks, which were convolutional layers with 1 × 1 filters to reduce the 
complexity of the network. Google also includes auxiliary classifiers, intending to facili-
tate the propagation of the gradients backward and to reduce the cost involved Therefore, 
reducing the number of parameters and complexity resulted in a more powerful network. 

Figure 8 shows the inception and reduction blocks that were set for the third version 
of this architecture. 
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and (e) reduction-B. 

Figure 6. Configuration of residual network architecture, including ResNet-50, ResNet-101,
and ResNet-152.

Inception-v3 model: This convolutional neural network was developed by Google. The
first version of inception, called “GoogLeNet”, was presented in the ImageNet Large-Scale
Visual Recognition Challenge 2014 (ILSVRC14) [43]. This first version of the architecture
is made up of 22 layers including convolutional, pooling, and a characteristic layer called
inception; the latter is a type of convolutional layer, but it is characterized using only
1 × 1, 3 × 3, and 5 × 5 filters simultaneously (Inception blocks) (Figure 7); this way,
the number of parameters to calculate is greatly reduced. This was achieved with what
Google called bottlenecks, which were convolutional layers with 1 × 1 filters to reduce the
complexity of the network. Google also includes auxiliary classifiers, intending to facilitate
the propagation of the gradients backward and to reduce the cost involved Therefore,
reducing the number of parameters and complexity resulted in a more powerful network.
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Inception-v3 model: This convolutional neural network was developed by Google. 
The first version of inception, called “GoogLeNet”, was presented in the ImageNet Large-
Scale Visual Recognition Challenge 2014 (ILSVRC14) [43]. This first version of the archi-
tecture is made up of 22 layers including convolutional, pooling, and a characteristic layer 
called inception; the latter is a type of convolutional layer, but it is characterized using 
only 1 × 1, 3 × 3, and 5 × 5 filters simultaneously (Inception blocks) (Figure 7); this way, 
the number of parameters to calculate is greatly reduced. This was achieved with what 
Google called bottlenecks, which were convolutional layers with 1 × 1 filters to reduce the 
complexity of the network. Google also includes auxiliary classifiers, intending to facili-
tate the propagation of the gradients backward and to reduce the cost involved Therefore, 
reducing the number of parameters and complexity resulted in a more powerful network. 

Figure 8 shows the inception and reduction blocks that were set for the third version 
of this architecture. 
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Figure 7. (a) Inception-A block, (b) inception-B block, (c) inception-C block, (d) reduction-A block, 
and (e) reduction-B. 
Figure 7. (a) Inception-A block, (b) inception-B block, (c) inception-C block, (d) reduction-A block,
and (e) reduction-B.

Figure 8 shows the inception and reduction blocks that were set for the third version
of this architecture.
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7. Experiments and Results 
7.1. Dataset 

The dataset is a collection of 38,000 images generated by us in the summer of 2019. 
The location of the video recording was the facilities of the Fontsanta swimming pool, 
located at Carrer del Marquès de Monistrol, 30, 08970 in Sant Joan Despí, Barcelona—
Spain. Five primary caregivers (people in charge of the children) were involved in the 
development of these experiments. They were recorded on video, doing different activi-
ties (one video for each action related to each of the different categories) both inside and 
outside the water. The images captured from each video correspond to a specific category 
so that the images have been identified and labelled manually for each category. The cap-
ture was made taking into account that only the participants appear in the video to protect 
the privacy and confidentiality of other people who are at the swimming pool. The videos 
were recorded with high-resolution smart mobile devices (1920 × 1880), although the im-
ages are preprocessed according to the input data requirements of each model (224 × 224). 
The images were finally collected and classified into seven (7) categories: 

• I_distracted: In the water distracted. 
• I_watching: In the water watching the children. 
• O_distracted: Out of the water distracted. 
• O_talk_cell: Out of the water talking on a cell phone. 
• O_reading: Out of the water reading a book. 
• O_chatting: Out of the water chatting on a cell phone. 
• O_watching: Out of the water watching the children. 
To achieve a great performance during the training process with our own dataset, 

the videos were not shot from a single angle. Instead, they were shot from different angles, 
covering all potential perspectives of a caregiver. Furthermore, because the swimming 
pool is located outdoors, the varying lighting conditions throughout the day provide a 
richer dataset. 

7.2. Experimental Settings 
The dataset consists of approximately 38,000 images; it was split into two parts, keep-

ing a ratio of 8:2, i.e., around 30,000 images for training and 8000 for testing. In addition, 
data augmentation was used to expand the training set and obtain better generalization. 
Data augmentation is a technique that expands our original training dataset virtually, 
through a random series of transformations from the original image, resulting in new 
plausible-looking images, in order to obtain a larger number of images for training. In 
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7. Experiments and Results
7.1. Dataset

The dataset is a collection of 38,000 images generated by us in the summer of 2019. The
location of the video recording was the facilities of the Fontsanta swimming pool, located
at Carrer del Marquès de Monistrol, 30, 08970 in Sant Joan Despí, Barcelona—Spain. Five
primary caregivers (people in charge of the children) were involved in the development
of these experiments. They were recorded on video, doing different activities (one video
for each action related to each of the different categories) both inside and outside the
water. The images captured from each video correspond to a specific category so that the
images have been identified and labelled manually for each category. The capture was
made taking into account that only the participants appear in the video to protect the
privacy and confidentiality of other people who are at the swimming pool. The videos were
recorded with high-resolution smart mobile devices (1920 × 1880), although the images
are preprocessed according to the input data requirements of each model (224 × 224). The
images were finally collected and classified into seven (7) categories:

• I_distracted: In the water distracted.
• I_watching: In the water watching the children.
• O_distracted: Out of the water distracted.
• O_talk_cell: Out of the water talking on a cell phone.
• O_reading: Out of the water reading a book.
• O_chatting: Out of the water chatting on a cell phone.
• O_watching: Out of the water watching the children.

To achieve a great performance during the training process with our own dataset, the
videos were not shot from a single angle. Instead, they were shot from different angles,
covering all potential perspectives of a caregiver. Furthermore, because the swimming
pool is located outdoors, the varying lighting conditions throughout the day provide a
richer dataset.

7.2. Experimental Settings

The dataset consists of approximately 38,000 images; it was split into two parts, keep-
ing a ratio of 8:2, i.e., around 30,000 images for training and 8000 for testing. In addition,
data augmentation was used to expand the training set and obtain better generalization.
Data augmentation is a technique that expands our original training dataset virtually,
through a random series of transformations from the original image, resulting in new
plausible-looking images, in order to obtain a larger number of images for training. In
computer vision, this technique became a standard for regularization, as well as to im-
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prove accuracy, generalization, and control of overfitting in CNNs. For this research, the
techniques chosen are as follows: rescale = 1./255, rotation_range = 2, shear_range = 0.2,
zoom_range = 0.2, and horizontal_flip = True.

We have selected the images from a different subject for testing purposes in order not
to contaminate the testing set. Figures 9 and 10 show a set of images of each category with
their training and testing labels.
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The algorithms were implemented in several Jupyter Notebooks in version 6.0.3
installed with anaconda programs suite, developed in Python. The experiments were
carried out on a Lenovo computer 2.9 GHz Intel (R) Xeon (R) processor with 72 GB RAM,
without GPU.

We implemented three different algorithms using the preset models from the python
Keras library; each one was specifically adapted to obtain optimal results after each training.
The transfer learning technique was used (further details will be provided in Section 7.4) to
take advantage of the pre-trained weights. Early stopping and dropout were implemented
as techniques to avoid overfitting to achieve an improvement of the generalization capacity.
Accuracy was selected during the training process as a metric to evaluate the performance
of each algorithm.

The setup of each model to be used is detailed below.

7.3. Convolutional Neural Network Architectures

In this paper, experiments were performed to evaluate the proposed approach with
three different CNN architectures: VGG-19, ResNet-50, and Inception-v3. Table 2 presents
a summary of the configuration for each model. For all experiments, we used an image
size of 224 × 224 × 3 and a batch size of 64.



Sensors 2022, 22, 7684 14 of 24

Table 2. Architectures of the three CNN models.

Input VGG-19
Image

ResNet-50
Image

Inception-v3
Image

Convolutional
part

conv3-64
conv3-64

max pooling layer
conv3-128
conv3-128

max pooling layer
conv3-256
conv3-256
conv3-256
conv3-256

max-pooling layer
conv3-512
conv3-512
conv3-512
conv3-512

max-pooling layer
conv3-512
conv3-512
conv3-512
conv3-512

max-pooling layer

conv7-64, s = 2

max pooling layer

[conv1-64; conv3-64; conv1-256]–[ conv1-64]
2 blocks of [conv1-64; conv3-64; conv1-256]

[conv3-128, s = 2; conv1-128; conv1-512]–[conv3-128, s = 2]
3 blocks of [conv1-128; conv3-128; conv1-512]

[conv1-256, s = 2; conv3-256 conv1-1024]–[conv1-256, s = 2]
5 blocks of [conv1-256 conv3-256 conv1-1024]

[conv1-512, s = 2; conv3-512; conv1-2048]–[conv1-512, s = 2]
2 blocks of [conv1-512 conv3-512 conv1-2048]

global_average-pooling layer

Conv3-32, s = 2
Conv3-32
Conv3-64

max pooling layer
Conv3-80

Conv3-192, s = 2
max pooling layer

Inception A-256
Inception A-288
Inception A-288
Reduction A-768
Inception B-768
Inception B-768
Inception B-768
Inception B-768

Reduction B-1280
Inception C-2048
Inception C-2048

global_average-pooling layer

MLP classifier
FC layer-4096
FC layer-4096

FC layer-07

FC layer-2048
FC layer-2048
FC layer-07

FC layer-2048
FC layer-2048
FC layer-07

7.3.1. VGG-19

We implemented the VGG-19 version because it has a greater number of layers
(deeper network) compared with the VGG-16 version mentioned above. It is made up of a
224 × 224 × 3 input layer, five convolutional blocks with kernel 3 × 3, ReLU activation
function, without padding, and a maxpooling layer after each block followed by a flattened
layer and two additional blocks; each additional block consists of a fully connected dense
layer with 4092 neurons, a BatchNormalization layer, and a dropout layer. The last layer
is a dense layer with a softmax activation function that contains seven neurons to classify
our categories.

7.3.2. ResNet-50

This model contains an input layer of 224 × 224 × 3, fifty convolutional blocks with
their respective skip connections, followed by a global average pooling layer. At the top of
the model, we have added two additional blocks; each block consists of a fully connected
dense layer with 2048 neurons, a BatchNormalization layer, and a dropout layer. The last
layer is a dense layer with a softmax activation function that contains seven neurons for
our classification.

7.3.3. Inception-v3

This model is composed of a 224 × 224 × 3 input layer, two convolutional blocks of
three and two layers, followed by a maxpooling layer after each block. In the central part,
it consists of several types of inception and reduction blocks, along with a global_average-
pooling layer. At the top of the model, we added two additional blocks; each block consists
of a dense layer fully connected with 2048 neurons, a BatchNormalization layer, and a
dropout layer. The last layer is a dense layer with a softmax activation function that contains
seven neurons for our classification.

7.4. Training

The dataset consists of approximately 38,000 images (N records); it was split into
two parts, keeping a ratio of 8:2, i.e., around 30,000 images for the training set (n records)
and 8000 for the testing set (N−n records). For the training, we applied cross-validation.
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Cross-validation is a technique commonly used to validate machine learning models and
estimate the performance of the model trained on unseen data. The most robust and widely
used method of cross-validation is K iterations or K-fold cross-validation. This method
consists of splitting the training dataset into K subsets (see Figure 11). During iterations,
each of the subsets are used as validation data or testing folds and the rest (K−1) as training
data or training folds. The cross-validation process is performed repeatedly for K iterations,
with each of the subsets of validation data. The arithmetic average of the results of each
iteration is finally performed to obtain a single result. This method is highly efficient
as we evaluate it from K combinations of training and validation data, but it still has a
disadvantage, that is, computationally, it is slow. However, the choice of the number of
iterations depends on how large the dataset is. Cross-validation is most commonly used
with K values ranging from 5 to 10. If the model (estimator) is a classifier and the target
variable (y) is binary or multiclass (as in this research), the StratifiedKfold technique is
used by default. This approach introduces stratified folds, i.e., by keeping the proportion
of samples from each class in all folds. Therefore, the data from the training and testing
folds are distributed equally. It is useful when unbalanced datasets are used. To evaluate
the results, we used several metrics that are very common in machine learning applications
for classification problems.
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7.4.1. Loss or Cost Function

A loss function is employed to optimize a machine learning algorithm. Several
different cost functions can be used. Each of them penalizes errors differently. The loss
function most commonly used in deep neural networks for classification problems is
cross-entropy. In this research, we employed categorical cross-entropy. Categorical cross-
entropy is a loss function that is used in multi-class classification tasks, where a sample
can be considered to belong only to a specific category with a probability of 1 and to other
categories with a probability of 0, and the model must decide which category each one
belongs to.
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7.4.2. Transfer Learning and Early Stopping

A model can be trained from scratch when it is not very large or when the necessary
computational capacity for its execution is available. On the other hand, it is possible to
take advantage of the benefits of pre-established models and use them in new models.
This technique is known as transfer learning; this means that it allows us to transfer
learning from a pre-trained model such as VGG-19, ResNet-50, Inception-v3, and so on (pre-
trained models for 1000 objects’ classification) and apply it to new classification algorithms.
Furthermore, it is possible to unfreeze some pre-trained layers by adapting the model
(fine-tuning) to re-train them along with the new fully connected layers; this method
implies increasing the training time to avoid overfitting problems and to obtain optimal
performance from the algorithm.

A popular technique to overcome overfitting is early stopping. For this purpose, at
each iteration, the training set is divided into training and validation folds. The training
folds are used to train the model and the validation folds are used as validation data at each
iteration. In each training of the model, the validation folds help us to verify the accuracy
of the model at the end of each epoch. Therefore, as soon as the test error starts to increase,
the training is stopped.

7.5. Evaluation Metrics

To evaluate the results, we used several metrics that are very common in machine
learning applications for classification problems.

7.5.1. Accuracy

It is defined as the number of predictions made correctly by the model of the total
number of records.

accuracy =
TP + TN

TP + FP + FN + TN
(1)

where TP represents true positives, TN represents true negatives, FP represents false
positives, and FN represents false negatives.

7.5.2. Precision

We evaluate our data for its performance of “positive” predictions.

precision =
TP

TP + FP
(2)

7.5.3. Recall (Sensitivity) (True Positive Rate)

It is calculated as the number of correct positive predictions divided by the total
number of positives.

recall =
TP

TP + FN
(3)

7.5.4. Specificity (True Negative Rate)

It is calculated as the number of correct negative predictions divided by the total
number of negatives.

speci f icity =
TN

TN + FP
(4)

7.5.5. F1 Score

It is the weighted average of precision and sensitivity. Therefore, this score takes into
account both false positives and false negatives.

F1 score = 2 × (precision × recall)
(precision + recall)

(5)
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7.5.6. Loss

Loss is the value that reflects the sum of errors in our model. It indicates whether
the model is performing well (high value) or not (low value); on the other hand, the
accuracy can be defined as the number of correct predictions divided by the number of
total predictions.

Therefore, if we analyze these two metrics together (loss and accuracy) (see Table 3),
we can deduce more information about the model performance. If loss and accuracy are
low, it implies that the model makes small errors in most of the data. However, if both are
high, it makes large errors in some of the data. Low accuracy but high loss would mean
that the model makes large errors in most of the data. However, if the accuracy is high and
the loss is low, then the model makes small errors in only some of the data, which would
be the ideal case.

Table 3. Analysis of both loss and accuracy metrics together.

Low Loss High Loss

Low Accuracy A lot of small errors A lot of big errors
High Accuracy A few small errors A few big errors

7.6. Experimental Results

After training with different configurations in the upper layers of each model, the
following results were obtained.

7.6.1. Loss and Accuracy

For training, cross validation was performed; therefore, the early stopping technique
was used to avoid overfitting (as mentioned above); thus, training is stopped once it has
reached the maximum accuracy value. Furthermore, the checkpoint was used to save the
weights of the trained model when a new maximum value arises and we can load it in the
future. Table 4 shows a summary of the accuracy and loss for the training and testing of
each model. We can see that, for training, all models achieve an accuracy above 99% and
ResNet-50 achieves a higher loss value compared with the other two models. Furthermore,
for testing, ResNet-50 achieves the highest accuracy, but also the largest loss of 98% and
0.3203, respectively. VGG-19 achieves an accuracy of 94% and the lowest loss of 0.0039
and, finally, Inception-v3 achieves an accuracy of 90% and a loss of 0.0364. Based on the
accuracy, ResNet-50 has developed much better performance compared with the other
trained models.

Table 4. Accuracy and loss for VGG-19, ResNet-50, and Inception-v3 model.

Models
Training Testing

Accuracy Loss Accuracy Loss

VGG-19 0.9987 0.0056 0.9445 0.0039
ResNet-50 0.9973 0.0110 0.9803 0.3203

Inception-v3 0.9993 0.0019 0.9044 0.0364

Table 5 shows the accuracy achieved by each model with each of the classification
categories (seven), evidencing the performance in more detail. VGG-19 achieves an accuracy
of 100% for I_watching and O_reading categories, an average accuracy of 97.42% for the
remaining categories, and a lower value of 72.73% for the O_chatting category. Similarly,
ResNet-50 achieves an accuracy of 100% for the I_watching and O_talk_cell categories and
the worst result for the O_distracted category, with an accuracy of 95.4%. On the other
hand, Inception-v3 achieves a high accuracy of 98.68% for the I_distracted category and a
lower accuracy of 66.6% for the O_talk_cell category.
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Table 5. Accuracy of each model with each category.

Parent Status VGG-19
Accuracy (%)

ResNet-50
Accuracy (%)

Inception-v3
Accuracy (%) Total Samples

I_distracted 98.99 97.75 98.68 1291
I_watching 100 100 96.83 883

O_distracted 92.32 95.4 95.2 1458
O_talk_cell 98.75 100 66.6 1036
O_reading 100 97.85 94.29 1069
O_chatting 72.73 97.97 90.91 935

O_watching 99.61 99.61 84.42 507

As this research work focuses on parental distraction detection for child drowning
prevention, the “In the water watching the children” (I_watching) and “Out of the water
watching the children” (O_watching) categories are the most relevant ones to detect if
parents/caregivers are really supervising their children. All of the other categories just
represent that the caregivers are distracted and should be warned. For I_watching, the
VGG-19 and ResNet-50 models achieve an accuracy of 100% and Inception-v3 achieves an
accuracy of 96.83%. Likewise, for O_watching, the VGG-19 and ResNet-50 models achieve
an accuracy of 99.61% and Inception-v3 achieves an accuracy of 84.42% (Table 4).

7.6.2. Precision, Recall, and F1-Score

Accuracy should not be considered as a single metric for measuring model perfor-
mance when using an unbalanced data set, as it counts the number of correct predictions
regardless of the type of category, leaning towards the majority categories. In other words,
from a dataset of 100 cases where 95 belong to the category “a” and five to category “b”, if
only all the cases in the first category are correctly predicted, an accuracy of 95% would
be obtained. This value is misleading because 95% refers only to the correctly predicted
values of one category (50% of the total predictions).

Because our data are unbalanced, we also consider other metrics such as recall, preci-
sion, specificity, and F1-score to evaluate our results. Table 6 shows the values obtained
in every category based on the above-mentioned metrics for VGG-19. F1-score is the har-
monic mean of precision and recall and it takes into account both false positives and false
negatives. The VGG-19 model performs well because it achieves an accuracy between 96%
and 99% for most categories and a smaller accuracy of 84% for the O_reading category. We
can also observe that, for the most relevant categories (I_watching and O_watching), this
model reaches an F1-score of 98%, demonstrating good performance in training.

Table 6. Evaluation metrics of the VGG-19 model.

Category Precision Recall F1-Score Total Samples

I_distracted 0.99 0.99 0.99 1291
I_watching 0.98 1.00 0.98 883

O_distracted 0.96 0.92 0.96 1458
O_talk_cell 0.99 0.99 0.99 1036
O_reading 0.87 1.00 0.87 1069
O_chatting 0.84 0.73 0.84 935

O_watching 0.98 1.00 0.98 507

Table 7 shows a summary of the already mentioned metrics in every category for
the ResNet-50 model. It achieves an F1-score between 97% and 99% for all categories. It
should be pointed out that this model reaches an F1-score of 98% and 99% for the most
relevant categories (I_watching and O_watching), which is the best performance of the
three models.
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Table 7. Evaluation metrics of the ResNet-50 model.

Category Precision Recall F1-Score Total Samples

I_distracted 1.00 0.98 0.99 1291
I_watching 0.97 1.00 0.98 883

O_distracted 0.99 0.95 0.97 1458
O_talk_cell 0.95 1.00 0.98 1036
O_reading 1.00 0.98 0.99 1069
O_chatting 0.96 0.98 0.97 935

O_watching 0.98 1.00 0.99 507

Finally, Table 8 shows a summary of the already mentioned metrics in every category
for the Inception-v3 model. This model achieves an F1-score between 91% and 98% for
most categories, and a minimum F1-score of 79% for the O_talk_cell category. In this case,
the Inception-v3 model achieves an F1-score of 98% for the I_watching category, but the
lowest F1-score of 84% for the O_watching category (most relevant categories).

Table 8. Evaluation metrics of the Inception-v3 model.

Category Precision Recall F1-Score Total Samples

I_distracted 0.98 0.99 0.98 1291

I_watching 0.98 0.97 0.98 883

O_distracted 0.75 0.95 0.84 1458

O_talk_cell 0.98 0.67 0.79 1036

O_reading 0.98 0.94 0.96 1069

O_chatting 0.92 0.91 0.91 935
O_watching 0.84 0.84 0.84 507

According to this, we conclude that the ResNet-50 model shows excellent performance
for this classification problem, reaching F1-scores of 98% and 99% in the I_watching and
O_watching categories, respectively (see Table 7). However, the VGG-19 model with a
value of 98% in the mentioned categories shows a solid performance as well (see Table 6).

7.6.3. Confusion Matrix, False Positive Rate, and False Negative Rate

Figures 12–14 show the confusion matrices for each model. The main diagonal shows
the number of matches found for each category between the true labels (columns) and the
predicted labels (rows).

All categories are well predicted. Considering the most relevant categories “In the
water watching the children” (I_watching) and “Out of the water watching the children”
(O_watching) mentioned above, it is possible to have some wrong predictions, which
means that, in some cases, certain distractions have not been detected. The three models
sometimes classify distracted behaviors of caregivers as ‘watching the children’ (false
positives). These cases represent a risk for children’s safety, but fortunately, do not occur
often compared with the true positive values for these categories. Inception-v3 obtains less
false positives for I_watching, with 14 versus 27 and 29 cases for VGG-19 and ResNet-50,
respectively. ResNet-50 obtains less false positives for O_watching, with 8 versus 21 and
79 cases for VGG-19 and Inception-v3, respectively. We define the false positive rate as
subtracting 1 from the specificity or as dividing false positives by the sum of false positives
and true negatives. The false-positive rate for I_watching and the three models VGG-19,
ResNet-50, and Inception-v3 is 0.43%, 0.46%, and 0.22%, respectively. The false-positive
rate for O_watching and the three models (VGG-19, ResNet-50, and Inception-v3) is 0.31%,
0.12%, and 1.18%, respectively. In terms of the false-positive rate, we observe that the
obtained values are always very small; VGG-19 and ResNet-50 perform a little worse than
Inception-v3 for I_watching. ResNet-50 shows clearly the best results for O_watching.
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Furthermore, the three models sometimes classify “watching the children” as dis-
tracted behaviors (false negatives). These cases do not pose any risk, but could be annoying
for caregivers who are warned to supervise the children when they actually were doing
so. ResNet-50 and VGG-19 do not obtain any false negatives for I_watching versus 28
cases for Inception-v3. ResNet-50 and VGG-19 obtain less false negatives for O_watching,
with 2 cases each, versus 79 cases for Inception-v3. If we also consider the false-negative
rate for the most relevant categories (we define the false-negative rate as subtracting one
from recall), we can see that, for I_watching and the two models VGG-19 and ResNet-50,
it is 0% and, for Inception-v3, it is 3.17%. The false-negative rate for O_watching and
the two models VGG-19 and ResNet-50 is 0.39% and, for Inception-v3, it is 15.58%. The
false-negative rates obtained are very small (with the exception of the O_watching category
for Inception-v3). These results show that, for VGG-19 and ResNet-50, the child drowning
prevention system works correctly with a minimal error rate versus Inception-v3.

8. Conclusions and Future Work

In this paper, a novel 5G and beyond child drowning prevention system that detects
distracted parents or caregivers and alerts them to focus on active child supervision in
swimming pools was developed. For this purpose, we evaluated and implemented three
well-known CNN models: ResNet-50, VGG-19, and Inception-v3, to process and classify
images. The proposed deep CNN models have revealed that they can be used to automat-
ically detect (based on images) possible distractions of a caregiver who is supervising a
child and generate alerts to warn them.

The proposed child drowning prevention system can successfully perform a seven-
class classification with very high accuracies of 98% for ResNet-50, 94% for VGG-19, and
90% for Inception-v3. VGG-19 and ResNet-50 achieve the same high performance in the
most relevant categories I_watching and O_watching, with accuracies of 100% and 99.61%,
respectively. For I_watching, the three models achieve an F1-score of 98%. For O_watching,
they reach a F1-score of 98%, 99%, and 84% for VGG-19, ResNet-50, and Inception-V3,
respectively. In terms of false-positive rate, the obtained values are always very small;
VGG-19 and ResNet-50 perform a little worse than Inception-v3 for I_watching. ResNet-50
shows the best results for O_watching. The false-negative rates obtained are also very small
(with exception of the O_watching category for Inception-v3). VGG-19 and ResNet-50
models perform quite well with a minimal false-negative rate versus Inception-v3 for
I_watching and O_watching of 0% and 0.39%, respectively. ResNet-50, compared with
the other models performs a better classification for most categories. According to the
results reached in this research, the proposed system was tested in a swimming pool, but
we think it could also be implemented even in swimming lakes or beaches to avoid possible
child drowning.

On the other hand, special attention must be paid to security/privacy. Although there
is no doubt that distracted parent detection can save lives, associated privacy and security
issues need to be analyzed to make our child drowning system socially acceptable. These
issues include access rights to data (video images), storage of data, security of data transfer,
data analysis rights, and the governing policies. The proposed child drowning prevention
system may be vulnerable to a variety of active and passive security attacks (such as
eavesdropping) with disastrous consequences (especially if unauthorized parties access
underage images). For this reason, security and privacy risks should be minimized by
applying existing technical solutions such as encryption, authentication mechanisms, and
cryptographic access control during data collection and transmission, encryption message
digests, and hashing to assure the integrity of data during data storage and processing.
In addition, further works are also required to maintain the security and confidentiality
of data by introducing advanced encryption-based techniques. All of these security and
privacy challenges must be addressed so that the proposed child drowning prevention
system comes out as a promising way to increase swimming pool safety.
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We can define the total reaction time as the time elapsing from an observation (image),
its transmission to the edge server, the image processing for activity recognition, and the
transmission of an alert (if necessary) based on the observation (D = DUE + DUplink +
Dprocessing +DDownlink ). As future work, we would like to run the entire system (processing
of the images with the neural network and transmission using 5G) in real time. The
expected response time for our child drowning prevention system would be around twenty
milliseconds (see Table 1). Neural networks have an infinitesimal response time once the
weights and the topology have been defined [44]. Further, 5G has been designed to address
the requirements of ultra reliable and low-latency communications (URLLC). URLLC has
stringent requirements for capabilities such as latency, reliability, and availability. Some use
cases include wireless control of industrial manufacturing or production processes, remote
medical surgery, and transportation safety. Therefore, 5G is the appropriate technology for
our use case.
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