28,207 research outputs found

    The Next-Generation Retail Electricity Market in the Context of Distributed Energy Resources: Vision and Integrating Framework

    Get PDF
    The increasing adoption of distributed energy resources (DERs) and smart grid technologies (SGTs) by end-user retail customers is changing significantly both technical and economic operations in the distribution grid. The next-generation retail electricity market will promote decentralization, efficiency, and competitiveness by accommodating existing and new agents through new business models and transactive approaches in an advanced metering infrastructure (AMI). However, these changes will bring several technical challenges to be addressed in transmission and distribution systems. Considerable activities have been carried out worldwide to study the impacts of integrating DERs into the grid and in the wholesale electricity market. However, the big vision and framework of the next-generation retail market in the context of DERs is still unclear. This paper aims to present a brief review of the present retail electricity market, some recent developments, and a comprehensive vision of the next-generation retail electricity market by describing its expected characteristics, challenges, needs, and future research topics to be addressed. A framework of integrating retail and wholesale electricity markets is also presented and discussed. The proposed vision and framework particularly highlight the necessity of new business models and regulatory initiatives to establish decentralized markets for DERs at the retail level as well as advances in technology and infrastructure necessary to allow the widespread use of DERs in active and effective ways

    Benchmarking Utility Clean Energy Deployment: 2016

    Get PDF
    Benchmarking Utility Clean Energy Deployment: 2016 provides a window into how the global transition toward clean energy is playing out in the U.S. electric power sector. Specifically, it reveals the extent to which 30 of the largest U.S. investor-owned electric utility holding companies are increasingly deploying clean energy resources to meet customer needs.Benchmarking these companies provides an opportunity for transparent reporting and analysis of important industry trends. It fills a knowledge gap by offering utilities, regulators, investors, policymakers and other stakeholders consistent and comparable information on which to base their decisions. And it provides perspective on which utilities are best positioned in a shifting policy landscape, including likely implementation of the U.S. EPA's Clean Power Plan aimed at reducing carbon pollution from power plants

    Dual Environmentalism: Demand Response Mechanisms in Wholesale and Retail Energy Markets

    Get PDF
    This note argues that a dual jurisdictional approach to demand response programming is better suited to mitigate environmental harms than an “either-or” regulatory model. Through an exploration of FERC’s authority over wholesale demand response, state authority over retail-level demand response, and implications for electricity and capacity markets arising out of the Court’s decision in FERC v. EPSA, this note will offer effective legal mechanisms for mitigating environmental costs, while fostering environmental benefits. The next section of this note analyzes the strengths and weaknesses of state and federal regulatory approaches to demand response in isolation. Based on this assessment, this note suggests the policy mechanisms most conducive to environmentally-conscious electric energy regulation. This note concludes with a model regulatory scheme that utilizes demand response to mitigate global climate change and advance environmental sustainability

    Power Future

    Get PDF

    Technology roadmap: solar photovoltaic energy - 2014 edition

    Get PDF
    Solar power enhances energy diversity and hedges against price volatility of fossil fuels, thus stabilising costs of electricity generation in the long term, argues this report. Overview Solar energy is widely available throughout the world and can contribute to reduced dependence on energy imports. As it entails no fuel price risk or constraints, it also improves security of supply. Solar power enhances energy diversity and hedges against price volatility of fossil fuels, thus stabilising costs of electricity generation in the long term. Solar PV entails no greenhouse gas (GHG) emissions during operation and does not emit other pollutants (such as oxides of sulphur and nitrogen); additionally, it consumes no or little water. As local air pollution and extensive use of fresh water for cooling of thermal power plants are becoming serious concerns in hot or dry regions, these benefits of solar PV become increasingly important. Key findings: Since 2010, the world has added more solar photovoltaic (PV) capacity than in the previous four decades. Total global capacity overtook 150 gigawatts (GW) in early 2014 The geographical pattern of deployment is rapidly changing. While a few European countries, led by Germany and Italy, initiated large-scale PV development, since 2013, the People’s Republic of China has led the global PV market, followed by Japan and the United States PV system prices have been divided by three in six years in most markets, while module prices have been divided by five This roadmap envisions PV’s share of global electricity reaching 16% by 2050, a significant increase from the 11% goal in the 2010 roadmap Achieving this roadmap’s vision of 4 600 GW of installed PV capacity by 2050 would avoid the emission of up to 4 gigatonnes (Gt) of carbon dioxide (CO2) annually This roadmap assumes that the costs of electricity from PV in different parts of the world will converge as markets develop, with an average cost reduction of 25% by 2020, 45% by 2030, and 65% by 2050, leading to a range of USD 40 to 160/MWh, assuming a cost of capital of 8% To achieve the vision in this roadmap, the total PV capacity installed each year needs to rise from 36 GW in 2013 to 124 GW per year on average, with a peak of 200 GW per year between 2025 and 2040 The variability of the solar resource is a challenge. All flexibility options – including interconnections, demand-side response, flexible generation, and storage –need to be developed to meet this challenge Appropriate regulatory frameworks – and well-designed electricity markets, in particular – will be critical to achieve the vision in this roadmap Levelised cost of electricity from new-built PV systems and generation by sector

    State Efforts to Cap the Commons: Regulating Sources or Consumers?

    Get PDF
    California’s Global Warming Solutions Act (Assembly Bill 32) requires the state to reduce aggregate greenhouse gas emissions to 1990 levels by 2020. One of the challenges California faces is how the state should regulate the electricity sector. About 80 percent of the state’s electricity consumption is generated in the state, but about 52 percent of the greenhouse gas emissions associated with electricity consumption comes from outside the state. The question addressed in this paper is where to locate the point of compliance in the electricity sector—that is, where in the supply chain linking fuel suppliers to generators to the transmission system to retail load-serving entities should the obligation for measurement and compliance be placed. The conclusion offered is that one particular approach to regulating the electricity sector—the “first-seller approach”—would be best for California. The alternative “load-based approach” has a running head start in the policy process but would undermine an economywide marketbased emissions trading program.electricity, climate, state level, CO2, cap and trade, market-based approaches, load-based, first seller, point of regulation, California, Western Climate Initiative

    Microgrids & District Energy: Pathways To Sustainable Urban Development

    Get PDF
    A microgrid is an energy system specifically designed to meet some of the energy needs of a group of buildings, a campus, or an entire community. It can include local facilities that generate electricity, heating, and/or cooling; store energy; distribute the energy generated; and manage energy consumption intelligently and in real time. Microgrids enable economies of scale that facilitate local production of energy in ways that can advance cost reduction, sustainability, economic development, and resilience goals. As they often involve multiple stakeholders, and may encompass numerous distinct property boundaries, municipal involvement is often a key factor for successful implementation. This report provides an introduction to microgrid concepts, identifies the benefits and most common road blocks to implementation, and discusses proactive steps municipalities can take to advance economically viable and environmentally superior microgrids. It also offers advocacy suggestions for municipal leaders and officials to pursue at the state and regional level. The contents are targeted to municipal government staff but anyone looking for introductory material on microgrids should find it useful

    Agent-based homeostatic control for green energy in the smart grid

    No full text
    With dwindling non-renewable energy reserves and the adverse effects of climate change, the development of the smart electricity grid is seen as key to solving global energy security issues and to reducing carbon emissions. In this respect, there is a growing need to integrate renewable (or green) energy sources in the grid. However, the intermittency of these energy sources requires that demand must also be made more responsive to changes in supply, and a number of smart grid technologies are being developed, such as high-capacity batteries and smart meters for the home, to enable consumers to be more responsive to conditions on the grid in real-time. Traditional solutions based on these technologies, however, tend to ignore the fact that individual consumers will behave in such a way that best satisfies their own preferences to use or store energy (as opposed to that of the supplier or the grid operator). Hence, in practice, it is unclear how these solutions will cope with large numbers of consumers using their devices in this way. Against this background, in this paper, we develop novel control mechanisms based on the use of autonomous agents to better incorporate consumer preferences in managing demand. These agents, residing on consumers' smart meters, can both communicate with the grid and optimise their owner's energy consumption to satisfy their preferences. More specifically, we provide a novel control mechanism that models and controls a system comprising of a green energy supplier operating within the grid and a number of individual homes (each possibly owning a storage device). This control mechanism is based on the concept of homeostasis whereby control signals are sent to individual components of a system, based on their continuous feedback, in order to change their state so that the system may reach a stable equilibrium. Thus, we define a new carbon-based pricing mechanism for this green energy supplier that takes advantage of carbon-intensity signals available on the internet in order to provide real-time pricing. The pricing scheme is designed in such a way that it can be readily implemented using existing communication technologies and is easily understandable by consumers. Building upon this, we develop new control signals that the supplier can use to incentivise agents to shift demand (using their storage device) to times when green energy is available. Moreover, we show how these signals can be adapted according to changes in supply and to various degrees of penetration of storage in the system. We empirically evaluate our system and show that, when all homes are equipped with storage devices, the supplier can significantly reduce its reliance on other carbon-emitting power sources to cater for its own shortfalls. By so doing, the supplier reduces the carbon emission of the system by up to 25% while the consumer reduces its costs by up to 14.5%. Finally, we demonstrate that our homeostatic control mechanism is not sensitive to small prediction errors and the supplier is incentivised to accurately predict its green production to minimise costs
    • 

    corecore