6 research outputs found

    A BADMINTON ROBOT -SERVING OPERATION DESIGN

    Get PDF
    ABSTRACT Building a sport robot that can defeat human players in sport activities is the aim of many researchers and engineers in robotic related fields. This paper presents a design of a mobile badminton robot that can serve a shuttlecock as a human player in a standard badminton court. A transporting shuttlecock system was designed to preload six shuttlecocks. A serving mechanism was designed to swing a standard badminton racquet to hit a dropping shuttlecock timely. The challenges and the proposed solutions that involved during the development of the shuttlecock serving system and serving mechanism are discussed. Findings indicate that the proposed design is able to preload and serve six shuttlecocks continuously with a success serving rate of 89% in a standard badminton court when the time between swinging the racquet and dropping a shuttlecock was optimized

    A reconfigurable, tendon-based haptic interface for research into human-environment interactions

    Get PDF
    Human reaction to external stimuli can be investigated in a comprehensive way by using a versatile virtual-reality setup involving multiple display technologies. It is apparent that versatility remains a main challenge when human reactions are examined through the use of haptic interfaces as the interfaces must be able to cope with the entire range of diverse movements and forces/torques a human subject produces. To address the versatility challenge, we have developed a large-scale reconfigurable tendon-based haptic interface which can be adapted to a large variety of task dynamics and is integrated into a Cave Automatic Virtual Environment (CAVE). To prove the versatility of the haptic interface, two tasks, incorporating once the force and once the velocity extrema of a human subject's extremities, were implemented: a simulator with 3-DOF highly dynamic force feedback and a 3-DOF setup optimized to perform dynamic movements. In addition, a 6-DOF platform capable of lifting a human subject off the ground was realized. For these three applications, a position controller was implemented, adapted to each task, and tested. In the controller tests with highly different, task-specific trajectories, the three robot configurations fulfilled the demands on the application-specific accuracy which illustrates and confirms the versatility of the developed haptic interfac

    The effect of haptic guidance and visual feedback on learning a complex tennis task

    Get PDF
    While haptic guidance can improve ongoing performance of a motor task, several studies have found that it ultimately impairs motor learning. However, some recent studies suggest that the haptic demonstration of optimal timing, rather than movement magnitude, enhances learning in subjects trained with haptic guidance. Timing of an action plays a crucial role in the proper accomplishment of many motor skills, such as hitting a moving object (discrete timing task) or learning a velocity profile (time-critical tracking task). The aim of the present study is to evaluate which feedback conditions—visual or haptic guidance—optimize learning of the discrete and continuous elements of a timing task. The experiment consisted in performing a fast tennis forehand stroke in a virtual environment. A tendon-based parallel robot connected to the end of a racket was used to apply haptic guidance during training. In two different experiments, we evaluated which feedback condition was more adequate for learning: (1) a time-dependent discrete task—learning to start a tennis stroke and (2) a tracking task—learning to follow a velocity profile. The effect that the task difficulty and subject's initial skill level have on the selection of the optimal training condition was further evaluated. Results showed that the training condition that maximizes learning of the discrete time-dependent motor task depends on the subjects' initial skill level. Haptic guidance was especially suitable for less-skilled subjects and in especially difficult discrete tasks, while visual feedback seems to benefit more skilled subjects. Additionally, haptic guidance seemed to promote learning in a time-critical tracking task, while visual feedback tended to deteriorate the performance independently of the task difficulty and subjects' initial skill level. Haptic guidance outperformed visual feedback, although additional studies are needed to further analyze the effect of other types of feedback visualization on motor learning of time-critical task

    A versatile wire robot concept as a haptic interface for sport simulation

    Full text link
    This paper presents the design of a new user-cooperative rope robot. This robot serves as a large-scale haptic interface in a multi-modal Cave environment used for sport simulation. In contrast to current rope robots, the configuration of the presented robot is adaptable to different simulation tasks what makes the robot more versatile. However, this adaptability and the high dynamics in sports lead to challenging requirements and specific design criteria of the hardware components. We present the requirements on the single robot components as well as the design of the entire setup optimized in terms of user-cooperativity and versatility. The setup includes sensors to measure the relevant parameters for user-cooperative control, i.e. position with a high resolution and the rope forces. Furthermore, an algorithm is introduced, which calculates the distance between the single ropes and the user in order to avoid collisions between the ropes and the user. Single points on the user's body are, therefore, tracked with a motion tracking system; the user's single body parts are then represented by geometrical objects whose distances to the ropes are calculated. The algorithm is programmed in such way that the collision detection runs in real-time. Both, the hardware and the algorithm, were evaluated experimentally in two applications, a rowing simulator and a tennis application. The hardware concept combined with the distance calculation allows the use of new kinematic concepts and expands the spectrum of realizable movement tasks that can be implemented into the Cave environment

    Model-free Optimization of Trajectory And Impedance Parameters on Exercise Robots With Applications To Human Performance And Rehabilitation

    Get PDF
    This dissertation focuses on the study and optimization of human training and its physiological effects through the use of advanced exercise machines (AEMs). These machines provide an invaluable contribution to advanced training by combining exercise physiology with technology. Unlike conventional exercise machines (CEMs), AEMs provide controllable trajectories and impedances by using electric motors and control systems. Therefore, they can produce various patterns even in the absence of gravity. Moreover, the ability of the AEMs to target multiple physiological systems makes them the best available option to improve human performance and rehabilitation. During the early stage of the research, the physiological effects produced under training by the manual regulation of the trajectory and impedance parameters of the AEMs were studied. Human dynamics appear as not only complex but also unique and time-varying due to the particular features of each person such as its musculoskeletal distribution, level of fatigue,fitness condition, hydration, etc. However, the possibility of the optimization of the AEM training parameters by using physiological effects was likely, thus the optimization objective started to be formulated. Some previous research suggests that a model-based optimization of advanced training is complicated for real-time environments as a consequence of the high level of v complexity, computational cost, and especially the many unidentifiable parameters. Moreover, a model-based method differs from person to person and it would require periodic updates based on physical and psychological variations in the user. Consequently, we aimed to develop a model-free optimization framework based on the use of Extremum Seeking Control (ESC). ESC is a non-model based controller for real-time optimization which its main advantage over similar controllers is its ability to deal with unknown plants. This framework uses a physiological effect of training as bio-feedback. Three different frameworks were performed for single-variable and multi-variable optimization of trajectory and impedance parameters. Based on the framework, the objective is achieved by seeking the optimal trajectory and/or impedance parameters associated with the orientation of the ellipsoidal path to be tracked by the user and the stiffness property of the resistance by using weighted measures of muscle activations

    Cable-driven parallel mechanisms for minimally invasive robotic surgery

    Get PDF
    Minimally invasive surgery (MIS) has revolutionised surgery by providing faster recovery times, less post-operative complications, improved cosmesis and reduced pain for the patient. Surgical robotics are used to further decrease the invasiveness of procedures, by using yet smaller and fewer incisions or using natural orifices as entry point. However, many robotic systems still suffer from technical challenges such as sufficient instrument dexterity and payloads, leading to limited adoption in clinical practice. Cable-driven parallel mechanisms (CDPMs) have unique properties, which can be used to overcome existing challenges in surgical robotics. These beneficial properties include high end-effector payloads, efficient force transmission and a large configurable instrument workspace. However, the use of CDPMs in MIS is largely unexplored. This research presents the first structured exploration of CDPMs for MIS and demonstrates the potential of this type of mechanism through the development of multiple prototypes: the ESD CYCLOPS, CDAQS, SIMPLE, neuroCYCLOPS and microCYCLOPS. One key challenge for MIS is the access method used to introduce CDPMs into the body. Three different access methods are presented by the prototypes. By focusing on the minimally invasive access method in which CDPMs are introduced into the body, the thesis provides a framework, which can be used by researchers, engineers and clinicians to identify future opportunities of CDPMs in MIS. Additionally, through user studies and pre-clinical studies, these prototypes demonstrate that this type of mechanism has several key advantages for surgical applications in which haptic feedback, safe automation or a high payload are required. These advantages, combined with the different access methods, demonstrate that CDPMs can have a key role in the advancement of MIS technology.Open Acces
    corecore