28 research outputs found

    A variational EM algorithm for learning eigenvoice parameters in mixed signals

    Get PDF
    We derive an efficient learning algorithm for model-based source separation for use on single channel speech mixtures where the precise source characteristics are not known a priori. The sources are modeled using factor-analyzed hidden Markov models (HMM) where source specific characteristics are captured by an "eigenvoice" speaker subspace model. The proposed algorithm is able to learn adaptation parameters for two speech sources when only a mixture of signals is observed. We evaluate the algorithm on the 2006 speech separation challenge data set and show that it is significantly faster than our earlier system at a small cost in terms of performance

    Model-Based Multiple Pitch Tracking Using Factorial HMMs: Model Adaptation and Inference

    Full text link

    ๋น„ํ™”์ž ์š”์†Œ์— ๊ฐ•์ธํ•œ ํ™”์ž ์ธ์‹์„ ์œ„ํ•œ ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ์„ฑ๋ฌธ ์ถ”์ถœ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2021. 2. ๊น€๋‚จ์ˆ˜.Over the recent years, various deep learning-based embedding methods have been proposed and have shown impressive performance in speaker verification. However, as in most of the classical embedding techniques, the deep learning-based methods are known to suffer from severe performance degradation when dealing with speech samples with different conditions (e.g., recording devices, emotional states). Also, unlike the classical Gaussian mixture model (GMM)-based techniques (e.g., GMM supervector or i-vector), since the deep learning-based embedding systems are trained in a fully supervised manner, it is impossible for them to utilize unlabeled dataset when training. In this thesis, we propose a variational autoencoder (VAE)-based embedding framework, which extracts the total variability embedding and a representation for the uncertainty within the input speech distribution. Unlike the conventional deep learning-based embedding techniques (e.g., d-vector or x-vector), the proposed VAE-based embedding system is trained in an unsupervised manner, which enables the utilization of unlabeled datasets. Furthermore, in order to prevent the potential loss of information caused by the Kullback-Leibler divergence regularization term in the VAE-based embedding framework, we propose an adversarially learned inference (ALI)-based embedding technique. Both VAE- and ALI-based embedding techniques have shown great performance in terms of short duration speaker verification, outperforming the conventional i-vector framework. Additionally, we present a fully supervised training method for disentangling the non-speaker nuisance information from the speaker embedding. The proposed training scheme jointly extracts the speaker and nuisance attribute (e.g., recording channel, emotion) embeddings, and train them to have maximum information on their main-task while ensuring maximum uncertainty on their sub-task. Since the proposed method does not require any heuristic training strategy as in the conventional disentanglement techniques (e.g., adversarial learning, gradient reversal), optimizing the embedding network is relatively more stable. The proposed scheme have shown state-of-the-art performance in RSR2015 Part 3 dataset, and demonstrated its capability in efficiently disentangling the recording device and emotional information from the speaker embedding.์ตœ๊ทผ ๋ช‡๋…„๊ฐ„ ๋‹ค์–‘ํ•œ ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ์„ฑ๋ฌธ ์ถ”์ถœ ๊ธฐ๋ฒ•๋“ค์ด ์ œ์•ˆ๋˜์–ด ์™”์œผ๋ฉฐ, ํ™”์ž ์ธ์‹์—์„œ ๋†’์€ ์„ฑ๋Šฅ์„ ๋ณด์˜€๋‹ค. ํ•˜์ง€๋งŒ ๊ณ ์ „์ ์ธ ์„ฑ๋ฌธ ์ถ”์ถœ ๊ธฐ๋ฒ•์—์„œ์™€ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ, ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ์„ฑ๋ฌธ ์ถ”์ถœ ๊ธฐ๋ฒ•๋“ค์€ ์„œ๋กœ ๋‹ค๋ฅธ ํ™˜๊ฒฝ (e.g., ๋…น์Œ ๊ธฐ๊ธฐ, ๊ฐ์ •)์—์„œ ๋…น์Œ๋œ ์Œ์„ฑ๋“ค์„ ๋ถ„์„ํ•˜๋Š” ๊ณผ์ •์—์„œ ์„ฑ๋Šฅ ์ €ํ•˜๋ฅผ ๊ฒช๋Š”๋‹ค. ๋˜ํ•œ ๊ธฐ์กด์˜ ๊ฐ€์šฐ์‹œ์•ˆ ํ˜ผํ•ฉ ๋ชจ๋ธ (Gaussian mixture model, GMM) ๊ธฐ๋ฐ˜์˜ ๊ธฐ๋ฒ•๋“ค (e.g., GMM ์Šˆํผ๋ฒกํ„ฐ, i-๋ฒกํ„ฐ)์™€ ๋‹ฌ๋ฆฌ ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ์„ฑ๋ฌธ ์ถ”์ถœ ๊ธฐ๋ฒ•๋“ค์€ ๊ต์‚ฌ ํ•™์Šต์„ ํ†ตํ•˜์—ฌ ์ตœ์ ํ™”๋˜๊ธฐ์— ๋ผ๋ฒจ์ด ์—†๋Š” ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•  ์ˆ˜ ์—†๋‹ค๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” variational autoencoder (VAE) ๊ธฐ๋ฐ˜์˜ ์„ฑ๋ฌธ ์ถ”์ถœ ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•˜๋ฉฐ, ํ•ด๋‹น ๊ธฐ๋ฒ•์—์„œ๋Š” ์Œ์„ฑ ๋ถ„ํฌ ํŒจํ„ด์„ ์š”์•ฝํ•˜๋Š” ๋ฒกํ„ฐ์™€ ์Œ์„ฑ ๋‚ด์˜ ๋ถˆํ™•์‹ค์„ฑ์„ ํ‘œํ˜„ํ•˜๋Š” ๋ฒกํ„ฐ๋ฅผ ์ถ”์ถœํ•œ๋‹ค. ๊ธฐ์กด์˜ ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ์„ฑ๋ฌธ ์ถ”์ถœ ๊ธฐ๋ฒ• (e.g., d-๋ฒกํ„ฐ, x-๋ฒกํ„ฐ)์™€๋Š” ๋‹ฌ๋ฆฌ, ์ œ์•ˆํ•˜๋Š” ๊ธฐ๋ฒ•์€ ๋น„๊ต์‚ฌ ํ•™์Šต์„ ํ†ตํ•˜์—ฌ ์ตœ์ ํ™” ๋˜๊ธฐ์— ๋ผ๋ฒจ์ด ์—†๋Š” ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋‹ค. ๋” ๋‚˜์•„๊ฐ€ VAE์˜ KL-divergence ์ œ์•ฝ ํ•จ์ˆ˜๋กœ ์ธํ•œ ์ •๋ณด ์†์‹ค์„ ๋ฐฉ์ง€ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ adversarially learned inference (ALI) ๊ธฐ๋ฐ˜์˜ ์„ฑ๋ฌธ ์ถ”์ถœ ๊ธฐ๋ฒ•์„ ์ถ”๊ฐ€์ ์œผ๋กœ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆํ•œ VAE ๋ฐ ALI ๊ธฐ๋ฐ˜์˜ ์„ฑ๋ฌธ ์ถ”์ถœ ๊ธฐ๋ฒ•์€ ์งง์€ ์Œ์„ฑ์—์„œ์˜ ํ™”์ž ์ธ์ฆ ์‹คํ—˜์—์„œ ๋†’์€ ์„ฑ๋Šฅ์„ ๋ณด์˜€์œผ๋ฉฐ, ๊ธฐ์กด์˜ i-๋ฒกํ„ฐ ๊ธฐ๋ฐ˜์˜ ๊ธฐ๋ฒ•๋ณด๋‹ค ์ข‹์€ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์˜€๋‹ค. ๋˜ํ•œ ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์„ฑ๋ฌธ ๋ฒกํ„ฐ๋กœ๋ถ€ํ„ฐ ๋น„ ํ™”์ž ์š”์†Œ (e.g., ๋…น์Œ ๊ธฐ๊ธฐ, ๊ฐ์ •)์— ๋Œ€ํ•œ ์ •๋ณด๋ฅผ ์ œ๊ฑฐํ•˜๋Š” ํ•™์Šต๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆํ•˜๋Š” ๊ธฐ๋ฒ•์€ ํ™”์ž ๋ฒกํ„ฐ์™€ ๋น„ํ™”์ž ๋ฒกํ„ฐ๋ฅผ ๋™์‹œ์— ์ถ”์ถœํ•˜๋ฉฐ, ๊ฐ ๋ฒกํ„ฐ๋Š” ์ž์‹ ์˜ ์ฃผ ๋ชฉ์ ์— ๋Œ€ํ•œ ์ •๋ณด๋ฅผ ์ตœ๋Œ€ํ•œ ๋งŽ์ด ์œ ์ง€ํ•˜๋˜, ๋ถ€ ๋ชฉ์ ์— ๋Œ€ํ•œ ์ •๋ณด๋ฅผ ์ตœ์†Œํ™”ํ•˜๋„๋ก ํ•™์Šต๋œ๋‹ค. ๊ธฐ์กด์˜ ๋น„ ํ™”์ž ์š”์†Œ ์ •๋ณด ์ œ๊ฑฐ ๊ธฐ๋ฒ•๋“ค (e.g., adversarial learning, gradient reversal)์— ๋น„ํ•˜์—ฌ ์ œ์•ˆํ•˜๋Š” ๊ธฐ๋ฒ•์€ ํœด๋ฆฌ์Šคํ‹ฑํ•œ ํ•™์Šต ์ „๋žต์„ ์š”ํ•˜์ง€ ์•Š๊ธฐ์—, ๋ณด๋‹ค ์•ˆ์ •์ ์ธ ํ•™์Šต์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ์ œ์•ˆํ•˜๋Š” ๊ธฐ๋ฒ•์€ RSR2015 Part3 ๋ฐ์ดํ„ฐ์…‹์—์„œ ๊ธฐ์กด ๊ธฐ๋ฒ•๋“ค์— ๋น„ํ•˜์—ฌ ๋†’์€ ์„ฑ๋Šฅ์„ ๋ณด์˜€์œผ๋ฉฐ, ์„ฑ๋ฌธ ๋ฒกํ„ฐ ๋‚ด์˜ ๋…น์Œ ๊ธฐ๊ธฐ ๋ฐ ๊ฐ์ • ์ •๋ณด๋ฅผ ์–ต์ œํ•˜๋Š”๋ฐ ํšจ๊ณผ์ ์ด์—ˆ๋‹ค.1. Introduction 1 2. Conventional embedding techniques for speaker recognition 7 2.1. i-vector framework 7 2.2. Deep learning-based speaker embedding 10 2.2.1. Deep embedding network 10 2.2.2. Conventional disentanglement methods 13 3. Unsupervised learning of total variability embedding for speaker verification with random digit strings 17 3.1. Introduction 17 3.2. Variational autoencoder 20 3.3. Variational inference model for non-linear total variability embedding 22 3.3.1. Maximum likelihood training 23 3.3.2. Non-linear feature extraction and speaker verification 25 3.4. Experiments 26 3.4.1. Databases 26 3.4.2. Experimental setup 27 3.4.3. Effect of the duration on the latent variable 28 3.4.4. Experiments with VAEs 30 3.4.5. Feature-level fusion of i-vector and latent variable 33 3.4.6. Score-level fusion of i-vector and latent variable 36 3.5. Summary 39 4. Adversarially learned total variability embedding for speaker recognition with random digit strings 41 4.1. Introduction 41 4.2. Adversarially learned inference 43 4.3. Adversarially learned feature extraction 45 4.3.1. Maximum likelihood criterion 47 4.3.2. Adversarially learned inference for non-linear i-vector extraction 49 4.3.3. Relationship to the VAE-based feature extractor 50 4.4. Experiments 51 4.4.1. Databases 51 4.4.2. Experimental setup 53 4.4.3. Effect of the duration on the latent variable 54 4.4.4. Speaker verification and identification with different utterance-level features 56 4.5. Summary 62 5. Disentangled speaker and nuisance attribute embedding for robust speaker verification 63 5.1. Introduction 63 5.2. Joint factor embedding 67 5.2.1. Joint factor embedding network architecture 67 5.2.2. Training for joint factor embedding 69 5.3. Experiments 71 5.3.1. Channel disentanglement experiments 71 5.3.2. Emotion disentanglement 82 5.3.3. Noise disentanglement 86 5.4. Summary 87 6. Conclusion 93 Bibliography 95 Abstract (Korean) 105Docto

    An Experimental Review of Speaker Diarization methods with application to Two-Speaker Conversational Telephone Speech recordings

    Full text link
    We performed an experimental review of current diarization systems for the conversational telephone speech (CTS) domain. In detail, we considered a total of eight different algorithms belonging to clustering-based, end-to-end neural diarization (EEND), and speech separation guided diarization (SSGD) paradigms. We studied the inference-time computational requirements and diarization accuracy on four CTS datasets with different characteristics and languages. We found that, among all methods considered, EEND-vector clustering (EEND-VC) offers the best trade-off in terms of computing requirements and performance. More in general, EEND models have been found to be lighter and faster in inference compared to clustering-based methods. However, they also require a large amount of diarization-oriented annotated data. In particular EEND-VC performance in our experiments degraded when the dataset size was reduced, whereas self-attentive EEND (SA-EEND) was less affected. We also found that SA-EEND gives less consistent results among all the datasets compared to EEND-VC, with its performance degrading on long conversations with high speech sparsity. Clustering-based diarization systems, and in particular VBx, instead have more consistent performance compared to SA-EEND but are outperformed by EEND-VC. The gap with respect to this latter is reduced when overlap-aware clustering methods are considered. SSGD is the most computationally demanding method, but it could be convenient if speech recognition has to be performed. Its performance is close to SA-EEND but degrades significantly when the training and inference data characteristics are less matched.Comment: 52 pages, 10 figure

    Single channel audio separation using deep neural networks and matrix factorizations

    Get PDF
    PhD ThesisSource Separation has become a significant research topic in the signal processing community and the machine learning area. Due to numerous applications, such as automatic speech recognition and speech communication, separation of target speech from the mixed signal is of great importance. In many practical applications, speech separation from a single recorder is most desirable from an application standpoint. In this thesis, two novel approaches have been proposed to address this single channel audio separation problem. This thesis first reviews traditional approaches for single channel source separation, and later elicits a generic approach, which is more capable of feature learning, i.e. deep graphical models. In the first part of this thesis, a novel approach based on matrix factorization and hierarchical model has been proposed. In this work, an artificial stereo mixture is formulated to provide extra information. In addition, a hybrid framework that combines the generalized Expectation-Maximization algorithm with a multiplicative update rule is proposed to optimize the parameters of a matrix factorization based approach to approximatively separate the mixture. Furthermore, a hierarchical model based on an extreme learning machine is developed to check the validity of the approximately separated sources followed by an energy minimization method to further improve the quality of the separated sources by generating a time-frequency mask. Various experiments have been conducted and the obtained results have shown that the proposed approach outperforms conventional approaches not only in reduction of computational complexity, but also the separation performance. In the second part, a deep neural network based ensemble system is proposed. In this work, the complementary property of different features are fully explored by โ€˜wideโ€™ and โ€˜forwardโ€™ ensemble system. In addition, instead of using the features learned from the output layer, the features learned from the penultimate layer are investigated. The final embedded features are classified with an extreme learning machine to generate a binary mask to separate a mixed signal. The experiment focuses on speech in the presence of music and the obtained results demonstrated that the proposed ensemble system has the ability to explore the complementary property of various features thoroughly under various conditions with promising separation performance

    Anti-Spoofing for Text-Independent Speaker Verification: An Initial Database, Comparison of Countermeasures, and Human Performance

    Get PDF
    Due to copyright restrictions, the access to the full text of this article is only available via subscription.In this paper, we present a systematic study of the vulnerability of automatic speaker verification to a diverse range of spoofing attacks. We start with a thorough analysis of the spoofing effects of five speech synthesis and eight voice conversion systems, and the vulnerability of three speaker verification systems under those attacks. We then introduce a number of countermeasures to prevent spoofing attacks from both known and unknown attackers. Known attackers are spoofing systems whose output was used to train the countermeasures, while an unknown attacker is a spoofing system whose output was not available to the countermeasures during training. Finally, we benchmark automatic systems against human performance on both speaker verification and spoofing detection tasks.EPSRC ; TรœBฤฐTA
    corecore