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Abstract

Over the recent years, various deep learning-based embedding methods have been

proposed and have shown impressive performance in speaker verification. However,

as in most of the classical embedding techniques, the deep learning-based meth-

ods are known to suffer from severe performance degradation when dealing with

speech samples with different conditions (e.g., recording devices, emotional states).

Also, unlike the classical Gaussian mixture model (GMM)-based techniques (e.g.,

GMM supervector or i-vector), since the deep learning-based embedding systems are

trained in a fully supervised manner, it is impossible for them to utilize unlabeled

dataset when training.

In this thesis, we propose a variational autoencoder (VAE)-based embedding

framework, which extracts the total variability embedding and a representation for

the uncertainty within the input speech distribution. Unlike the conventional deep

learning-based embedding techniques (e.g., d-vector or x-vector), the proposed VAE-

based embedding system is trained in an unsupervised manner, which enables the

utilization of unlabeled datasets. Furthermore, in order to prevent the potential

loss of information caused by the Kullback-Leibler divergence regularization term

in the VAE-based embedding framework, we propose an adversarially learned in-

ference (ALI)-based embedding technique. Both VAE- and ALI-based embedding
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techniques have shown great performance in terms of short duration speaker verifi-

cation, outperforming the conventional i-vector framework.

Additionally, we present a fully supervised training method for disentangling

the non-speaker nuisance information from the speaker embedding. The proposed

training scheme jointly extracts the speaker and nuisance attribute (e.g., recording

channel, emotion) embeddings, and train them to have maximum information on

their main-task while ensuring maximum uncertainty on their sub-task. Since the

proposed method does not require any heuristic training strategy as in the con-

ventional disentanglement techniques (e.g., adversarial learning, gradient reversal),

optimizing the embedding network is relatively more stable. The proposed scheme

have shown state-of-the-art performance in RSR2015 Part 3 dataset, and demon-

strated its capability in efficiently disentangling the recording device and emotional

information from the speaker embedding.

Keywords: Robust speaker recognition, speech embedding, speaker verification,

unsupervised representation learning, supervised disentanglement.

Student number: 2014-21697
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Chapter 1

Introduction

Speaker recognition is the process of recognizing a user’s identity using the charac-

teristics extracted from their voices, which can be classified into two tasks: speaker

identification and verification. More specifically, speaker verification is a task of ver-

ifying the claimed speaker identity given the voice sample. As depicted in Figure

1.1, the speaker verification process usually consists of three stages: acoustic fea-

ture extraction, utterance-level feature modeling, and decision. The acoustic feature

extraction stage analyzes the speech in a short duration frame. In practice, a mel

frequency cepstral coefficient (MFCC) or spectrogram feature is extracted from each

frame to capture the instantaneous vocal tract characteristics. The utterance-level

feature extraction, or embedding stage summarizes the frame-level information into

a fixed dimension vector. The extracted utterance-level feature, or embedding vector

represents the overall pattern of the speaker’s vocal tract shape. Finally, the decision

stage measures the similarity between a given pair of embedding vectors.

Many previous studies on embedding focused on efficiently reducing the dimen-

sionality of the Gaussian mixture model (GMM) supervector, which is a concate-
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Figure 1.1: Basic process of speaker verification.

nation of the mean vectors of each mixture component [1], while preserving the

speaker relevant information via factorization (e.g., eigenvoice adaptation and joint

factor analysis) [2, 3]. Particularly the i-vector framework [4, 5], which projects the

variability within the GMM supervector caused by various factors (e.g., channel and

speaker) onto a low dimensional subspace, has become one of the most dominant

techniques used in speaker recognition. The i-vector framework is essentially a linear

factorization technique which decomposes the variability of the GMM supervector

into a total variability matrix and an i-vector (i.e. total factor). Due to its linear

nature, the i-vector, along with most of the other utterance-level representations

driven via factorization, is not considered to fully capture the whole variability of

the given speech utterances.

In recent years, various methods have been proposed utilizing deep learning ar-

chitectures for extracting embedding vectors and have shown better performance

than the i-vector framework when a large amount of training data is available [6]. In

[7], a deep neural network (DNN) for frame-level speaker identification was trained

and the averaged activation from the last hidden layer, namely, the d-vector, was

taken as the embedding vector for text-dependent speaker verification. In [6, 8], a

speaker identification model consisting of a frame-level network and a segment-level

network was trained and the hidden layer activation of the segment-level network

(i.e. x-vector) was extracted as the embedding vector. In [9], long short-term mem-
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ory (LSTM) layers were adopted to capture the contextual information within the

d-vector, and the embedding network was trained to directly optimize the verifica-

tion score (e.g., cosine similarity) in an end-to-end fashion. The end-to-end d-vector

framework was further enhanced in [10] by applying different weight (i.e. atten-

tion) to each frame-level activation while obtaining the d-vector, which enables the

embedding network to attend more on the frames with relatively higher amount

of speaker-dependent information. In [11], a generalized end-to-end loss function,

which optimizes the embedding vector to move towards the centroid of the true

speaker while departing away from the centroid of the most confusing speaker, was

introduced to train the end-to-end d-vector system more efficiently. In [12] and [13],

a variational autoencoder (VAE)-based architecture was trained in an unsupervised

manner to extract an embedding vector for short-duration speaker verification. De-

spite their success in well-matched conditions, the deep learning-based embedding

methods are vulnerable to the performance degradation caused by mismatched con-

ditions (e.g., channel, noise) [14]. Moreover, since most of the previously proposed

deep learning-based feature extraction models are trained in a supervised manner,

it is impossible to use them when little to no labeled data is available for training.

In real life applications, numerous factors can contribute to the mismatches in

speaker verification [15]. Especially in forensic situations, channel mismatch often

occurs since police officers usually acquire voice recordings using various recording

devices (e.g., hidden microphones, mobile phones) [16]. Such variation in recording

devices is known to cause variability to the speech distribution, which leads to low

speaker identification or verification performance.

Furthermore, due to the increasing demand for voice-based authentication sys-

tems, verifying users with randomized pass-phrase with constrained vocabulary has
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become an important task [17]. This particular task is called the random digit strings

speaker verification, where the speakers are enrolled and tested with random se-

quences of digits. The random digit strings task highlights one of the most serious

causes for feature uncertainty, which is the short duration of the given speech samples

[18]. The conventional i-vector is known to suffer from severe performance degra-

dation when short duration speech is applied to the verification process [19]. It has

been reported that the i-vectors extracted from short duration speech samples are

relatively unstable [19, 20, 16]. The short duration problem can be critical when it

comes to real life applications since, in most practical systems, the speech recording

for enrollment and trial is required to be short.

This dissertation proposes several embedding methods to tackle the following

issues:

• unsupervised deep learning based embedding techniques for short durational

speaker verification,

• supervised training method for disentangling the nuisance attribute (e.g., record-

ing channel) information from the speaker embedding.

In Chapter 3, we propose a novel technique for extracting an i-vector-like fea-

ture based on the variational autoencoder (VAE) which summarizes the variability

within the Gaussian mixture model (GMM) distribution through a non-linear pro-

cess. Analogous to the conventional i-vector framework, the proposed VAE is trained

to generate the GMM supervector according to the maximum likelihood criterion

given the Baum-Welch statistics of the input utterance. The proposed framework

is compared with the conventional i-vector method using the TIDIGITS dataset.

Experimental results show that the proposed method can cope with the uncertainty
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caused by the short duration.

In Chapter 4, we propose a novel technique for extracting an i-vector-like feature

based on an adversarially learned inference (ALI) model which summarizes the vari-

ability within the Gaussian mixture model (GMM) distribution through a non-linear

process. Analogous to the VAE-based feature extractor, the proposed ALI-based

model is trained to generate the GMM supervector according to the maximum like-

lihood criterion given the Baum-Welch statistics of the input utterance. However,

in order to prevent the potential loss of information caused by the Kullback-Leibler

divergence (KL divergence) regularization term in the training criterion of the VAE-

based model, the newly proposed ALI-based feature extractor exploits a joint dis-

criminator to ensure that the generated latent variable and the GMM supervector

are realistic. The proposed framework is compared with the conventional i-vector

and VAE-based methods using the TIDIGITS dataset. Experimental results show

that the proposed method can represent the uncertainty caused by the short dura-

tion better than the VAE-based method. Furthermore, the proposed approach has

shown great performance when applied in association with the standard i-vector

framework.

In Chapter 5, we propose a novel fully supervised training method for extract-

ing a speaker embedding vector disentangled from the variability caused by the

nuisance attributes. The proposed framework was compared with the conventional

deep learning-based embedding methods using the RSR2015 and VoxCeleb1 dataset.

Experimental results show that the proposed approach can extract speaker embed-

dings robust to channel and emotional variability.

The rest of this thesis is organized as follows: The next chapter introduces the

conventional embedding techniques (e.g., i-vector, d-vector, and x-vector) and disen-
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tangling methods (e.g., gradient reversal, adversarial training strategy). In Chapter

3, we propose a VAE-based total variability embedding method for short duration

speaker verification. In Chapter 4, we propose a ALI-based total variability em-

bedding method which replaces the KL-divergence regularization of the VAE-based

embedding framework with a adversarial training strategy. In Chapter 5, we propose

the joint factor embedding (JFE) framework for disentangling the nuisance attribute

information from the speaker embedding. Finally, conclusions are drawn in Chapter

6.
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Chapter 2

Conventional embedding

techniques for speaker

recognition

2.1 i-vector Framework

Once a universal background model (UBM) is provided, which is a GMM represent-

ing the utterance-independent distribution of the frame-level features, an utterance-

dependent GMM can be attained by adjusting the UBM parameters using the max-

imum a posteriori (MAP) adaptation algorithm [21]. By concatenating the mean

vector of each Gaussian mixture component, a GMM supervector can be obtained,

which summarizes the overall pattern of the frame-level feature distribution. How-

ever, using the GMM supervector as an utterance-level feature may limit the overall

speaker recognition performance due to its high dimensionality.

To solve this problem, various methods for reducing the dimensionality of the
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i-vector extraction

m(𝐗) = 𝐮 + 𝐓𝐰(𝐗)

𝐗

Baum-Welch statistics computation

UBM

GMM supervector m(𝐗)

 𝐟(𝐗)𝑛(𝐗)

log𝑃 𝐗|𝐓, 𝐰 𝐗

0th order 

Baum-Welch 

stats.

1st order 

Baum-Welch 

stats.

Log-likelihood

𝐰(𝐗)

Figure 2.1: Flow chart of the i-vector framework.

GMM supervector have been proposed [2, 3, 4]. Specifically, the i-vector framework

is now widely used to represent the idiosyncratic characteristics of the utterance in

speaker and language recognition [22]. The extraction of an i-vector can be viewed

as a factorization process decomposing the GMM supervector as

m(X) = u + Tw(X) (2.1)

where m(X), u, T, and w(X) indicate the ideal GMM supervector dependent on a

given speech utterance X, UBM supervector, total variability matrix, and i-vector,

respectively. The i-vector framework aims to find the optimal w(X) and T to adapt

the UBM parameters to a given speech utterance X. Given X, the zeroth- and the
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first-order Baum-Welch statistics are obtained as

nc(X) =
L∑
l=1

γl(c) (2.2)

f̃c(X) =
L∑
l=1

γl(c)(xl − uc) (2.3)

where for each frame l within X with L frames, γl(c) is the posterior probability

that the lth frame feature xl is aligned to the cth mixture component of the UBM, uc

is the mean vector of the cth mixture component of the UBM, and nc(X) and f̃c(X)

are the zeroth- and the centralized first-order Baum-Welch statistics, respectively.

As shown in Fig. 2.1, the i-vector framework can be considered as an adaptation

process where the mean of each UBM mixture component is adjusted to maximize

the likelihood with respect to a given utterance, and the estimated i-vector is served

as the adaptation factor. Let Σc denote the covariance matrix of the cth UBM

mixture component and F be the dimensionality of the frame-level features. The

log-likelihood given an utterance X conditioned on w(X) can be obtained as

logP (X|T,w(X)) =

C∑
c=1

(nc(X) log
1

(2π)F/2|Σc|1/2

− 1

2

L∑
l=1

γl(c)(xl −mc(X))tΣ−1c (xl −mc(X))), (2.4)

where mc(X) is the mean of the cth mixture component of m(X) and the superscript

t indicates matrix transpose. The log-likelihood given X is obtained by marginalizing

(4) over w(X) as

logP (X|T) =logEw[P (X|T,w)]

=log

∫
P (X|T,w)N (w|0, I)dw. (2.5)
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The total variability matrix T is trained to maximize the log-likelihood (5) via

the expectation-maximization (EM) algorithm. Interested readers are encouraged to

refer to [4] and [5] for further details of the i-vector framework.

2.2 Deep learning-based speaker embedding

2.2.1 Deep embedding network

Two of the most widely used speaker embedding techniques are the LSTM-based

d-vector [9] and the TDNN (time-delay DNN)-based x-vector system [6]. In both

frameworks, given a speech utterance X with T frames, a sequence of frame-level

acoustic features {x1, ...,xT } extracted from X is fed into the frame-level network. In

the d-vector system, one of most widely used technique for text-dependent speaker

recognition, the frame-level network is composed of LSTM layers, which helps cap-

ture the temporal correlation. On the other hand, the frame-level network of the

x-vector system consists of TDNN layers, which is often used for text-independent

speaker recognition. Once the frame-level outputs {h1, ...,hT } are obtained, they

are aggregated to obtain an utterance-level representation. One way of aggregating

the frame-level outputs is to compute the weighted average as

ω =
T∑
t=1

αtht (2.6)

where αt∈[0, 1] is a normalized weight, which is computed by

αt =
exp(et)∑T
t=1 exp(et)

. (2.7)

In (2.7), the frame-level score (i.e. attention) et is computed as follows:

et = vᵀ
t tanh(Wtht + bt) (2.8)
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(a)

(b)

Figure 2.2: (a) LSTM-based d-vector system trained with softmax loss. (b) LSTM-

based d-vector system trained with end-to-end loss.
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where vt, Wt, and bt are trainable parameters and superscript ᵀ indicates transpose

operation. By using different weight for each frame, speech frames with relatively

higher speaker-relevancy can contribute more to the embedding vector.

The embedding network is trained by either minimizing the speaker identifi-

cation loss [7] or directly optimizing the verification performance (i.e. end-to-end

speaker verification) [10, 11]. In the first case (i.e. embedding network trained for

identification), as shown in Fig. 2.2a, a feed-forward neural network for classifying

the speakers in the training set is trained jointly with the embedding network. The

speaker classification network takes the utterance-level representation ω as input and

has an N -dimensional softmax output ỹ(ω) where N corresponds to the number of

training speakers. Given the one-hot speaker label y, the embedding and classifica-

tion networks are trained to minimize the following cross-entropy loss function:

Lspkr = −
N∑
n=1

ynlogỹn(ω) (2.9)

where yn and ỹn(ω) are the nth components of y and ỹ(ω), respectively.

For training the end-to-end speaker verification system (i.e. embedding network

trained for verification), a mini-batch of J×K utterances is fed into the embedding

network where the mini-batch is composed of J speakers, and each speaker has

K utterances. As depicted in Fig. 2.2b, the scaled cosine similarity between each

embedding vector and the centroid of the embedding vectors from each speaker are

computed by

Sjk,i = a·cos(ωjk, ci) + d (2.10)

where a and d are trainable parameters, and cos(ωjk, ci) is the cosine similarity

between the utterance-level representation extracted from the kth utterance of the

jth speaker ωjk and the centroid of the ith speaker’s utterance-level representations
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ci (1 ≤ j, i ≤ J and 1 ≤ k ≤ K). For each utterance-level representation ωjk in the

mini-batch, the embedding network is trained to maximize the following end-to-end

loss function:

Le2e = Sjk,j − log
J∑

i=1,i 6=j
exp(Sjk,i). (2.11)

The end-to-end system is known to outperform the softmax method when a large

amount of dataset is used for training [8], [10].

Once the embedding network is trained, the utterance-level representation ω [9],

or the hidden layer activation of the speaker classification network [6] can be used

as the speaker embedding vector.

2.2.2 Conventional disentanglement methods

Recently, disentangling various non-speaker factors (e.g., channel type, noise type,

noise-level) from the embedding vector has become an important issue in speaker

verification [14, 23, 24]. Most of the techniques developed to address this issue are

based on the multi-task learning (MTL) approaches [25] where the embedding net-

work is trained to optimize in two tasks: main task (i.e. speaker classification) and

subtask (e.g., channel classification) as shown in Fig. 2.3a. The objective of the

MTL-based disentanglement technique is to achieve the best performance in the

main task while degrading the performance in the subtask.

Gradient reversal strategy

One way to achieve this is the gradient reversal strategy, which has shown mean-

ingful performance in channel-robust [23] and noise-robust [14] speaker verification.

As shown in Fig. 2.3b, the gradient reversal strategy adds a gradient reversal layer
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(a)

(b)

Figure 2.3: (a) Standard multi-task learning (MTL) architecture. (b) Domain ad-

versarial training via gradient reversal layer (GRL).
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(GRL) [26] between the subtask network and the embedding network. Let θemb,

θmain, θsub denote the parameters for the embedding, main task, and subtask net-

works. The GRL performs identity transformation on the input during forward prop-

agation and reverses the gradient by multiplying a negative scalar −λ during back-

propagation. When jointly training the networks, the parameters are updated as

θemb ← θemb − l · (
∂Lmain
∂θemb

− λ∂Lsub
∂θemb

), (2.12)

θmain ← θmain − l · (
∂Lmain
∂θmain

), (2.13)

θsub ← θsub − l · (
∂Lsub
∂θsub

) (2.14)

where l, Lmain, and Lsub are the learning rate, loss functions for the main task

and subtask, respectively. For extracting a channel-robust embedding for speaker

verification, Lmain would be the speaker cross-entropy Lspkr defined in (2.9), and

Lsub would be the channel cross-entropy which can be computed as follows:

Lchan = −
M∑
m=1

rmlogr̃m(ω) (2.15)

where M is the number of different channels (e.g., recording devices) in the training

set, rm and r̃m(ω) are the mth component of the one-hot channel label r and channel

classifier’s softmax output r̃(ω), respectively.

Anti-loss strategy

Another way to achieve disentanglement is by training the embedding network and

the subtask network in a competitive manner via adversarial training [24]. The sub-

task network is trained to classify the channel identity correctly given the embedding

vector as in (2.15). On the other hand, the main task and embedding networks are

trained to discriminate the speaker by minimizing (2.9) but not to perform well
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on the subtask. In order to ensure high uncertainty on the subtask, [24] introduces

anti-label when computing the cross-entropy for the subtask. The anti-label is ob-

tained by flipping each bit in the one-hot label vector. This indicates that for channel

disentanglement, the anti-loss can be computed as follows:

Lanti−dev = −
M∑
m=1

(1− rm)logr̃m(ω). (2.16)

By minimizing Lanti−dev and Lspeaker simultaneously, the embedding network would

be trained to produce a speaker discriminative embedding vector which is robust to

channel variability.

16



Chapter 3

Unsupervised learning of total

variability embedding for

speaker verification with

random digit strings

3.1 Introduction

Many previous studies on utterance-level features focused on efficiently reducing

the dimensionality of the Gaussian mixture model (GMM) supervector, which is a

concatenation of the mean vectors of each mixture component [1], while preserving

the speaker relevant information via factorization (e.g., eigenvoice adaptation and

joint factor analysis) [2, 3]. Particularly the i-vector framework [4, 5], which projects

the variability within the GMM supervector caused by various factors (e.g., channel

17



and speaker) onto a low dimensional subspace, has become one of the most dominant

techniques used in speaker recognition. The i-vector framework is essentially a linear

factorization technique which decomposes the variability of the GMM supervector

into a total variability matrix and an i-vector (i.e. total factor). Due to its linear

nature, the i-vector, along with most of the other utterance-level representations

driven via factorization, is not considered to fully capture the whole variability of

the given speech utterances.

Recently, various studies are being carried out for non-linearly extracting utterance-

level features via deep learning. In [7], a DNN for frame-level speaker classification is

trained and the activations of the last hidden layer, namely the d-vectors, are taken

as a non-linear speaker representation. In [8] and [6], a TDNN-based utterance em-

bedding technique is proposed, where the embedding is obtained by statistically

pooling the frame-level activations of the TDNN. In [10] and [11], the speaker em-

bedding neural networks are optimized to directly minimize the verification loss in

an end-to-end fashion. However, since most of the previously proposed deep learning-

based feature extraction models are trained in a supervised manner, it is impossible

to use them when little to no labeled data is available for training.

Nowadays, due to the increasing demand for voice-based authentication systems,

verifying users with randomized pass-phrase with constrained vocabulary has be-

come an important task [17]. This particular task is called the random digit strings

speaker verification, where the speakers are enrolled and tested with random se-

quences of digits. The random digit strings task highlights one of the most serious

causes for feature uncertainty, which is the short duration of the given speech samples

[18]. The conventional i-vector is known to suffer from severe performance degra-

dation when short duration speech is applied to the verification process [19]. It has
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been reported that the i-vectors extracted from short duration speech samples are

relatively unstable [19, 20, 16]. The short duration problem can be critical when it

comes to real life applications since, in most practical systems, the speech recording

for enrollment and trial is required to be short.

In this paper, we propose a novel approach to speech embedding for speaker

recognition. The proposed method employs a variational inference model inspired

by the variational autoencoder (VAE) [27, 28] to capture the total variability of the

speech in a non-linear fashion. The VAE has an autoencoder-like architecture which

assumes that the data is generated through a directed graphical model driven by a

random latent variable. Analogous to the conventional i-vector adaptation scheme,

the proposed model is trained according to the maximum likelihood criterion given

the input speech. By using the mean and the variance of the latent variable as the

utterance-level features, the proposed system is expected to take the uncertainty

caused by short duration utterances into account. In contrast to the conventional

deep learning-based feature extraction techniques, the proposed approach exploits

the resources used in the conventional i-vector scheme (e.g., universal background

model and Baum-Welch statistics) and remaps the relationship between the total

factor and the total variability subspace through a non-linear process. Therefore

the proposed feature extractor can substitute the conventional i-vector extraction

module without any difficulty. Furthermore, since the proposed feature extractor

is trained in an unsupervised fashion, no phonetic or speaker label is required for

training.

In order to evaluate the performance of the unsupervised embedding techniques

in the random digits task, we conducted a set of experiments using the TIDIG-

ITS dataset. Experimental results show that the proposed method outperforms the
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standard i-vector framework in terms of equal error rate (EER), classification er-

ror, and decision cost function (DCF) measurements. It is also interesting to see

that a dramatic performance improvement is observed when the features extracted

from the proposed method and the conventional i-vector are augmented together.

This indicates that the newly proposed feature and the conventional i-vector are

complementary with each other.

3.2 Variational autoencoder

VAE is a variant of an autoencoder aiming to reconstruct the input at the output

layer [27]. The main difference between VAE and an ordinary autoencoder is that the

former assumes that the observed data x is generated from a random latent variable

z which has a specific prior distribution such as the standard Gaussian. The VAE

is composed of two directed networks: encoder and decoder networks. The encoder

network outputs the mean and variance of the posterior distribution p(z|x) given

an observation x. Using the latent variable distribution generated by the encoder

network, the decoder network tries to reconstruct the input pattern of the VAE at

the output layer.

Given a training sample x, the VAE aims to maximize the log-likelihood which

can be written as follows [27]:

logpθ(x) = DKL(qφ(z|x)‖pθ(z|x)) + L (θ, φ; x). (3.1)

In (3.1), φ denotes the variational parameters and θ represents the generative pa-

rameters. The first term in the right hand side (RHS) of (3.1) means the Kullback-

Leibler divergence (KL divergence) between the approximated posterior qφ(z|x) and

the true posterior pθ(z|x) of the latent variable, which measures the dissimilarity
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between these two distributions. Since the KL divergence has a non-negative value,

the second term in the RHS of (3.1) becomes the variational lower bound on the

log-likelihood, which can be written as

logpθ(x) ≥L (θ, φ; x)

=−DKL(qφ(z|x)‖pθ(z))

+ Eqφ(z|x)[log pθ(x|z)] (3.2)

where qφ(z|x) and pθ(x|z) are respectively specified by the encoder and decoder

networks of the VAE.

The encoder and the decoder networks of the VAE can be trained jointly by max-

imizing the variational lower bound, which is equivalent to minimizing the following

objective function [29]:

EVAE(x) =DKL(qφ(z|x)‖pθ(z))

− Eqφ(z|x)[log pθ(x|z)]. (3.3)

The first term in the RHS of (3.3) implies the KL divergence between the prior

distribution and the posterior distribution of the latent variable z, which regularizes

the encoder parameters. On the other hand, the second term can be interpreted as

the reconstruction error between the input and output of the VAE. Thus the VAE

is trained not only to minimize the reconstruction error but also to maximize the

similarity between the prior and posterior distributions of the latent variable.
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Figure 3.1: Proposed VAE for non-linear feature extraction. Blue shows the loss

terms. Red shows the sampling operations.

3.3 Variational inference model for non-linear total vari-

ability embedding

In the proposed algorithm, it is assumed that the ideal GMM supervector corre-

sponding to a speech utterance X is obtained through a non-linear mapping of a

hidden variable onto the total variability space. Based on this assumption, the ideal

GMM supervector is generated from a latent variable z as follows:

m(X) = u + g(z(X)) (3.4)

where g is a non-linear function which transforms the hidden variable z(X) to the

adaptation factor representing the variability of the ideal GMM supervector m(X).

In order to find the optimal function g and the hidden variable z(X), we apply a

VAE model consisting of an encoder and a decoder network as shown in Figure 3.1.
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In the proposed VAE architecture, the encoder network outputs an estimate of the

hidden variable and the decoder network serves as the non-linear mapping function

g.

Analogous to the i-vector adaptation framework, the main task of the proposed

VAE architecture is to generate a GMM so as to maximize the likelihood given

the Baum-Welch statistics of the utterance. The encoder of the proposed system

serves as a non-linear variability factor extraction model. Similar to the i-vector

extractor, the encoder network takes the 0th and 1st order Baum-Welch statistics of

a given utterance X as input and generates the parametric distribution of the latent

variable. The latent variable z is assumed to be a random variable following Gaussian

distribution and each component of z is assumed to be uncorrelated with each other.

In order to infer the distribution of the latent variable z(X), it is sufficient for the

encoder to generate the mean and the variance of z(X). The decoder of the proposed

system acts as the GMM adaptation model, generating the GMM supervector from

the given latent variable according to the maximum likelihood criterion.

3.3.1 Maximum likelihood training

Once the GMM supervector m̂(X) is generated at the output layer of the decoder,

the log-likelihood conditioned on the latent variable z(X) can be defined as

logP (X|φ, θ, z(X)) =
C∑
c=1

(nc(X) log
1

(2π)F/2|Σc|1/2

− 1

2

L∑
l=1

γl(c)(xl − m̂c(X))tΣ−1c (xl − m̂c(X))) (3.5)
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where m̂c(X) denotes the cth component of m̂(X). Using the Jensen’s inequality,

the lower bound of the marginal log-likelihood can be obtained as follows:

logP (X|φ, θ) =logEz[P (X|φ, θ, z)]

≥Ez[logP (X|φ, θ, z)]. (3.6)

The marginal log-likelihood can be indirectly maximized by maximizing the expec-

tation of the conditioned log-likelihood (3.5) with respect to the latent variable z.

The reparameterization trick in [27] can be utilized to compute the Monte Carlo

estimate of the log-likelihood lower bound as given by

Ez[logP (X|φ, θ, z)]' 1

S

S∑
s=1

logP (X|φ, θ, zs(X)) (3.7)

where S is the number of samples used for estimation and zs(X) is the reparame-

terized latent variable defined as follows:

zs(X) = µ(X) + σ(X)εs. (3.8)

In (3.8), εs ∼ N (0, I) is an auxiliary noise variable, µ(X) and σ(X) are respectively

the mean and standard deviation of the latent variable z(X) generated from the

encoder network. By replacing the reconstruction error term of the VAE objective

function (3.3) with the estimated log-likelihood lower bound, the objective function

of the proposed system can be written as

EProp(X) =DKL(qφ(z|X)‖pθ(z))

− 1

S

S∑
s=1

logP (X|φ, θ, zs(X)). (3.9)

From (3.9), it is seen that the proposed VAE is trained not only to maximize the

similarity between the prior and posterior distributions of the latent variable, but
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Figure 3.2: Flow chart of the speaker verification process using the proposed feature

extraction scheme.

also to maximize the log-likelihood of the generated GMM by minimizing EProp via

error back-propagation. Moreover, we assume that the prior distribution for z to be

pθ(z) = N (z|0, I) analogous to the prior for w in the i-vector framework.

3.3.2 Non-linear feature extraction and speaker verification

The encoder network of the proposed VAE generates the latent variable mean µ(X)

and the log-variance log σ2(X). Once the VAE has been trained, the encoder network

is used as a feature extraction model as shown in Figure 3.2. Similar to the conven-

tional i-vector extractor, the encoder network takes the Baum-Welch statistics of

the input speech utterance and generates a random variable with a Gaussian distri-

bution, which contains essential information for modeling an utterance-dependent

GMM. The mean of the latent variable µ(X) is exploited as a compact representa-

tion of the speech’s distributive pattern. Moreover, the variance of the latent variable
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σ2(X) is used as a proxy for the uncertainty caused by the short duration of the given

speech samples. The features extracted by the proposed VAE can be transformed via

feature compensation techniques (e.g., linear discriminant analysis, LDA) in order

to improve the discriminability of the features.

Given a set of N(p) enrollment speech samples spoken by an arbitrary speaker p

X(p) = {X1(p),X2(p), · · · ,XN(p)(p)}, (3.10)

the speaker model for p is obtained by averaging the features extracted from each

speech sample. To determine whether a test utterance Xtest is spoken by the speaker

p, analogous to the i-vector framework, PLDA is used to compute the similarity

between the feature extracted from Xtest and the speaker model of p.

Unlike the conventional i-vector framework, which only uses the mean of the

latent variable as feature, the proposed scheme utilizes both the mean and variance

of the latent variable to take the uncertainty into account. Providing the speaker

decision model (e.g., PLDA) with information about the uncertainty within the input

speech, which is represented by the variance of the latent variable, may improve the

speaker recognition performance.

3.4 Experiments

3.4.1 Databases

In order to evaluate the performance of the proposed technique in random digits

speaker verification task, a set of experiments were conducted using the TIDIGITS

dataset. The TIDIGITS dataset contains 25096 clean utterances spoken by 111 male,

114 female, 50 boy and 51 girl speakers [30] For each of the 326 speakers in the
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TIDIGITS dataset, a set of isolated digits and 2-7 digit sequences were spoken. The

TIDIGITS dataset was split into two subsets, each containing 12548 utterances from

all the 326 speakers, and they were separately used as the enrollment and trial data.

In the TIDIGITS experiments, TIMIT dataset [31] was used for training the UBM,

total variability matrix, and the embedding networks.

3.4.2 Experimental setup

The acoustic features used in the experiments were 19 dimensional Mel-frequency

cepstral coefficients (MFCCs) and the log-energy extracted at every 10 ms, using

a 20 ms Hamming window via the SPro library [32]. Together with the delta and

delta-delta of the 19 dimensional MFCCs and the log-energy, the frame-level acoustic

feature used in our experiments was given by a 60 dimensional vector.

We trained the UBM containing 32 mixture components in a gender- and age-

independent manner, using all the speech utterances in the TIMIT dataset. Training

the UBM, total variability matrix, and the i-vector extraction were done by using

the MSR Identity Toolbox via MATLAB [33]. The encoder and decoder of the VAEs

were configured to have a single hidden layer with 4096 ReLU nodes, and the di-

mensionality of the latent variables were set to be 200. The implementation of the

VAEs was done using Tensorflow [34] and trained using the AdaGrad optimization

technique [35]. Also, dropout [36] with a fraction of 0.8 and L2 regularization with a

weight of 0.01 were applied for training all the VAEs, and the Baum-Welch statistics

extracted from the entire TIMIT dataset were used as training data. A total of 100

samples were used for reparameterization shown in (15).

For all the extracted utterance-level features, linear discriminant analysis (LDA)

[15] was applied for feature compensation and the dimensionality was finally reduced
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to 200. PLDA [37] was used for speaker verification, and the speaker subspace di-

mension was set to be 200.

Four performance measures were evaluated in our experiments: classification er-

ror (Class. err.), EER, minimum NIST SRE 2008 DCF (DCF08), minimum NIST

SRE 2010 DCF (DCF10). The classification error was measured while performing

a speaker identification task where each trial utterance was compared with all the

enrolled speakers via PLDA, and the enrolled speaker with the highest score was

chosen as the identified speaker. Then the ratio of the number of wrongly classified

trial samples to the total number of trial samples represents the classification error.

The EER and minimum DCFs are widely used measures for speaker verification

where the EER indicates the error when the false alarm rate (FAR) and the false

reject rate (FRR) are the same [15], and the minimum DCFs represent the decision

cost obtained with different weights to FAR and FRR. The NIST 2008 DCF [38]

gives the same penalty for both FAR and FRR, whereas the NIST 2010 DCF [39]

gives more penalty to FRR.

3.4.3 Effect of the duration on the latent variable

In order to investigate the capability of the latent variable for capturing the uncer-

tainty caused by short duration, the differential entropies of the latent variables were

computed. The differential entropy, or the continuous random variable entropy, mea-

sures the average uncertainty of a random variable. Since the latent variable z(X)

in the proposed VAE has a Gaussian distribution, the differential entropy can be

formulated as follows:

h(z(X)) =
1

2
log(2πe)K +

1

2
log

K∏
k=1

σ2k(X). (3.11)
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Figure 3.3: Average differential entropy computed using the latent variable variance

extracted from the proposed VAE on different durations.

In (3.11), K represents the dimensionality of the latent variable and σ2k(X) is the

kth element of σ2(X). From each speech sample in the entire TIDIGITS dataset,

200 dimensional latent variable variance was generated using the encoder network

of the proposed framework and used for computing the differential entropy.

In Figure 3.3, the differential entropies averaged in 6 different duration groups

(i.e. less than 1 second, 1-2 seconds, 2-3 seconds, 3-4 seconds, 4-5 seconds, and more

than 5 seconds) are shown. As shown in the result, the differential entropy computed

using the variance of the latent variable gradually decreases as the duration increases.

Despite a rather small time difference between the 1st duration group (i.e. less than 1

second) and the 6th duration group (i.e. more than 5 seconds), the relative decrement

in entropy was 29.91%. This proves that the latent variable variance extracted from

the proposed system is capable of indicating the uncertainty caused by the short

duration.
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Figure 3.4: Network structure of the baseline VAE Classify.

3.4.4 Experiments with VAEs

To verify the performance of the proposed VAE trained with the log-likelihood-based

reconstruction error function, we conducted a series of speaker recognition exper-

iments over the TIDIGITS dataset. For performance comparison, we also applied

various feature extraction approaches. The approaches which were compared with

each other in these experiments are as follows:

• i-vector: standard 200 dimensional i-vector,

• Autoencode: VAE trained to minimize the cross-entropy between the input

Baum-Welch statistics and the reconstructed output Baum-Welch statistics,
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Figure 3.5: DET curves of the speaker verification experiments using the i-vector

and the mean latent variables extracted from VAEs trained for different tasks.

• Classify: VAE trained to minimize the cross-entropy between the softmax out-

put and the one-hot speaker label,

• Proposed: the proposed VAE trained to minimize the negative log-likelihood-

based reconstruction error.

Autoencode is a standard VAE for reconstructing the input at the output, which was

trained to minimize EVAE (3.3) given the Baum-Welch statistics as input. On the

other hand, Classify is a VAE for estimating the speaker label, which was trained

to minimize the following loss function:

EClass(x) =DKL(qφ(z|x)‖pθ(z))− EY[log Ŷ] (3.12)

where Y denotes the one-hot speaker label of utterance X and Ŷ is the softmax
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Table 3.1: Comparison of results between using the i-vector and the mean latent

variables extracted from VAEs trained for different tasks.

Class. err. [%] EER [%] DCF08 DCF10

i-vector 12.62 3.36 2.00 0.07

Autoencode 24.59 6.06 2.69 0.09

Classify 40.01 8.13 4.21 0.10

Proposed 11.89 3.61 2.09 0.07

output of the decoder network. The network structure for Classify is depicted in

Figure 3.4. In this experiment, only the mean vectors of the latent variables were

used for Autoencode, Classify, and Proposed.

The results shown in Table 3.1 tell us that the VAEs trained with the conventional

criteria (i.e. Autoencode and Classify) perform poorly compared to the standard i-

vector. On the other hand, the proposed VAE with likelihood-based reconstruction

error was shown to provide better performance for speaker recognition than the

other methods. The feature extracted using the VAE trained with the proposed

criterion provided comparable verification performance (i.e. EER, DCF08, DCF10)

to the conventional i-vector feature. Moreover, in terms of classification, the proposed

framework outperformed the i-vector framework with a relative improvement of 5.8%

in classification error. Figure 3.5 shows the DET curves obtained from the four tested

approaches.
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Figure 3.6: DET curves of the speaker verification experiments using 400 dimensional

i-vector and combinations of two features out of 200 dimensional i-vector, latent

variable mean, and the log-variance of the latent variable.

3.4.5 Feature-level fusion of i-vector and latent variable

In this subsection, we tested the features obtained by augmenting the conventional i-

vector with the mean and variance of the latent variable extracted from the proposed

VAE. For performance comparison, we applied the following six different feature sets:

• i-vector(400): standard 400 dimensional i-vector,

• i-vector(600): standard 600 dimensional i-vector,

• LM+LV : concatenation of the 200 dimensional latent variable mean and the

log-variance, resulting in a 400 dimensional vector,
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Figure 3.7: DET curves of the speaker verification experiments using 600 dimensional

i-vector and combined feature of 200 dimensional i-vector, latent variable mean, and

the log-variance of the latent variable.

• i-vector(200)+LM : concatenation of the 200 dimensional i-vector and the 200

dimensional latent variable mean, resulting in a 400 dimensional vector,

• i-vector(200)+LV : concatenation of the 200 dimensional i-vector and the 200

dimensional latent variable log-variance, resulting in a 400 dimensional vector,

• i-vector(200)+LM+LV : concatenation of the 200 dimensional i-vector and the

200 dimensional latent variable mean and log-variance, resulting in a 600 di-

mensional vector.

As seen from Table 3.2 and Figure 3.6, the augmentation of the latent variable

greatly improved the performance in all the tested cases. By using only the mean and

log-variance of the latent variable together (i.e. LM+LV ), a relative improvement of
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Table 3.2: Comparison of results between various feature-level fusions of the con-

ventional i-vector, mean and log-variance of the latent variable extracted from the

proposed VAE.

Class. err. [%] EER [%] DCF08 DCF10

i-vector(400) 7.67 2.68 1.54 0.06

LM+LV 6.94 2.03 1.23 0.05

i-vector(200)+LM 5.36 1.78 0.97 0.05

i-vector(200)+LV 4.99 1.65 0.94 0.04

i-vector(600) 5.07 2.17 1.29 0.05

i-vector(200)+LM+LV 2.75 0.97 0.61 0.03

24.25% was achieved in terms of EER, compared to the conventional i-vector with the

same dimension (i.e. i-vector(400)). The concatenation of the standard i-vector and

the latent variable mean (i.e. i-vector(200)+LM ) also improved the performance.

Especially in terms of EER, i-vector(200)+LM achieved a relative improvement

of 33.58% compared to i-vector(400). This improvement may be attributed to the

non-linear feature extraction process. Since the latent variable mean is trained to

encode the various variability within the distributive pattern of the given utterance

via a non-linear process, it may contain information not obtainable from the linearly

extracted i-vector. Thus by supplementing the information ignored by the i-vector

extraction process, a better representation of the speech can be obtained.

The best verification and identification performance out of all the 400 dimen-

sional features (i.e. i-vector(400), LM+LV, i-vector(200)+LM, and i-vector(200)+LV )

was obtained when concatenating the standard i-vector and the latent variable log-
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variance (i.e. i-vector(200)+LV ). i-vector(200)+LV achieved a relative improvement

of 38.43% in EER and 34.94% in classification error compared to i-vector(400). This

may be due to the capability of the latent variable variance in capturing the amount

of uncertainty, which allows the decision score to take advantage of the duration

dependent reliability.

Concatenating the standard i-vector with both the mean and log-variance of

the latent variable (i.e. i-vector(200)+LM+LV ) further improved the speaker recog-

nition performance. Using the i-vector(200)+LM+LV achieved a relative improve-

ment of 55.30% in terms of EER, compared to the standard i-vector with the same

dimension (i.e. i-vector(600)). Figure 3.7 shows the DET curves obtained when i-

vector(200)+LM+LV and i-vector(600) were applied.

3.4.6 Score-level fusion of i-vector and latent variable

In this subsection, we present the experimental results obtained from a speaker

recognition task where the decision is made by fusing the PLDA scores of i-vector

features and VAE-based features. Given a set of independently computed PLDA

scores Sr, r = 1, · · · , R, the fused score Sfused was computed by simply adding

them as

Sfused =

R∑
r=1

Sr. (3.13)

We compared the following scoring schemes:

• i-vector : PLDA score obtained by using the standard 200 dimensional i-vector,

• LM : PLDA score obtained by using the 200 dimensional latent variable mean,

• LV : PLDA score obtained by using the 200 dimensional latent variable log-

variance,
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Figure 3.8: DET curves of the speaker verification experiments using various score-

level fusions of the conventional i-vector, mean and log-variance of the latent variable

extracted from the proposed VAE.

• i-vector+LM : fusion of the PLDA scores obtained by using the 200 dimensional

i-vector and the 200 dimensional latent variable mean,

• i-vector+LV : fusion of the PLDA scores obtained by using the 200 dimensional

i-vector and the 200 dimensional latent variable log-variance,

• LM+LV : fusion of the PLDA scores obtained by using the latent variable mean

and log-variance,

• i-vector+LM+LV : fusion of the PLDA scores obtained by using the stan-

dard 200 dimensional i-vector, 200 dimensional latent variable mean and log-

variance.
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Table 3.3: Comparison of results between various score-level fusions of the con-

ventional i-vector, mean and log-variance of the latent variable extracted from the

proposed VAE.

Class. err. [%] EER [%] DCF08 DCF10

i-vector 12.62 3.36 2.00 0.07

LM 11.89 3.61 2.09 0.07

LV 17.78 4.65 2.57 0.08

i-vector+LM 7.03 2.63 1.63 0.06

i-vector+LV 7.39 2.76 1.69 0.06

LM+LV 10.26 3.50 2.02 0.07

i-vector+LM+LV 5.75 2.49 1.57 0.06

Table 3.3 and Figure 3.8 give the results obtained through these scoring schemes.

As shown in the results, using the latent variable mean and log-variance vectors as

standalone features yielded comparable performance to the conventional i-vector

method (i.e. LM and LV ). Also, fusing the latent variable-based scores with the

score provided by the standard i-vector feature further improved the performance

(i.e. i-vector+LM and i-vector+LV ). The best score-level fusion performance was

obtained by fusing all the scores obtained by the standard i-vector, the latent variable

mean and log-variance vector (i.e. i-vector+LM+LV ), achieving a relative improve-

ment of 25.89% in terms of EER compared to i-vector. However, the performance

improvement produced by the score-level fusion methods was relatively smaller than

the feature-level fusion methods presented in Table 3.2. This may be due to the fact

that the score-level fusion methods compute the scores of the i-vector and the la-
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tent variable-based features independently, and as a result the final score cannot be

considered an optimal way to utilize their joint information.

3.5 Summary

In this Chapter, a novel deep learning model-based utterance-level feature extractor

for speaker recognition was proposed. In order to capture the variability that has not

been fully represented by the linear projection in the traditional i-vector framework,

we designed a VAE for GMM adaptation and exploited the latent variable as the

non-linear representation of the variability in the given speech. Analogous to the

standard VAE, the proposed architecture is composed of an encoder and a decoder

network where the former estimates the distribution of the latent variable given

the Baum-Welch statistics of the speech and the latter generates the ideal GMM

supervector from the latent variable. Moreover, to take the uncertainty caused by

short duration speech utterances into account while extracting the feature, the VAE

is trained to generate a GMM supervector in a way to maximize the likelihood. The

training stage of the proposed VAE uses a likelihood-based error function instead of

the conventional reconstruction errors (e.g., cross-entropy).

To investigate the characteristics of the features extracted from the proposed

system in a practical scenario, we conducted a set of random digits sequence exper-

iments using the TIDIGITS dataset. We observed that the variance of the latent

variable generated from the proposed network apparently demonstrates the level of

uncertainty which gradually decreases as the duration of the speech increases. Also,

using the mean and variance of the latent variable as feature provided comparable

performance to the conventional i-vector and further improved when used in con-
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junction with the i-vector. The best performance was achieved by feature-level fusion

of the i-vector, mean and variance of the latent variable.
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Chapter 4

Adversarially learned total

variability embedding for

speaker recognition with

random digits strings

4.1 Introduction

In Chapter 3, we successfully exploited the variational autoencoder (VAE) frame-

work [27], [28] to extract an utterance-level feature to capture the total variabil-

ity and the uncertainty of the speech in a non-linear fashion. The VAE has an

autoencoder-like structure and assumes that the input data is generated through

a directed graphical model induced by a latent variable. The latent variable of the

VAE-based feature extraction model in [12] serves as an utterance-level represen-
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tation and has shown better performance than the conventional i-vector in coping

with the uncertainty caused by the short duration. Moreover, we could observe that

the variance of the latent variable can be used as a proxy for the uncertainty caused

by the short duration of the given speech samples. However, as mentioned in [40]

and [41], since the Kullback-Leibler divergence (KL divergence) regularization term

in the VAE objective function encourages the variational posterior to be closer to

the prior, which leads to less informative latent variable representations. Due to

this limitation, the embedding extracted from the VAE-based feature extractor may

lack crucial speaker-dependent information, resulting in limited performance of the

overall speaker recognition system.

In order to overcome this problem, we propose a novel approach to train a deep

learning-based embedding network using the adversarial learning framework. The

proposed method adopts an adversarially learned inference (ALI) model [42] to non-

linearly express the total variability and uncertainty of the given speech. Analogous

to the VAE-based feature extractor in [12], the proposed model is trained according

to the maximum likelihood criterion and the latent variable serves as the utterance-

level feature representation. However instead of simply regularizing the latent vari-

able via KL divergence, the proposed method uses a discriminator network to make

sure that the generated latent variable and GMM supervector are close to the latent

prior distribution and the GMM obtained through maximum a posteriori (MAP)

adaptation, respectively. While training the proposed network, the parameters of

the feature extraction and the discriminator networks are updated competitively;

the feature extraction network tries to generate a more realistic GMM supervec-

tor and latent variable while the discriminator network focuses on distinguishing

the generated GMM and latent variable from the real ones. By training the feature
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extraction network in this adversarial fashion, the proposed system is expected to

provide utterance-level features which can capture more prominent speaker relevant

characteristics and the uncertainty within the given speech utterance. Similarly to

the VAE-based feature extractor, the utterance-level features extracted from the

proposed model can substitute the conventional i-vector extraction module without

any difficulty.

To evaluate the performance of the proposed method, along with the VAE-based

feature extraction scheme and the conventional i-vector framework, we conducted a

set of speaker verification experiments using the TIDIGITS dataset. Experimental

results show that the proposed method outperforms the standard i-vector frame-

work and the VAE-based method in terms of equal error rate (EER). It is also

interesting to see that impressive performance improvement is observed when the

features extracted from the proposed method and the conventional i-vector are aug-

mented together. This implies that the feature extracted using the proposed method

is complementary to that extracted from the conventional i-vector framework.

4.2 Adversarially learned inference

Alike other variants of the generative adversarial network (GAN) [43], ALI aims to

train a network for generating a realistic data sample with the help of a discriminator

network, which tries to predict whether the input data is real or generated [42].

However, unlike the ordinary GAN framework which cannot analyze the data at an

abstract level, ALI integrates an inference network for estimating the random latent

variable z from the input data. As depicted in Fig. 4.1, ALI is composed of three

directed networks: encoder, decoder, and joint discriminator networks. Analogous
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Figure 4.1: Flow chart of the ALI framework.

to the VAE network, the encoder network outputs the mean and variance of the

posterior distribution p(z|x) given an observation x. On the other hand, the decoder

generates the data sample from a latent variable sampled from a prior distribution

p(z).

The encoder and decoder networks represent the joint probability distributions

of the latent variable z and the observed data x as follows:

qφ(x, z) = qφ(x)qφ(z|x),

pθ(x, z) = pθ(z)pθ(x|z). (4.1)

In (4.1), φ, θ, qφ(x, z) and pθ(x, z) denote the encoder parameters, decoder parame-

ters, and the joint distributions represented by the encoder and decoder, respectively.

The encoder marginal probability qφ(x) represents the real data distribution and the

decoder marginal probability pθ(z) is the prior distribution of the latent variable,

usually specified as a standard normal distribution. The conditional probability dis-
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tributions qφ(z|x) and pθ(x|z) represent the inferred latent distribution output by

the encoder and the distribution of the data generated by the decoder, respectively.

The joint discriminator takes a joint pair of the data and the latent variable as

input and distinguishes between the samples from the encoder (x, ẑ(x))∼qφ(x, z)

and the ones from the decoder (x̃(z), z)∼pθ(x, z). The discriminator output D(x, z)

is sigmoidal, ideally having a value close to 0 if the samples are drawn from pθ(x, z)

and 1 if drawn from qφ(x, z).

The encoder, decoder and the joint discriminator networks of the ALI are trained

adversarially by minimizing the following objective functions:

ED =− E(x,z)∼qφ(x,z)[log(D(x, z))]

− E(x,z)∼pθ(x,z)[log(1−D(x, z))], (4.2)

EG =− E(x,z)∼qφ(x,z)[log(1−D(x, z))]

− E(x,z)∼pθ(x,z)[log(D(x, z))]. (4.3)

In (4.2) and (4.3), ED denotes the discriminator loss function and EG is the generator

loss function. The joint discriminator network is trained to minimize ED, which

decreases as the network distinguishes between the samples from the encoder and

the decoder better and the parameters θ, φ of the generator (i.e. encoder and decoder

networks) are updated to minimize EG.

4.3 Adversarially learned feature extraction

The proposed algorithm assumes that the variability of the utterance-dependent

GMM supervector of the UBM can be represented by a non-linear projection of a
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Figure 4.2: Maximum likelihood training scheme for the proposed non-linear feature

extractor. Red shows the sampling operation. Blue shows the loss term.

hidden variable onto the variability space as follows:

m(X) = u + g(z(X)) (4.4)

where g is a non-linear function which transforms the hidden variable z(X) to the

total variability of the GMM supervector m(X). As shown in Fig. 4.2, the proposed

scheme employs an encoder network for inferring the hidden variable z(X) from the

observed speech X and a decoder network for non-linearly mapping z(X) onto the

total variability space to generate an ideal utterance-dependent GMM supervector.

As with the i-vector adaptation framework, the main task of the proposed ap-

proach is to generate an utterance-dependent GMM that maximizes the likelihood

given the Baum-Welch statistics of the utterance. The encoder network takes the
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zeroth- and first-order Baum-Welch statistics of the input utterance X and esti-

mates the posterior distribution, namely the mean µ and the variance σ2 of the

latent variable through variational inference. The latent variable z is a random vari-

able assumed to follow a Gaussian distribution and its components are uncorrelated

with each other. The decoder network generates the GMM supervector given the

latent variable according to the maximum likelihood criterion.

4.3.1 Maximum likelihood criterion

The log-likelihood of the GMM supervector m̂(X) generated from the decoder net-

work conditioned on the latent variable z(X), which is sampled from the posterior

distribution qφ(z|X) generated by the encoder network given input observation X,

can be written as

logP (X|φ, θ, z(X)) =
C∑
c=1

(nc(X) log
1

(2π)F/2|Σc|1/2

− 1

2

L∑
l=1

γl(c)(xl − m̂c(X))tΣ−1c (xl − m̂c(X))) (4.5)

where m̂c(X) denotes the cth component of m̂(X). Instead of directly maximizing

the marginal log-likelihood logP (X|φ, θ) = logEz(X)∼qφ(z|X)[P (X|φ, θ, z(X))], which

is practically intractable, the proposed algorithm maximizes its lower bound which

can be obtained via Jensen’s inequality as follows:

logP (X|φ, θ) =logEz(X)∼qφ(z|X)[P (X|φ, θ, z(X))]

≥Ez(X)∼qφ(z|X)[logP (X|φ, θ, z(X))]. (4.6)
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Figure 4.3: ALI-based training scheme for the proposed non-linear feature extractor.

Red shows the sampling operations.

Using the reparameterization trick [27], the Monte Carlo estimate of the marginal

log-likelihood lower bound can be computed as

Ez(X)∼qφ(z|X)[logP (X|φ, θ, z(X))]

' 1

S

S∑
s=1

logP (X|φ, θ, zs(X)), (4.7)

where S is the number of samples used for the estimation and zs(X) is the repa-

rameterized latent variable defined by

zs(X) = µ(X) + σ(X)εs. (4.8)

In (4.8), µ(X) and σ(X) are respectively the mean and standard deviation of the

latent variable z(X) generated from the encoder network, and εs ∼ N (0, I) is an

auxiliary noise variable.
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4.3.2 Adversarially learned inference for non-linear i-vector extrac-

tion

In order to ensure that the generated latent variable z matches its prior distribu-

tion and the GMM supervector m̂ well preserves the distributive structure of the

GMM driven from the UBM, the proposed scheme utilizes a joint discriminator for

regularizing the encoder and decoder parameters. As shown in Fig. 4.3, the joint

discriminator of the proposed algorithm takes the GMM supervector and the la-

tent variable and tries to determine whether the input pairs are generated from the

encoder or the decoder networks.

However, since the decoder output m̂(z) does not match the encoder inputs

n(X) and f̃(X), the joint discriminator cannot be applied directly. To alleviate this

difficulty, the proposed scheme first estimates the GMM mean vectors via maximum

a posteriori (MAP) adaptation [21] given as follows:

mc,MAP (X) =

∑L
l=1 γl(c)xl∑L
l=1 γl(c)

=
f̃c(X)

nc(X)
+ uc, (4.9)

where mc,MAP (X) is the estimated cth Gaussian mixture mean given the input

speech utterance X. The mean vectors mc,MAP (X) for c = 1, ..., C are concatenated

to form a GMM supervector mMAP (X).

The joint discriminator takes the joint pair either from the encoder (mMAP (X), ẑ)∼qφ(m, z)

or from the decoder (m̂(zsamp), zsamp)∼pθ(m, z) as input, where ẑ and zsamp are

the latent variables sampled from N (µ(X), logσ2(X)) and pθ(z), respectively, and

m̂(zsamp) is the GMM supervector generated by the decoder given zsamp. We as-

sume that the prior distribution for the latent variable pθ(z) to be N (z|0, I), akin

to the prior for w in the i-vector framework. As in (4.2), the discriminator network

49



parameter is trained to minimize the following objective function:

EProp,D =− E(m,z)∼qφ(m,z)[log(D(m, z))]

− E(m,z)∼pθ(m,z)[log(1−D(m, z))]. (4.10)

By combining the generator loss function of ALI (4.3) and the marginal log-

likelihood lower bound (4.6), the objective function of the encoder and decoder

networks of the proposed framework can be written as

EProp,G =− E(m,z)∼qφ(m,z)[log(1−D(m, z))]

− E(m,z)∼pθ(m,z)[log(D(m, z))]

− 1

S

S∑
s=1

logP (X|φ, θ, zs(X)). (4.11)

From (4.11), it is seen that the encoder and decoder networks are trained not only

to generate latent variables and GMM supervectors from qφ(m, z) or pθ(m, z) that

are identical to each other, but also to maximize the log-likelihood of the generated

utterance-dependent GMM by minimizing EProp,G through error back-propagation

[29].

4.3.3 Relationship to the VAE-based feature extractor

The VAE-based feature extraction network [12] focuses on maximizing the log-

likelihood of the generated GMM by minimizing the following objective function:

EV AE/FE(X) =DKL(qφ(z|X)‖pθ(z))

− 1

S

S∑
s=1

logP (X|φ, θ, zs(X)). (4.12)

The first term in the RHS of (4.12) is the KL divergence between the prior and the

posterior distribution of the latent variable z, which can be viewed as the regulariza-

tion term. The regularization term forces the encoder network to generate a latent
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variable distribution that is compatible with pθ(z). However, the KL regularization

term stretches the latent space over the entire training set to avoid assigning small

probability to any training samples [40], [41]. Due to such problem of the KL regu-

larization term, the VAE tends to generate conservative outputs, which usually lack

in variety. Especially in the image processing community, it has been reported that

the VAE-based image generators result in blurry image samples [42]. In the same

manner, the KL regularization term may lead the VAE-based feature extractor to

produce utterance-level features with insufficient idiosyncratic representation for the

speaker.

The proposed ALI-based feature extraction framework, in contrast, does not

regularize the latent variable distribution with a KL divergence term. Instead, the

proposed scheme employs a joint discriminator network, which encourages the en-

coder and decoder networks to generate realistic latent variables and GMM super-

vectors. Thus the distinctive information within the latent variables generated by

the ALI-based feature extractor is less likely to be tightly constrained by its prior

distribution.

4.4 Experiments

4.4.1 Databases

In order to evaluate the performances of the baseline systems and the proposed

scheme in a condition similar to real-life application where the speech data for

training and enrolling are limited and usually have short durations, we performed

experiments using the TIMIT dataset [31] as the development set and TIDIGITS

dataset [30] as the enrollment and trial sets. The TIMIT dataset contains 6,300
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Figure 4.4: Network structure for the discriminator of the ALI-based feature extrac-

tor.

clean recorded utterances, 10 utterances spoken by each of 438 male and 192 female

speakers. Each utterance in the TIMIT dataset has an average duration of 3 sec-

onds. The TIMIT dataset was used for training the UBM and also used for training

the total variability matrix. The TIDIGITS dataset contains 25,096 clean recorded

utterances spoken by 111 male, 114 female, 50 boy and 51 girl speakers. Each of the

326 speakers in the TIDIGITS dataset spoke a set of isolated digits and 2-7 digit

sequences. The TIDIGITS dataset was split into two subsets, each containing 12,548

utterances from all 326 speakers, and they were separately used as the enrollment

and trial data.
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4.4.2 Experimental setup

The acoustic features used in the experiments were 19-dimensional Mel-frequency

cepstral coefficients (MFCCs) and the log-energy extracted at every 10 ms, using

a 20 ms Hamming window via the SPro library [32]. Together with the delta and

delta-delta of the 19-dimensional MFCCs and the log-energy, the frame-level acoustic

feature used in our experiments was a 60 dimensional vector.

We trained a UBM containing 32 mixture components in a gender-independent

manner, using all the speech utterances in the TIMIT dataset. Training the UBM,

total variability matrix, and the i-vector extraction were done by using the MSR

Identity Toolbox via MATLAB [33]. The encoder and decoder of the experimented

VAE- and ALI-based networks were configured to have a single hidden layer with

4096 ReLU nodes, and the dimensionality of the latent variables was set to be

200. As depicted in Fig. 4.4, the discriminator network of the ALI-based feature

extraction model was configured to follow a similar structure to the multimodal

network [44]. The first few hidden layers model the higher-level representation of the

GMM supervector and latent variable, and the last hidden layer models the joint

information between them. The implementation of the experimented networks was

done using Tensorflow [34] and trained using the AdaGrad optimization technique

[35]. Also, dropout [36] with a fraction of 0.8 and L2 regularization with a weight of

0.01 were applied for training all the VAEs, and the Baum-Welch statistics extracted

from the entire TIMIT dataset were used as training data. A total of 100 samples

were used for reparameterization to approximate the expectations in (15).

For all the extracted utterance-level features, linear discriminant analysis (LDA)

[15] was applied for feature compensation and the dimensionality was finally reduced
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to 200. Probabilistic linear discriminant analysis (PLDA) [37] was used for speaker

verification, and the speaker subspace dimension was set to be 200.

Two performance measures were evaluated in our experiments: classification er-

ror (Class. err.) and EER. The classification error was measured while performing

a speaker identification task where each trial utterance was compared with all the

enrolled speakers via PLDA, and the enrolled speaker with the highest score was

chosen as the identified speaker. Then the ratio of the number of falsely classified

samples to the total number of trial samples represents the classification error. The

EER is a widely used measure for speaker verification which indicates the error when

the false alarm rate (FAR) and the false reject rate (FRR) are the same [15].

4.4.3 Effect of the duration on the latent variable

In order to evaluate the effectiveness of using the latent variable variance as a mea-

sure for uncertainty caused by short duration, the differential entropy, which mea-

sures the average uncertainty of a random variable, was computed. Since the latent

variable z(X) is assumed to follow a Gaussian distribution, the differential entropy

can be formulated as follows:

h(z(X)) =
1

2
log(2πe)K +

1

2
log

K∏
k=1

σ2k(X). (4.13)

In (4.13), K represents the dimensionality of the latent variable and σ2k(X) is the

kth element of σ2(X).

From each speech sample in the entire TIDIGITS dataset, the variance of the

200-dimensional latent variable was obtained using the encoder network and used

for computing the differential entropy. As shown in Fig. 4.5, we experimented with

the latent variables extracted from three different feature extraction models:
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Figure 4.5: Average differential entropy computed using the latent variable variance

extracted from the VAE- and ALI-based systems on different durations.

• VAE : the VAE-based feature extraction network trained to minimize (4.12),

• ALI : the ALI-based feature extraction network trained to minimize the stan-

dard GAN objective function (4.3),

• ALI/NLL: the proposed ALI-based feature extraction network trained to min-

imize the negative log-likelihood-based objective function (4.11).

The differential entropies are averaged in 6 different duration groups (i.e. less than 1

second, 1-2 seconds, 2-3 seconds, 3-4 seconds, 4-5 seconds, and more than 5 seconds).

As shown in the result, the differential entropies computed using the variances
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of the latent variables extracted from VAE and ALI/NLL gradually decrease as

the duration increases. However, the differential entropy computed using the latent

variable from ALI does not decrease dramatically compared to the other methods.

This may be due to the fact that ALI is trained only to generate a GMM supervector

similar to the one obtained via MAP adaptation (4.9), which is determined by the

input Baum-Welch statistics. Therefore the latent variable of ALI will only be able to

preserve information needed for reconstructing a deterministic distribution. On the

other hand, VAE and ALI/NLL is trained to generate a GMM distribution according

to the maximum likelihood criterion, thus their latent variables may capture more

information about the variability within the generated GMM distribution.

Another interesting observation from Fig. 4.5 is that the relative decrement in

entropy was much greater in ALI/NLL than VAE. While the change in entropy is

rather conservative in the VAE case, where the relative decrement between the first

duration group (i.e. less than 1 second) and the sixth duration group (i.e. more

than 5 seconds) was 29.91%, the entropy in ALI/NLL changed dramatically with a

relative decrement of 330.17%. This shows that regularizing the latent variable with

a joint discriminator network is more effective than using the KL divergence-based

regularization for capturing the uncertainty.

4.4.4 Speaker verification and identification with different utterance-

level features

In this subsection, we evaluated the performance of the features extracted from

various techniques. More specifically, we compared the performance of the conven-

tional i-vector and the latent variable mean (LM ) and log-variance (LV )) extracted

from the VAE- and ALI-based feature extractors (i.e. VAE, ALI, ALI/NLL). In ad-
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Table 4.1: EER comparison between various feature-level fusions of the conventional

i-vector, mean and log-variance of the latent variables extracted from the VAE- and

ALI-based feature extractors [%]

LM LV LM+LV i-vector+LM i-vector+LV i-

vector+LM+LV

i-vector(200) 3.36

i-vector(400) 2.68

i-vector(600) 2.17

VAE 3.61 4.65 2.03 1.78 1.65 0.97

ALI 4.39 4.56 2.32 1.59 1.55 1.03

ALI/NLL 3.64 3.46 1.91 1.55 1.51 0.94

dition, we conducted feature-level fusion between different features and evaluated

their performance. For feature-level fusion, we simply concatenated the different fea-

tures together to create a supervector. The i-vector features used in this experiment

were:

• i-vector(200): standard 200-dimensional i-vector,

• i-vector(400): standard 400-dimensional i-vector,

• i-vector(600): standard 600-dimensional i-vector,

and the latent variable features were:

• LM : 200-dimensional latent variable mean,

• LV : 200-dimensional latent variable log-variance.

The fusion features used in this experiment were:

• LM+LV : concatenation of the 200-dimensional latent variable mean and the

log-variance, resulting in a 400-dimensional vector,
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Table 4.2: Classification error comparison between various feature-level fusions of

the conventional i-vector, mean and log-variance of the latent variables extracted

from the VAE- and ALI-based feature extractors [%]

LM LV LM+LV i-vector+LM i-vector+LV i-

vector+LM+LV

i-vector(200) 12.62

i-vector(400) 7.67

i-vector(600) 5.07

VAE 11.89 17.78 6.94 5.36 4.99 2.75

ALI 16.62 17.31 8.54 5.10 4.79 2.79

ALI/NLL 12.56 12.38 6.76 3.97 4.18 2.49

• i-vector+LM : concatenation of the 200-dimensional i-vector and the 200-dimensional

latent variable mean, resulting in a 400-dimensional vector,

• i-vector+LV : concatenation of the 200-dimensional i-vector and the 200-dimensional

latent variable log-variance, resulting in a 400-dimensional vector,

• i-vector+LM+LV : concatenation of the 200-dimensional i-vector and the 200-

dimensional latent variable mean and log-variance, resulting in a 600-dimensional

vector.

Tables 4.1 and 4.2 respectively give the EER and classification error results ob-

tained by using these features. As depicted in Fig. 4.6, the latent variable mean

vector extracted from the VAE- and ALI-based feature extractors (i.e. VAE, ALI,

ALI/NLL) shows promising performance. In particular the performance yielded by

the latent variable mean of VAE and ALI/NLL (i.e. VAE-LM, ALI/NLL-LM ) seem

to be comparable to the conventional i-vector. On the other hand, as shown in Fig.

4.7, the latent variable log-variance of VAE and ALI (i.e. VAE-LV, ALI-LV ) shows
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Figure 4.6: DET curves of the speaker

verification experiments using latent

variable mean as feature.
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Figure 4.7: DET curves of the speaker

verification experiments using latent

variable log-variance as feature.

relatively poor performance compared to the latent variable mean features. How-

ever, as shown in Fig. 4.7, the latent variable log-variance extracted from ALI/NLL

(i.e. ALI/NLL-LV ) outperformed the latent variable log-variance features extracted

from all three networks (i.e. VAE, ALI, ALI/NLL) in terms of EER. This shows

that the proposed network ALI/NLL is capable of generating latent variable vari-

ance which not only implies the uncertainty within the input speech but also encodes

a sufficient amount of speaker-dependent information. Using the latent variable to-

gether (i.e. LM+LV ) as a combined feature further improved the performance, and

the best performing feature was obtained from ALI/NLL, which achieved a relative

improvement of 28.73% in terms of EER compared to that of i-vector(400). Fig. 4.8

shows the DET curves obtained from the experiments using LM+LV.

As shown in Fig. 4.9, augmenting the standard i-vector and the latent variable

mean (i.e. i-vector+LM ) further improved the speaker verification performance. This
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Figure 4.8: DET curves of the speaker

verification experiments using the

concatenation of the latent variable

mean and log-variance as feature.
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Figure 4.9: DET curves of the speaker

verification experiments using the i-

vectors augmented with the latent

variable mean as feature.

improvement may be attributed to the non-linear feature extraction process of the

VAE- and ALI-based methods. Since the latent variable mean is trained to capture

the variability within the distribution of the input utterance via a non-linear process,

it is likely to encompass information not attainable in the standard i-vector. Espe-

cially the one augmented with the latent variable mean extracted from ALI/NLL

(i.e. ALI/NLL-(i-vector+LM)) showed better performance than the ones extracted

from VAE and ALI, achieving a relative improvement of 42.16% in terms of EER

compared to i-vector(400). The reason behind this may be due to the fact that the

latent variable of ALI/NLL can preserve the distinctive information much better

by incorporating a joint discriminator instead of regularizing the latent variable

distribution via KL divergence.

Likewise, using the i-vector in conjunction with the latent variable log-variance
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Figure 4.10: DET curves of the

speaker verification experiments using

the i-vectors augmented with the la-

tent variable log-variance as feature.
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Figure 4.11: DET curves of the

speaker verification experiments using

the i-vectors augmented with the la-

tent variable mean and log-variance as

feature.

(i.e. i-vector+LV ) also showed improvement in performance. Similar to the i-vector+LM

experiments, the i-vector augmented with the latent variable log-variance extracted

from ALI/NLL (i.e. ALI/NLL-(i-vector+LV)) outperformed the other methods (i.e.

VAE-(i-vector+LV), ALI-(i-vector+LV)), achieving a relative improvement of 34.66%

compared to i-vector(400) in terms of EER. This may be due to the capability of

the latent variable variance extracted from ALI/NLL in capturing the amount of

uncertainty, which has been discussed in the previous subsection. Fig. 4.10 shows

the DET curves obtained from the experiments using i-vector+LV.

Further improvement was observed when augmented with both the latent vari-

able mean and log-variance (i-vector+LM+LV ), which can be seen in Fig. 4.11. The

standard i-vector used in conjunction with the latent variable mean and log-variance
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extracted from ALI/NLL (i.e. ALI/NLL-(i-vector+LM+LV)) showed a relative im-

provement of 56.68% in terms of EER compared to the conventional i-vector with

the same dimension (i.e. i-vector(600)).

4.5 Summary

In this Chapter, a novel utterance-level feature extractor using an adversarial learn-

ing framework for speaker recognition is proposed. Analogous to the previously

proposed VAE-based feature extractor, the architecture proposed in this paper is

composed of an encoder and a decoder network where the former estimates the dis-

tribution of the latent variable given the speech and the latter generates the GMM

from the latent variable. However, in order to prevent the potential loss of distinc-

tive representation for the speaker within the extracted latent variable, the newly

proposed feature extractor is trained according to the ALI framework where a joint

discriminator network is exploited to ensure that the latent variable and the gen-

erated GMM are close to their prior distribution and the GMM obtained through

MAP adaptation, respectively.

To evaluate the performance of the features extracted from the proposed system

in a short duration scenario, we conducted a set of experiments using the TIDIG-

ITS dataset. From the results, we observed that the variance of the latent variable

extracted from the proposed ALI-based feature extractor is more useful to represent

the level of uncertainty caused by the short duration of the given speech than the

one extracted from the VAE-based feature extractor. Moreover, using the features

extracted from the proposed ALI-based method in conjunction with the standard

i-vector was shown to be far more effective than the VAE-based method.
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Chapter 5

Disentangled speaker and

nuisance attribute embedding

for robust speaker verification

5.1 Introduction

In recent years, various methods have been proposed utilizing deep learning architec-

tures for extracting embedding vectors and have shown better performance than the

i-vector framework when a large amount of training data is available [6]. In [7], a deep

neural network (DNN) for frame-level speaker identification was trained and the av-

eraged activation from the last hidden layer, namely, the d-vector, was taken as the

embedding vector for text-dependent speaker verification. In [6, 8], a speaker identi-

fication model consisting of a frame-level network and a segment-level network was

trained and the hidden layer activation of the segment-level network (i.e. x-vector)

was extracted as the embedding vector. In [11], long short-term memory (LSTM)
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layers were adopted to capture the contextual information within the d-vector, and

the embedding network was trained to directly optimize the verification score (e.g.,

cosine similarity) in an end-to-end fashion. The end-to-end d-vector framework was

further enhanced in [10] by applying different weight (i.e. attention) to each frame-

level activation while obtaining the d-vector, which enables the embedding network

to attend more on the frames with relatively higher amount of speaker-dependent

information. In [11], a generalized end-to-end loss function, which optimizes the em-

bedding vector to move towards the centroid of the true speaker while departing

away from the centroid of the most confusing speaker, was introduced to train the

end-to-end d-vector system more efficiently. In [12] and [13], a variational autoen-

coder (VAE)-based architecture was trained in an unsupervised manner to extract

an embedding vector for short-duration speaker verification. Despite their success in

well-matched conditions, the deep learning-based embedding methods are vulnera-

ble to the performance degradation caused by mismatched conditions (e.g., channel,

noise) [14].

In real life applications, numerous factors can contribute to the mismatches in

speaker verification [15]. Especially in forensic situations, channel mismatch often

occurs since police officers usually acquire voice recordings using various recording

devices (e.g., hidden microphones, mobile phones) [16]. Such variation in recording

devices is known to cause variability to the speech distribution, which leads to low

speaker identification or verification performance.

Recently, many attempts have been made to extract an embedding vector robust

to mismatched conditions. Conventionally, various researches focused on adapting

the back-end scoring model (e.g., PLDA) [45] or training the embedding network

with an augmented dataset containing various nuisance variability [46]. These meth-
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ods are proven to be effective when the dataset for the target condition (e.g., noisy

evaluation domain) is scarce, but since these methods do not intervene during the

embedding extraction, their performance may be bottlenecked by the speaker dis-

criminative capability of the embedding network. Unlike the aforementioned domain

adaptation techniques, there have been several methods which aim to directly disen-

tangle the undesired variability while extracting the speaker embeddings. In [14, 23],

inspired by the usage of gradient reversal strategy in image classification [26], [47]

and robust speech recognition [48, 49], the embedding networks were trained to min-

imize the speaker classification error while maximizing the error of the subtask (e.g.,

noise or channel type classification) with the use of gradient reversal layer. Although

the gradient reversal strategy has shown meaningful improvement in performance,

domain adversarial training using gradient reversal layer is known to be very unsta-

ble and sensitive to hyper-parameter setting [50]. In [24], the embedding network was

trained to maximize the error of a subtask (i.e. noise type classification) by using an

adversarial training strategy similarly to the generative adversarial network (GAN)

[43]. The speaker embedding network and the noise classification network are trained

competitively; the noise classification network is trained to discriminate the noise

type correctly, and at the same time the embedding network is trained to discrim-

inate the speaker while having high uncertainty on the noise type. When training

the speaker embedding network, bit-inverted one-hot labels (i.e. anti-labels) were

used for noise classification, which would force the embedding network to output a

wrong noise label equally. Though the anti-label strategy has proven its strength in

noise-robust speaker embedding [24], adversarial training is known to be extremely

unstable and difficult [51].

In this paper, we propose a novel approach to disentangle the nuisance attribute
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information from the speaker embedding vector without the use of gradient rever-

sal or adversarial training. The proposed method employs an embedding network

similar to the conventional methods (e.g., d-vector and x-vector). However, unlike

the conventional embedding networks, which produce a single embedding vector per

utterance, the proposed embedding network simultaneously extracts a speaker- and

nuisance attribute-dependent (e.g., recording device-, emotion-dependent) embed-

ding vectors, hence we call the proposed technique joint factor embedding (JFE).

In the JFE technique, the embedding network is trained in a fully supervised man-

ner simultaneously with the speaker and nuisance attribute (e.g., channel, emotion)

discriminator networks where each discriminator is trained to take the embedding

vector as input and identify their respective targets. Analogous to the conventional

speaker embedding systems, the proposed embedding network is trained to produce

a speaker embedding vector with high speaker discriminability. On the other hand,

to disentangle the non-speaker information from the speaker embedding vector, we

propose two different ways to increase the nuisance attribute uncertainty inherent

in the speaker embedding vector. One way is to train the embedding network to

extract a speaker embedding vector to maximize the entropy in nuisance attribute

identification, and the other is to decrease the relevancy between the speaker and

nuisance embedding vectors by minimizing the mean absolute Pearson’s correlation

(MAPC) [52].

In order to evaluate the performance of the proposed system in a realistic sce-

nario, we conducted a set of experiments using two datasets:

• RSR2015 Part 3 dataset: a random digits strings speaker verification corpus

consisting of speech samples recorded from 6 different hand-held devices [53],
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[54].

• VoxCeleb1 dataset: a text-independent speaker verification corpus consisting

of speech samples with 8 different emotional states [55].

The experimental results show that the proposed method outperforms the conven-

tional disentanglement methods (i.e. gradient reversal, anti-label) in terms of equal

error rate (EER). Moreover, the proposed system performed better than the conven-

tional x-vector on short duration speech samples, which is likely to lack significant

phonetic information.

The contributions of this paper are as follows:

• We propose a new method to train a speaker embedding network robust to

nuisance attributes, which can be done easily without the use of adversarial

training or gradient reversal learning.

• We compared the proposed speaker embedding technique with conventional

methods for multi-device and emotional speaker verification.

• We experimented the proposed speaker embedding technique on speech utter-

ances with various durations.

5.2 Joint factor embedding

5.2.1 Joint factor embedding network architecture

Analogous to the conventional disentanglement techniques [14, 23, 24], the proposed

method is based on the MTL framework. However, as depicted in Fig. 5.1, unlike the

standard MTL embedding system, the embedding network of the proposed frame-

work extracts two different embedding vectors simultaneously: speaker embedding
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Figure 5.1: The architecture of the proposed joint factor embedding system.

ωspkr and nuisance embedding ωnuis. The speaker embedding vector ωspkr is trained

to be dependent solely on the speaker variability while the nuisance embedding vec-

tor ωnuis is trained to be dependent on the nuisance (e.g., channel, emotion) variabil-

ity only. When obtaining ωspkr and ωnuis, different weights are used for aggregating

the frame-level outputs as

ωspkr =
T∑
t=1

αspkr,tht, (5.1)

ωnuis =

T∑
t=1

αnuis,tht (5.2)

where αspkr,t and αnuis,t are the speaker and nuisance weights for attention, respec-

tively, which are obtained as in (2.7). The reason why we use separate attention

weights for obtaining ωspkr and ωnuis is that we assume that frames with high

speaker-dependent information are not always guaranteed to have high nuisance

attribute-dependent information. For instance, speaker-dependent information will

be high on speech frames, while channel-dependent information will be rather con-
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sistent across all frames since even non-speech frames are affected by the recording

channel. Once the embedding vectors are extracted, both ωspkr and ωnuis are fed

into the speaker and nuisance classification networks.

5.2.2 Training for joint factor embedding

Discriminative training

As described in Table 5.1, the embedding vectors ωspkr and ωnuis are trained with dif-

ferent main task and subtask specifications. In order to maximize the discriminability

on their main tasks, the following cross-entropy loss functions are minimized:

Ls−s,CE = −
N∑
n=1

ynlogỹn(ωspkr), (5.3)

Lc−c,CE = −
M∑
m=1

rmlogr̃m(ωnuis). (5.4)

By minimizing (5.3) and (5.4) simultaneously, the embedding network is trained to

produce ωspkr with high speaker-dependent information and ωnuis with high nuisance

attribute-dependent information. Moreover, the attention weights αspkr,t and αnuis,t

will be trained to focus on the frames with more meaningful information on their

main tasks.

Table 5.1: Main tasks and subtasks for the embedding vectors of the joint factor

embedding scheme.

Main task Subtask

ωspkr Speaker classification Nuisance classification

ωnuis Nuisance classification Speaker classification
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Disentanglement training

In this paper, we propose two types of loss functions to perform disentanglement in

the subtasks of the embedding vectors ωspkr and ωnuis. One way for disentanglement

is to directly maximize the entropy (or uncertainty) on their subtasks while training.

For ωspkr and ωnuis, the entropies [56] on their subtasks can be computed as

Ls−c,E = −
N∑
n=1

ỹn(ωnuis)logỹn(ωnuis), (5.5)

Lc−s,E = −
M∑
m=1

r̃m(ωspkr)logr̃m(ωspkr). (5.6)

By maximizing (5.5) and (5.6), the uncertainty of the outputs in the subtasks will be

maximized, leading the conditional distribution of the subtask classes to approach

uniform.

Another way to perform disentanglement is to regularize the embedding vectors

ωspkr and ωnuis so as to have low correlation instead of directly maximizing the

uncertainty on their subtasks. This can be achieved by maximizing the negative

MAPC [52], which can be computed across the mini-batch by

LnMAPC = − 1

F

F∑
f=1

|cov(ωspkr,f , ωnuis,f )|
std(ωspkr,f )std(ωnuis,f )

(5.7)

where cov is the covariance, std is the standard deviation, and F , ωspkr,f , ωnuis,f

are the dimensionality of the embedding vectors, f th element of ωspkr and ωnuis,

respectively. Since zero correlation indicates that the two variables are not related,

by minimizing the MAPC between ωspkr and ωnuis, the relevancy between the two

embedding vectors can be reduced.

The proposed JFE system is trained by simultaneously minimizing the discrim-

inative losses (i.e. cross-entropy) depicted in (5.3) and (5.4), while maximizing the
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disentanglement loss in (5.5), (5.6), (5.7). In short, the embedding network is trained

to minimize the following loss function:

LJFE =Ls−s,CE + Lc−c,CE

− Ls−c,E − Lc−s,E − LnMAPC .

(5.8)

By optimizing the JFE network, the speaker embedding vector ωspkr is trained to be

speaker discriminative while having high uncertainty on the nuisance attribute, and

the nuisance embedding vector ωnuis aims to be nuisance attribute discriminative

while having high uncertainty on the speaker.

5.3 Experiments

5.3.1 Channel disentanglement experiments

Database

In order to evaluate the performance of the proposed technique for a real-life ap-

plication of speaker verification where multiple recording devices are involved for

enrollment and testing, a set of experiments were conducted based on the RSR2015

dataset [53], [54], which is a speaker verification dataset recorded using 6 different

hand-held devices (i.e. 1 Samsung Nexus, 2 Samsung Galaxy S, 1 HTC Desire, 1

Samsung Tab, 1 HTC Legend). For training the embedding networks, we used the

background and development subsets of the RSR2015 dataset Part 3, consisting of

utterances (recorded from all six devices) spoken by 194 speakers (100 male and 94

female speakers).

The evaluation was performed according to the RSR2015 Part 3 (random digits

string) protocol [54] where 106 speakers (57 male and 49 female speakers) are in-
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volved. From the RSR2015 Part 3 evaluation dataset, the 10-digits strings of sessions

1, 4, 7 were used for enrollment and the 5-digits strings of sessions 2, 3, 5, 6, 8, 9

were used for testing.

Experimental Setup

To investigate the effects of the proposed JFE strategy on different embedding archi-

tecture, two types of frameworks were used for embedding extraction: d-vector and

x-vector. For the d-vector-based systems, a single 512-dimensional unidirectional

LSTM layer with a projection layer [57] (projected to 256-dimension) was used.

By aggregating the LSTM outputs via a weighted average as described in (2.6),

256-dimensional embedding vectors were obtained. Each classification networks (i.e.

speaker and channel identifier) consisted of a single 256-dimensional rectified lin-

ear unit (ReLU) hidden layer and a softmax output layer where the output size

corresponds to the number of speakers or devices within the training set (e.g., 194-

dimensional softmax output for speaker classifier and 6-dimensional softmax output

for channel classifier). The acoustic features used in the d-vector-based systems were

19-dimensional Mel-frequency cepstral coefficients (MFCCs) and the log-energy ex-

tracted at every 10 ms, using a 20 ms Hamming window. Together with the delta

and delta-delta of the 19-dimensional MFCCs and the log-energy, the frame-level

feature used in our experiments was a 60-dimensional vector.

For the x-vector-based systems, 5 TDNN layers were used as the frame-level

network as in the Kaldi x-vector recipe [6]. The frame-level output of the last TDNN

layer were aggregated via attention pooling (2.6) and followed by a ReLU layer,

resulting in a 512-dimensional embedding vector. The classification networks in the

x-vector-based systems consisted of a single 512-dimensional rectified linear unit
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(ReLU) hidden layer and a softmax output layer. The acoustic features used in the

x-vector-based systems were 30-dimensional MFCCs extracted at every 10 ms, using

a 20 ms Hamming window.

The implementation of the embedding systems was done via Tensorflow [34] and

trained using the ADAM optimization technique [58] with β1 = 0.9 and β2 = 0.999.

All the experimented networks were trained with learning rate 0.001 and batch size

32 for 12,000 iterations. Cosine similarity was used for computing the verification

scores in the experiments.

In our experiments, EER was evaluated as the performance measure. The EER

indicates the error when the false alarm rate (FAR) and the false reject rate (FRR)

are the same.

Comparison between different disentanglement loss terms

In this experiment, we compare the performance of the speaker embeddings obtained

from the d-vector-based JFE system trained with different disentanglement loss

terms discussed in Section 5.2. The experimented methods are as follows:

• Only discriminative: speaker embedding vector extracted from the JFE net-

work trained only with the discriminative loss functions in (5.3) and (5.4)

(which is essentially a multi-task learning for the embedding network to en-

code speaker and nuisance discriminative information),

• Entropy: speaker embedding vector extracted from the JFE network trained

with the discriminative loss functions in (5.3), (5.4) and the entropy-based

disentanglement losses in (5.5) and (5.6),

73



• nMAPC: speaker embedding vector extracted from the JFE network trained

with the discriminative loss functions in (5.3), (5.4) and the negative MAPC-

based disentanglement losses in (5.7),

• Entropy + nMAPC: speaker embedding vector extracted from the JFE net-

work trained with the discriminative loss functions in (5.3), (5.4) and both the

entropy-based and the negative MAPC-based disentanglement losses in (5.5),

(5.6) and (5.7).

Table 5.2 gives the EER results obtained by using these embeddings. As shown in

the results, the embedding extracted from the JFE networks trained with either En-

tropy or nMAPC for disentanglement greatly improved the performance compared

to Only discriminative, which is essentially a standard MTL embedding technique.

This implies that both nMAPC and Entropy are capable of training the embed-

ding network to produce speaker embedding vectors disentangled from non-speaker

factors. Especially the nMAPC showed relative improvement of 17.99% compared

to Only discriminative. The best verification performance was achieved by using

both disentanglement loss terms (i.e. Entropy + nMAPC ), yielding a relative im-

provement of 25.27% in terms of EER. From this, we could assume that nMAPC

and Entropy are useful for disentangling the channel variability from the speaker

embedding.

Training Analysis

In order to check if the training scheme of the proposed JFE system achieves our

objective (i.e. maximizing the speaker discriminability and channel uncertainty in

ωspkr), we analyzed the training loss described in (5.3)-(5.6) of the d-vector-based
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Figure 5.2: The joint factor embedding training loss values on each iteration.
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Figure 5.3: t-SNE plot of the speaker and channel embedding vectors extracted from

10 speakers and 3 devices. (a) and (c) are the t-SNE plots of the speaker embedding

vectors, and (b) and (d) are the t-SNE plots of the channel embedding vectors.

Different colors in (a) and (b) indicate different speakers, and different colors in (c)

and (d) indicates different devices.
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(a) (b)

Figure 5.4: Attention weights of d-vector (JFE) for utterances speaking the sentence

“only lawyers love millionaires”. (a) Attention weights for the speaker embedding

vector. (b) Attention weights for the channel embedding vector.
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JFE system. As shown in Fig. 5.2, due to the large difference in the unique num-

ber of speakers and devices (i.e. 194 speakers and 6 devices), the initial values for

Ls−s,CE and Ls−c,E were higher than Lc−c,CE and Lc−s,E . The cross-entropy losses

(i.e. Ls−s,CE and Lc−c,CE) decreased quickly toward 0 when the training iteration

increases. On the other hand, the entropy losses (i.e. Ls−c,E and Lc−s,E) stayed

near at their initial values throughout the training. This indicates that the proposed

training scheme increases the discriminability of the speaker and channel embed-

dings on their main tasks while keeping their uncertainty on the subtasks high as

expected.

In Fig. 5.3, the t-SNE plots [59] of the speaker and channel embedding vectors

of 10 speakers and 3 devices are shown. As can be seen in Figs. 5.3a and 5.3c, the

speaker embedding vectors ωspkr were well separated between different speakers but

were highly overlapped when it comes to different devices. Meanwhile, as shown

in Figs. 5.3b and 5.3d, the channel embedding vectors ωchan were separately dis-

tributed in terms of the device, while they were inseparable in terms of speakers.

This confirms that the embedding vectors extracted from the proposed JFE sys-

tem are discriminative on their main tasks, but are invariant with respect to their

subtasks.

Moreover, in Fig. 5.4, the attention weights for the utterance speaking the

sentence “only lawyers love millionaires” (i.e. 1st sentence of the RSR2015 Part1

dataset) are shown. It is interesting to see that the difference between speaker at-

tention weights αspkr across the frames were quite dramatic, which indicates that

αspkr are likely to attend to certain frames. On the other hand, the channel atten-

tion weights αchan were relatively consistent across all frames. These results strongly

support our assumption that the frames with high speaker-dependent information
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are concentrated on specific frames while channel-dependent information is similar

across the speech segment.

Comparison between the joint factor embedding scheme and conventional

disentanglement methods

In this experiment, we compared the embedding vectors obtained from the proposed

joint factor embedding scheme, with those obtained from the conventional disentan-

glement techniques discussed in Section 2.2. The experimented training strategies

are as follows:

• Softmax: embedding extracted from an embedding network trained with soft-

max objective in (2.9),

• Gradient reversal: embedding extracted from an embedding network trained

with gradient reversal strategy as described in (2.12) where λ was set to be 0

in the beginning and linearly increased every iteration, reaching 1 at the end

of the training as in [48],

• Anti-loss: embedding extracted from an embedding network trained with anti-

loss as described in (2.16) using the same adversarial training strategy de-

scribed in [24],

• JFE (proposed): speaker embedding extracted from the proposed JFE system

trained with the discriminative loss functions in (5.3) and (5.4) and both the

entropy-based as shown in (5.5) and (5.6) and the negative MAPC-based dis-

entanglement losses in (5.7).

Table 5.3 show the performance of the d-vector and x-vector-based systems
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trained with the methods described above. From the results, it could be seen that

the overall performance in female speaker was worse than the male speaker. This

may be attributed to the fact that the MFCC features are known to be less beneficial

in female speech since it does not sufficiently capture the spectral characteristics in

high formant frequency region [61]. Generally, the Anti-loss disentanglement strategy

has shown performance enhancement, achieving a relative improvement of 35.39%

in terms of EER in the d-vector-based experiment. On the other hand, Gradient

reversal method, showed only slightly improved or worse performance over softmax.

Meanwhile, the speaker embedding extracted from the proposed JFE scheme yielded

the best performance in all architectures (i.e., d-vector and x-vector), achieving a

relative improvement of 18.39% in EER compared to that of d-vector (softmax). This

indicates that the proposed JFE system is capable of disentangling complicated cor-

ruptions (i.e. corruption via channel) introduced by different recording devices.

In addition, Table 5.4 show the performance comparison between the state-of-

the-art embedding techniques for random digit strings speaker verification (i.e., DNN

i-vectors and Uncertainty normalized HMM/i-vector) [60] and the x-vector-based

embedding network trained with the proposed JFE scheme. As shown in the results,

Uncertainty normalized HMM/i-vector performs better than the x-vector (softmax)

by a large margin. This is mainly attributed to the fact that the Uncertainty normal-

ized HMM/i-vector is trained to model the within-digit variability and scored with

prior knowledge on the set of digits being uttered within the test set. Therefore it is

not surprising that the x-vector (softmax) performs worse than the HMM/i-vector

system, since it is trained and evaluated with no information on the context. How-

ever, despite the innate disadvantage of the x-vector framework in random digits

strings speaker verification, the proposed x-vector (JFE) outperformed the Uncer-
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tainty normalized HMM/i-vector with an relative improvement of 46.05% in terms

of male trial EER.

Device disentanglement in domain-mismatch scenario

In this experiment, we compared the performance of the conventional x-vector and

the proposed JFE system in a cross-domain text-independent speaker verification

scenario. More specifically, both embedding systems were trained using the entire

RSR2015 dataset and evaluated on the VoxCeleb1 evaluation subset, which is a

dataset collected from Youtube videos recorded from a wide variety of channel and

environmental conditions (e.g., videos shot on hand-held devices, interviews from

red carpets).

As depicted in Table 5.5, the embeddings extracted from systems trained with

RSR2015 showed severe performance degradation. Such degradation was likely caused

by the vast variety of channel and environmental conditions within the VoxCeleb1,

which are known to cause high within-speaker variability of the extracted speaker

embedding vectors. Although the RSR2015 dataset is recorded from multiple dif-

ferent devices, the number of recording devices is limited (i.e. 6 devices) and the

speech samples are relatively noise-free since they were recorded in an office envi-

ronment [53, 54]. Therefore training the embedding system using only the RSR2015

dataset may be insufficient to tackle the challenging condition of the VoxCeleb1

evaluation set. Hence the x-vector system trained only for speaker discrimination

using RSR2015 showed a relative decrement of 94.83% in terms of EER compared

to the network trained with the VoxCeleb1 training set. On the other hand, the

degredation of the JFE system trained to disentangle the device factor from the

speaker embedding was 71.55%, which outperformed the x-vector trained with the
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same dataset with a relative improvement of 11.95%. This indicates that even in a

domain-mismatch scenario, the proposed JFE is able to alleviate the performance

degradation caused by recording device variability.

5.3.2 Emotion disentanglement

Emotion variability can cause severe performance degradation in speaker recogni-

tion [62], but emotion disentanglement has not been investigated as much as other

nuisance attributes, such as noise or channel distortion. This may be due to the chal-

lenging nature of emotion disentanglement since unlike noise or channel, emotional

variability is caused by the speaker’s vocal tract, which also creates speaker vari-

ability. In this subsection, we apply the proposed JFE framework for disentangling

the variability induced by the speaker’s emotional state.

Dataset

In order to evaluate the performance of the proposed technique for emotion disen-

tanglement, a set of experiments were conducted based on the VoxCeleb1 dataset

[55] and the emotion labels provided by the EmoVoxCeleb teacher system [63] 1. For

training the embedding networks, we used the development subset of the VoxCeleb1

dataset, consisting of 148,642 utterances collected from 1,211 speakers. According to

the emotion labels in EmoVoxCeleb, total 8 emotions are observed in the VoxCeleb1

dataset (i.e., neutral, happy, surprise, sad, angry, disgust, fear, contempt).

The evaluation was performed according to the original VoxCeleb1 trial list,

which consists of 4,874 utterances spoken by 40 speakers. The duration of the trial

1The emotion labels provided by the EmoVoxCeleb teacher system can be downloaded from

here: http://www.robots.ox.ac.uk/ vgg/research/cross-modal-emotions/.
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utterances was between 3.97 seconds and 69.05 seconds.

Experimental Setup

The acoustic features used in the experiments were 30-dimensional MFCCs extracted

at every 10 ms, using a 20 ms Hamming window. The embedding networks are

trained with segments consisting of 250 frames, using the ADAM optimization tech-

nique.

For the baseline x-vector framework and joint factor embedding system, 5 TDNN

layers were used as the frame-level network according to the Kaldi x-vector recipe [6].

The TDNN outputs are aggregated as described in (2.6), and fed into the utterance-

level classification network (i.e. speaker and emotion identifier). Each utterance-level

classification network consisted of two 512-dimensional LeakyReLU hidden layers

and a softmax output layer where the output size corresponds to the number of

speakers or emotions within the training set. All the experimented networks were

trained with learning rate 0.001 and batch size 256 for 74,321 iterations. Cosine

similarity was used for computing the verification scores in the experiments.

Comparison between the joint factor embedding scheme and conventional

embedding techniques

In this experiment, we compare the embedding vectors obtained from the proposed

joint factor embedding scheme and the conventional x-vector framework along with

techniques reported in recent studies including VGG-M, ResNet-34 and end-to-end

verification systems [64, 65]. The experimented methods are as follows:

• i-vector [64]: the i-vector performance reported in [64],
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Figure 5.5: EER performance of the proposed joint factor embedding scheme and

conventional x-vector on different duration utterances.

• VGG [64]: the performance of the embedding extracted from VGG-M, which is

a CNN architecture known to perform well on image and speaker classification,

reported in [64],

• Generalized end-to-end [65]: the performance of the ResNet-34-based end-to-

end speaker verification system trained with the generalized end-to-end loss

(2.11) reported in [64],

• All-speaker hard negative mining end-to-end [65]: the performance of the ResNet-

34-based end-to-end speaker verification system trained with the all-speaker

hard negative mining loss, which is a modified version of the softmax loss for

robust verification, reported in [64],

• x-vector (softmax) [64]: the x-vector performance reported in [64],

• x-vector (our implementation): the performance of our implementation of x-

vector (softmax),

• CNN-embedding [64]: the performance of the embedding extracted from a
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CNN-based architecture reported in [64],

• x-vector (JFE): the performance of the speaker embedding extracted from the

proposed JFE system trained to disentangle the emotional factor using loss

functions (5.3)–(5.7).

As shown in Table 5.6, the proposed JFE outperformed the conventional methods

with both cosine similarity and PLDA backends. Especially when using PLDA as

backend, the JFE achieved a relative improvement of 8.16% compared to the x-vector

(our implementation) in terms of EER. Moreover, training the JFE with augmented

training data described in [64] (i.e., noise and reverberation augmentation) further

improved the performance. The results demonstrate that although the proposed

JFE is composed of a simple x-vector-like network, it can provide embedding with

higher speaker discriminative information than the systems with more complicated

architecture.

In addition, we evaluated the conventional x-vector framework and the proposed

joint factor embedding scheme on short duration speech samples. Each evaluation

was done using randomly truncated trial utterances and the average EERs computed

over three evaluations for each duration group are depicted in Fig. 5.5. As shown in

the results, both the performance of the joint factor embedding framework and the

conventional x-vector were degraded as the duration decreased. This may be due to

the lack of phonetically informative frames since a critical amount of speaker relevant

information is contained in the phonetic characteristics [19]. However, the emotion

disentangled speaker embedding obtained by the proposed JFE outperformed the

conventional x-vector even with short duration speech segments.
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5.3.3 Noise disentanglement

In this subsection, we apply the proposed JFE framework for disentangling the noise

variability.

Dataset

In order to evaluate the performance of the proposed technique for noise disentan-

glement, we conducted an experiment based on the SiTEC dataset [66], where each

utterance was mixed with 4 different background noises (i.e., restaurant, office, cafe-

teria, construction) from the ITU-T P.501 dataset [67] on 3 different SNR conditions

(i.e., 0, 5, 10dB). For training the embedding networks, we used 187,470 utterances

from 300 speakers which were mixed with cafeteria and restaurant noises .

The evaluation was performed based on the 2,000 utterances from 100 speakers.

The evaluation set was split into two, where the first half was used as enrollment

and the rest was used for trial. The enrollment set was mixed only with office noise,

while the trial set was mixed with construction noise.

Experimental Setup

The acoustic features used in the experiments were 30-dimensional MFCCs extracted

at every 10 ms, using a 20 ms Hamming window. The embedding networks are

trained with segments consisting of 250 frames, using the ADAM optimization tech-

nique.

For the baseline x-vector framework and joint factor embedding system, 5 TDNN

layers were used as the frame-level network according to the Kaldi x-vector recipe [6].

The TDNN outputs are aggregated as described in (2.6), and fed into the utterance-
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level classification network (i.e. speaker and emotion identifier). Each utterance-level

classification network consisted of two 512-dimensional LeakyReLU hidden layers

and a softmax output layer where the output size corresponds to the number of

speakers or emotions within the training set. All the experimented networks were

trained with learning rate 0.001 and batch size 256 for 74,321 iterations. Cosine

similarity was used for computing the verification scores in the experiments.

Comparison between the joint factor embedding and x-vector

In this experiment, we compare the embedding vectors obtained from the proposed

joint factor embedding scheme and the conventional x-vector framework. As shown

in Table 5.7, the proposed JFE outperformed the conventional methods in all noise

conditions. Especially in the SNR 0dB condition, the JFE achieved a relative im-

provement of 12.93% compared to the x-vector in terms of EER. This indicates

that the proposed JFE system is capable of disentangling corruptions introduced by

different background noises.

5.4 Summary

In this Chapter, a novel approach for extracting an embedding vector robust to

variability caused by nuisance attributes for speaker verification is proposed. In or-

der to disentangle the nuisance variability from the speaker embedding vector, we

introduce a JFE scheme where two types of embedding vectors are extracted, each

dependent solely on the speaker or nuisance attribute, respectively. The proposed

JFE network is trained simultaneously with the speaker and nuisance attribute clas-

sification networks where the speaker and nuisance embedding vectors are optimized
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to have good discriminability for their main task while having high uncertainty on

their subtask.

To evaluate the performance of the embedding vector extracted from the pro-

posed system in a realistic scenario, we conducted a set of speaker verification ex-

periments using the RSR2015 dataset, which is composed of utterances recorded

using multiple different hand-held devices, and VoxCeleb1 dataset, which is com-

posed of various emotional speech utterances. From the results, it is shown that the

proposed JFE scheme is capable of obtaining speaker embedding vectors with high

speaker discriminability while showing robustness to channel and emotional vari-

ability. Moreover, we observed that the proposed embedding vector performs better

than the conventional embedding technique with short duration speech segments.
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Table 5.2: EER (%) comparison between the speaker embedding vectors extracted

from the joint factor embedding networks trained with various disentanglement

losses.

Loss EER [%]

Only discriminative 11.28

Entropy 9.61

nMAPC 9.25

Entropy + nMAPC 8.43

Table 5.3: EER (%) comparison between the speaker embedding vectors extracted

from the proposed joint factor embedding and the other embedding techniques.

Objective EER [%]

d-vector

Softmax 10.72

Gradient reversal 10.37

Anti-loss 10.47

JFE (proposed) 8.43

x-vector

Softmax 2.26

Gradient reversal 5.87

Anti-loss 1.46

JFE (proposed) 1.07
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Table 5.4: Gender-dependent EER (%) comparison between the speaker embedding

vectors extracted from the x-vector-based embedding systems and the state-of-the-

art i-vector-based systems.

Methods
EER [%]

Male Female

x-vector (Softmax) 2.09 2.48

DNN i-vectors [60] 1.70 2.69

Uncertainty normalized HMM/i-vector [60] 1.52 1.77

x-vector (GRL) 3.75 4.17

x-vector (Anti-loss) 1.25 1.66

x-vector (JFE) 0.82 1.29

Table 5.5: EER (%) comparison between the speaker embedding vectors extracted

from the proposed joint factor embedding and the conventional x-vector framework

evaluated on the VoxCeleb1 evaluation set.

Objective Training data EER [%]

x-vector (softmax)
VoxCeleb1 11.6

RSR2015 22.6

x-vector (JFE) RSR2015 19.9
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Table 5.6: EER (%) comparison between the speaker embedding vectors extracted

from the proposed joint factor embedding and the conventional methods.

Methods Scoring Data augmentation EER [%]

i-vector [64] PLDA X 8.8

VGG [64] Cosine similarity X 7.8

Generalized end-to-end [65] Cosine similarity X 10.7

All-speaker hard negative mining end-to-end [65] Cosine similarity X 5.6

x-vector (softmax) [64]

Cosine similarity X 11.3

PLDA
X 7.1

O 6.0

x-vector (our implementation) PLDA O 4.9

CNN-embedding [64]

Cosine similarity X 7.3

PLDA
X 5.9

O 5.3

x-vector (JFE)

Cosine similarity X 6.8

PLDA
X 5.4

O 4.4
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Table 5.7: Comparison between the speaker embedding vectors extracted from the

proposed joint factor embedding and the x-vector system.

SNR 0dB

Methods Accuracy [%] EER [%] DCF08

x-vector 92.90 3.79 0.40

JFE (proposed) 94.10 3.30 0.35

SNR 5dB

Methods Accuracy [%] EER [%] DCF08

x-vector 94.90 3.25 0.34

JFE (proposed) 95.20 2.89 0.27

SNR 10dB

Methods Accuracy [%] EER [%] DCF08

x-vector 95.30 3.21 0.32

JFE (proposed) 95.60 2.84 0.22
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Chapter 6

Conclusions

This dissertation addresses the limitations of the conventional deep embedding tech-

niques for speaker verification. In order to tackle the problem of utilizing unlabeled

datasets for training the deep embedding systems and performance degradation when

dealing with speech samples with different conditions, we proposed several embed-

ding methods.

Firstly, we have proposed a variational autoencoder (VAE)-based embedding

framework, which extracts the total variability embedding and a representation for

the uncertainty within the input speech. Unlike the conventional deep learning-based

embedding techniques, the proposed system is trained in an unsupervised manner.

From a number of experiments, it has been shown that the proposed method outper-

forms the conventional i-vector framework in a short duration speaker verification

scenario.

Secondly, in order to prevent the potential information loss caused by the Kullback-

Leibler divergence regularization term in the VAE-based embedding system, we have

proposed an adversarially learned inference (ALI)-based embedding framework. Ex-
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perimental results show that the proposed method can represent the uncertainty

caused by the short duration better than the VAE-based method.

Finally, we proposed a new fully supervised method for extracting a speaker

embedding vector disentangled from the variablility caused by the non-speaker nui-

sance attributes. The proposed framework was compared with the conventional deep

learning-based embedding methods, and experimental show that the proposed ap-

proach can extract the speaker embeddings robust to channel and emotional vari-

ability.
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R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,

I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,

O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Ten-

sorFlow: Large-scale machine learning on heterogeneous systems,” 2015. Soft-

ware available from tensorflow.org.

[35] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online

learning and stochastic optimization.,” Journal of machine learning research,

vol. 12, no. 7, 2011.

[36] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,

“Dropout: a simple way to prevent neural networks from overfitting,” The jour-

nal of machine learning research, vol. 15, no. 1, pp. 1929–1958, 2014.

[37] D. Garcia-Romero and C. Y. Espy-Wilson, “Analysis of i-vector length nor-

malization in speaker recognition systems,” in Twelfth annual conference of the

international speech communication association, 2011.

[38] “The nist year 2008 speaker recognition evaluation plan.” http://www.itl.

nist.gov/iad/mig//tests/sre/2008/, 2008.

[39] “The nist year 2010 speaker recognition evaluation plan.” http://www.itl.

nist.gov/iad/mig//tests/sre/2010/, 2008.

[40] L. Theis, A. v. d. Oord, and M. Bethge, “A note on the evaluation of generative

models,” arXiv preprint arXiv:1511.01844, 2015.

[41] W. Shang, K. Sohn, Z. Akata, and Y. Tian, “Channel-recurrent variational

autoencoders,” arXiv preprint arXiv:1706.03729, 2017.

100



[42] V. Dumoulin, I. Belghazi, B. Poole, O. Mastropietro, A. Lamb, M. Ar-

jovsky, and A. Courville, “Adversarially learned inference,” arXiv preprint

arXiv:1606.00704, 2016.

[43] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in

neural information processing systems, pp. 2672–2680, 2014.

[44] J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Y. Ng, “Multimodal

deep learning,” in ICML, 2011.

[45] X. Wang, L. Li, and D. Wang, “Vae-based domain adaptation for speaker ver-

ification,” in 2019 Asia-Pacific Signal and Information Processing Association

Annual Summit and Conference (APSIPA ASC), pp. 535–539, IEEE, 2019.

[46] S. Latif, R. Rana, S. Khalifa, R. Jurdak, J. Qadir, and B. W. Schuller, “Deep

representation learning in speech processing: Challenges, recent advances, and

future trends,” arXiv preprint arXiv:2001.00378, 2020.

[47] Y. Ganin and V. Lempitsky, “Unsupervised domain adaptation by backpropaga-

tion,” in International conference on machine learning, pp. 1180–1189, PMLR,

2015.

[48] Y. Shinohara, “Adversarial multi-task learning of deep neural networks for ro-

bust speech recognition.,” 2016.

[49] A. Tripathi, A. Mohan, S. Anand, and M. Singh, “Adversarial learning of raw

speech features for domain invariant speech recognition,” in 2018 IEEE In-

ternational Conference on Acoustics, Speech and Signal Processing (ICASSP),

pp. 5959–5963, IEEE, 2018.

101



[50] Y. Zhang, R. Weiss, H. Zen, Y. Wu, Z. Chen, R. Ryan-Skerry, Y. Jia, A. Rosen-

berg, and B. Ramabhadran, “Learning to speak fluently in a foreign language:

multilingual speech synthesis and cross-language voice cloning,” in Interspeech,

2019.

[51] M. Arjovsky and L. Bottou, “Towards principled methods for training genera-

tive adversarial networks,” arXiv preprint arXiv:1701.04862, 2017.

[52] O. Mogren, Representation learning for natural language. PhD thesis, 2018.

[53] A. Larcher, K. A. Lee, B. Ma, and H. Li, “Rsr2015: Database for text-dependent

speaker verification using multiple pass-phrases,” in Thirteenth Annual Confer-

ence of the International Speech Communication Association, 2012.

[54] A. Larcher, K. A. Lee, B. Ma, and H. Li, “Text-dependent speaker verification:

Classifiers, databases and rsr2015,” Speech Communication, vol. 60, pp. 56–77,

2014.

[55] A. Nagrani, J. S. Chung, and A. Zisserman, “Voxceleb: a large-scale speaker

identification dataset,” arXiv preprint arXiv:1706.08612, 2017.

[56] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen,

“Improved techniques for training gans,” in Advances in neural information

processing systems, pp. 2234–2242, 2016.

[57] H. Sak, A. Senior, and F. Beaufays, “Long short-term memory based recurrent

neural network architectures for large vocabulary speech recognition,” arXiv

preprint arXiv:1402.1128, 2014.

102



[58] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv

preprint arXiv:1412.6980, 2014.

[59] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal of

machine learning research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[60] N. Maghsoodi, H. Sameti, H. Zeinali, and T. Stafylakis, “Speaker recognition

with random digit strings using uncertainty normalized hmm-based i-vectors,”

IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 27,

no. 11, pp. 1815–1825, 2019.

[61] X. Zhou, D. Garcia-Romero, R. Duraiswami, C. Espy-Wilson, and S. Shamma,

“Linear versus mel frequency cepstral coefficients for speaker recognition,”

in 2011 IEEE Workshop on Automatic Speech Recognition Understanding,

pp. 559–564, 2011.

[62] L. Chen and Y. Yang, “Emotional speaker recognition based on model space

migration through translated learning,” in Chinese Conference on Biometric

Recognition, pp. 394–401, Springer, 2013.

[63] S. Albanie, A. Nagrani, A. Vedaldi, and A. Zisserman, “Emotion recognition in

speech using cross-modal transfer in the wild,” in Proceedings of the 26th ACM

international conference on Multimedia, pp. 292–301, 2018.

[64] S. Shon, H. Tang, and J. Glass, “Frame-level speaker embeddings for text-

independent speaker recognition and analysis of end-to-end model,” in 2018

IEEE Spoken Language Technology Workshop (SLT), pp. 1007–1013, IEEE,

2018.

103



[65] H.-S. Heo, J.-w. Jung, I.-H. Yang, S.-H. Yoon, H.-j. Shim, and H.-J. Yu, “End-

to-end losses based on speaker basis vectors and all-speaker hard negative min-

ing for speaker verification,” arXiv preprint arXiv:1902.02455, 2019.

[66] “The speech information technology and industry promotion center.” http:

//www.sitec.or.kr/, 2020.

[67] ITU-T Recommendation P.501, “Test signals for use in telephonometry,” tech.

rep., 2017.

104





국문초록

최근 몇년간 다양한 딥러닝 기반 성문 추출 기법들이 제안되어 왔으며, 화자 인식에서

높은 성능을 보였다. 하지만 고전적인 성문 추출 기법에서와 마찬가지로, 딥러닝 기반

성문추출기법들은서로다른환경 (e.g.,녹음기기,감정)에서녹음된음성들을분석하

는 과정에서 성능 저하를 겪는다. 또한 기존의 가우시안 혼합 모델 (Gaussian mixture

model, GMM) 기반의 기법들 (e.g., GMM 슈퍼벡터, i-벡터)와 달리 딥러닝 기반 성

문 추출 기법들은 교사 학습을 통하여 최적화되기에 라벨이 없는 데이터를 활용할 수

없다는 한계가 있다.

본 논문에서는 variational autoencoder (VAE) 기반의 성문 추출 기법을 제안하며,

해당 기법에서는 음성 분포 패턴을 요약하는 벡터와 음성 내의 불확실성을 표현하는

벡터를 추출한다. 기존의 딥러닝 기반 성문 추출 기법 (e.g., d-벡터, x-벡터)와는 달리,

제안하는기법은비교사학습을통하여최적화되기에라벨이없는데이터를활용할수

있다.더나아가 VAE의 KL-divergence제약함수로인한정보손실을방지하기위하여

adversarially learned inference (ALI) 기반의 성문 추출 기법을 추가적으로 제안한다.

제안한 VAE 및 ALI 기반의 성문 추출 기법은 짧은 음성에서의 화자 인증 실험에서

높은 성능을 보였으며, 기존의 i-벡터 기반의 기법보다 좋은 결과를 보였다.

또한 본 논문에서는 성문 벡터로부터 비 화자 요소 (e.g., 녹음 기기, 감정)에 대

한 정보를 제거하는 학습법을 제안한다. 제안하는 기법은 화자 벡터와 비화자 벡터를

동시에추출하며,각벡터는자신의주목적에대한정보를최대한많이유지하되,부목
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적에 대한 정보를 최소화하도록 학습된다. 기존의 비 화자 요소 정보 제거 기법들 (e.g.,

adversarial learning, gradient reversal)에비하여제안하는기법은휴리스틱한학습전

략을요하지않기에,보다안정적인학습이가능하다.제안하는기법은 RSR2015 Part3

데이터셋에서 기존 기법들에 비하여 높은 성능을 보였으며, 성문 벡터 내의 녹음 기기

및 감정 정보를 억제하는데 효과적이었다.

주요어: 화자 인식, 성문 추출, 화자 인증, 비교사 표현 학습, supervised disentangle-

ment.

학번: 2014-21697
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