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Anti-Spoofing for Text-Independent Speaker
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Countermeasures, and Human Performance
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Abstract—In this paper, we present a systematic study of the
vulnerability of automatic speaker verification to a diverse range
of spoofing attacks. We start with a thorough analysis of the
spoofing effects of five speech synthesis and eight voice conversion
systems, and the vulnerability of three speaker verification
systems under those attacks. We then introduce a number of
countermeasures to prevent spoofing attacks from both known
and unknown attackers. Known attackers are spoofing systems
whose output was used to train the countermeasures, whilst an
unknown attacker is a spoofing system whose output was not
available to the countermeasures during training. Finally, we
benchmark automatic systems against human performance on
both speaker verification and spoofing detection tasks.

Index Terms—Speaker verification, speech synthesis, voice con-
version, spoofing attack, anti-spoofing, countermeasure, security

I. INTRODUCTION

The task of automatic speaker verification (ASV), some-
times described as a type of voice biometrics, is to accept
or reject a claimed identity based on a speech sample.
There are two types of ASV system: text-dependent and text-
independent. Text-dependent ASV assumes constrained word
content and is normally used in authentication applications
because it can deliver the high accuracy required. However,
text-independent ASV does not place constraints on word
content, and is normally used in surveillance applications. For

This work was partially supported by EPSRC under Programme Grant
EP/I031022/1 (Natural Speech Technology) and EP/J002526/1 (CAF) and by
TUBITAK 1001 grant No 112E160. This article is an expanded version of [1],
[2]

∗Z. Wu is the correspondence author, and the remaining authors have been
listed in alphabetical order to indicate equal contributions.

Z. Wu, S. King, M. Wester and J. Yamagishi are with the Centre for Speech
Technology Research, University of Edinburgh, UK. e-mail: {zhizheng.wu,
simon.king}@ed.ac.uk, {mwester, jyamagis}@inf.ed.ac.uk

P. L. De Leon and B. Stewart are with the Klipsch School of Electrical and
Computer Engineering, New Mexico State University (NMSU), Las Cruces
NM 88003 USA. e-mail: {pdeleon, brystewa}@nmsu.edu

A. Khodabakhsh and C. Demiroglu are with Ozyegin University, Turkey.
e-mail: alikhodabakhsh@gmail.com, cenk.demiroglu@ozyegin.edu.tr

Z.-H. Ling is with University of Science and Technology of China, China.
zhling@ustc.edu

D. Saito is with University of Tokyo, Japan. e-mail: dsk saito@gavo.t.u-
tokyo.ac.jp

T. Toda is with Information Technology Center, Nagoya University, Japan.
e-mail:tomoki@icts.nagoya-u.ac.jp

example, in call-center applications1,2, a caller’s identity can
be verified during the course of a natural conversation without
forcing the caller to speak a specific passphrase. Moreover, as
such a verification process usually takes place under remote
scenarios without any face-to-face contact, a spoofing attack
– an attempt to manipulate a verification result by mimicking
a target speaker’s voice in person or by using computer-based
techniques such as voice conversion or speech synthesis –
is a fundamental concern. Hence, in this work, we focus on
spoofing and anti-spoofing for text-independent ASV.

Due to a number of technical advances, notably channel
and noise compensation techniques, ASV systems are being
widely adopted in security applications [3], [4], [5], [6], [7].
A major concern, however, when deploying an ASV system,
is its resilience to a spoofing attack. As identified in [8], there
are at least four types of spoofing attack: impersonation [9],
[10], [11], replay [12], [13], [14], speech synthesis [15], [16]
and voice conversion [17], [18], [19], [20], [21]. Among the
four types of spoofing attack, replay, speech synthesis, and
voice conversion present the highest risk to ASV systems [8].
Although replay might be the most common spoofing tech-
nique which presents a risk to both text-dependent and text-
independent ASV systems [12], [13], [14], it is not viable
for the generation of utterances of specific content, such as
would be required to maintain a live conversation in a call-
center application. On the other hand, open-source software
for state-of-the-art speech synthesis and voice conversion is
readily available (e.g., Festival3 and Festvox4), making these
two approaches perhaps the most accessible and effective
means to carry out spoofing attacks, and therefore presenting
a serious risk to deployed ASV systems [8]. For that reason,
the focus in this work is only on those two types of spoofing
attacks.

A. Speech Synthesis and Voice Conversion Spoofing

Many studies have reported and analysed the vulnerability
of ASV systems to speech synthesis and voice conversion
spoofing. The potential vulnerability of ASV to synthetic

1http://www.nuance.com/for-business/customer-service-solutions/
voice-biometrics/freespeech/index.htm

2https://youtu.be/kyPTGoDyd o
3http://www.cstr.ed.ac.uk/projects/festival/
4http://festvox.org/



IEEE TRANS. AUDIO, SPEECH AND LANGUAGE PROCESSING 2

speech was first evaluated in [22], [23]. An HMM-based
speech synthesis system was used to spoof an HMM-based,
text-prompted ASV system. They reported that the false ac-
ceptance rate (FAR) increased from 0% to over 70% under a
speech synthesis spoofing attack. In [15], [16], the vulnerabil-
ity of two ASV systems – a GMM-UBM system (Gaussian
mixture models with a universal background model), and
an SVM system (support vector machine using a GMM
supervector) – was assessed using a speaker-adaptive, HMM-
based speech synthesizer. Experiments using the Wall Street
Journal (WSJ) corpus (283 speakers) [24] showed that FARs
increased from 0.28% and 0.00% to 86% and 81% for GMM-
UBM and SVM systems, respectively. These studies confirm
the vulnerability of ASV systems to speech synthesis spoofing
attack.

Voice conversion as a spoofing method has also been
attracting increasing attention. The potential risk of voice
conversion to a GMM ASV system was evaluated for the first
time in [25], which used the YOHO database (138 speakers).
In [26], [27], [17], text-independent GMM-UBM systems were
assessed when faced with voice conversion spoofing on NIST
speaker recognition evaluation (SRE) datasets. These studies
showed an increase in FAR from around 10% to over 40% and
confirmed the vulnerability of GMM-UBM systems to voice
conversion spoofing attack.

Recent studies [18], [19] have evaluated more advanced
ASV systems based on joint factor analysis (JFA), i-vectors,
and probabilistic linear discriminative analysis (PLDA), on
the NIST SRE 2006 database. The FARs of these systems
increased five-fold from about 3% to over 17% under attacks
from voice conversion spoofing.

B. Spoofing countermeasures

The vulnerability of ASV systems to spoofing attacks has
led to the development of anti-spoofing techniques, often
referred to as countermeasures. In [28], a synthetic speech
detector based on the average inter-frame difference (AIFD)
was proposed to discriminate between natural and synthetic
speech. This countermeasure works well if the dynamic vari-
ation of the synthetic speech is different from that of natural
speech; however, if global variance compensation is applied
to the synthetic speech, the countermeasure becomes less
effective [15].

In [29], [30], a synthetic speech detector based on image
analysis of pitch-patterns was proposed for human versus syn-
thetic speech discrimination. This countermeasure was based
on the observation that there can be artefacts in the pitch
contours generated by HMM-based speech synthesis. Experi-
ments showed that features extracted from pitch-patterns can
be used to significantly reduce the FAR for synthetic speech.
The performance of the pitch-pattern countermeasure was not
evaluated for detecting voice conversion spoofing.

In [31], a temporal modulation feature was proposed to
detect synthetic speech generated by copy-synthesis. The
modulation feature captures the long-term temporal distor-
tion caused by independent frame-by-frame operations in
speech synthesis. Experiments conducted on the WSJ database

showed the effectiveness of the modulation feature when
integrated with frame-based features. However, whether the
detector is effective across a variety of speech synthesis and
voice conversion spoofing attacks is unknown. Also using
spectro-temporal information, a feature derived from local
binary patterns [32] was employed to detect voice conversion
and speech synthesis attacks in [33], [34].

Phase- and modified group delay-based features have also
been proposed to detect voice conversion spoofing [35]. A
cosine-normalised phase feature was derived from the phase
spectrogram while the modified group delay feature contained
both magnitude and phase information. Evaluation on the
NIST SRE 2006 data confirmed the effectiveness of the
proposed features. However, it remains unknown whether the
phase-based features are also effective in detecting attacks
from speech synthesisers using unknown vocoders. Another
phase-based feature called the relative phase shift was pro-
posed in [16], [36], [37] to detect speech synthesis spoof-
ing, and was reported to achieve promising performance for
vocoders using minimum phase rather than natural phase.

In [38], an average pair-wise distance (PWD) between
consecutive feature vectors was employed to detect voice-
converted speech, on the basis that the PWD feature is
able to capture short-term variabilities, which might be lost
during statistical averaging when generating converted speech.
Although the PWD was shown to be effective against attacks
from their own voice conversion system, this technique (which
is similar to the AIFD feature proposed in [28]) might not be
an effective countermeasure against systems that apply global
variance enhancement.

In contrast to the above methods focusing on discriminative
features, a probabilistic approach was proposed in [39], [40].
This approach uses the same front-end as ASV, but treats
the synthetic speech as a signal passed through a synthesis
filter. Experiments on the NIST SRE 2006 database showed
comparable performance to feature-based countermeasures. In
this work, we focus on feature-based anti-spoofing techniques,
as they can be optimised independently without rebuilding the
ASV systems.

C. Motivations and Contributions of this Work

In the literature, each study assumes a particular spoofing
type (speech synthesis or voice conversion) and often just one
variant (algorithm) of that type, then designs and evaluates
a countermeasure for that specific, known attack. However,
in practice it may not be possible to know the exact type
of spoofing attack and therefore evaluations of ASV systems
and countermeasures under a broad set of spoofing types are
desirable. Most, if not all, previous studies have been unable to
conduct a broader evaluation because of the lack of a standard,
publicly-available spoofing database that contains a variety of
spoofing attacks. To address this issue, we have previously
developed a spoofing and anti-spoofing (SAS) database in-
cluding both speech synthesis and voice conversion spoofing
attacks [1]. This database includes spoofing speech from two
different speech synthesis systems and seven different voice
conversion systems.
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Now, we first broaden the SAS database by including four
more variants: three text-to-speech (TTS) synthesisers and one
voice conversion system. They will be referred to as SS-
SMALL-48, SS-LARGE-48, SS-MARY and VC-LSP5, and
are described in Section II.A.

We also develop a joint speaker verification and countermea-
sure evaluation protocol, then refine that evaluation protocol
to enable better generalisability of countermeasures developed
using the database. We include contributions from both the
speech synthesis and speaker verification communities. This
database is offered as a resource for researchers investigating
generalised spoofing and anti-spoofing methods6. We hope
that the availability of a standard database will contribute to
reproducible research7.

Second, with the SAS database, we conduct a comprehen-
sive analysis of spoofing attacks on six different ASV systems.
From this analysis we are able to determine which spoofing
type and variant currently poses the greatest threat and how
best to counter this threat. To the best of our knowledge, this
study is the first evaluation of the vulnerability of ASV using
such a diverse range of spoofing attacks and the most thorough
analysis of the spoofing effects of speech synthesis and voice
conversion spoofing systems under the same protocol.

Third, we present a comparison of several anti-spoofing
countermeasures to discriminate between human and artificial
speech. In our previous work, we applied cosine-normalised
phase [35], modified group delay [35] and segment-based
modulation features [31] to detect voice converted speech,
and applied pitch pattern based features to detect synthetic
speech [29], [30]. In this work, we evaluate these countermea-
sures against both spoofing types and propose to fuse decisions
at the score level in order to leverage multiple, complementary
sources of information to create stronger countermeasures.
We also extend the segment-based modulation feature to an
utterance-level feature, to account for long-term variations.

Finally, we perform listening tests to evaluate the ability of
human listeners to discriminate between human and artificial
speech8. Although the vulnerability of ASV systems in the
face of spoofing attacks is known, some questions still remain
unanswered. These include whether human perceptual ability
is important in identifying spoofing and whether humans
can achieve better performance than automatic approaches in
detecting spoofing attacks. In this work, we attempt to answer
these questions through a series of carefully-designed listening
tests. In contrast to the human assisted speaker recognition
(HASR) evaluation [43], we consider spoofing attacks in

5The four systems are new in this article while other systems have been
published in a conference paper [1]. SS-SMALL-48 and SS-LARGE-48 allow
us to analyse the effect of sampling rates of spoofing materials. SS-MARY
is useful to understand the effect of waveform concatenation-based speech
synthesis spoofing.

6Based on this database, a spoofing and countermeasure challenge [41],
[42] has already been successfully organised as a special session of INTER-
SPEECH 2015.

7The SAS corpus is publicly available: http://dx.doi.org/10.7488/ds/252
8The preliminary version was published at INTERSPEECH 2015 [2] where

we focused on human and automatic spoofing detection performance on
wideband and narrowband data. The current work benchmarks automatic
systems against human performance on speaker verification and spoofing
detection tasks.

speaker verification and conduct listening tests for spoofing
detection, which was not considered in the HASR evaluation.

II. DATABASE AND PROTOCOL

We extended our SAS database [1] by including additional
artificial speech. The database is built from the freely available
Voice Cloning Toolkit (VCTK) database of native speakers
of British English9. The VCTK database was recorded in
a hemi-anechoic chamber using an omni-directional head-
mounted microphone (DPA 4035) at a sampling rate of 96
kHz. The sentences are selected from newspapers, and the
average duration of each sentence is about 2 seconds.

To design the spoofing database, we took speech data
from VCTK comprising 45 male and 61 female speakers and
divided each speaker’s data into five parts:

A: 24 parallel utterances (i.e., same sentences for all
speakers) per speaker: training data for spoofing
systems.

B: 20 non-parallel utterances per speaker: additional
training for spoofing systems.

C: 50 non-parallel utterances per speaker: enrolment
data for client model training in speaker verification,
or training data for speaker-independent countermea-
sures.

D: 100 non-parallel utterances per speaker: development
set for speaker verification and countermeasures.

E: Around 200 non-parallel utterances per speaker: eval-
uation set for speaker verification and countermea-
sures.

In Parts B — E, sentences were randomly selected from
newspapers without any repeating sentence across speakers.
In Parts A and B, we have two versions, downsampled to 48
kHz and 16 kHz respectively, while in Parts C, D and E all
signals are downsampled to 16 kHz. Parts A and B allow us
to analyse the effects of sampling rate for spoofing attack. For
training the spoofing systems, we designed two training sets.
The small set consists of data only from Part A, while the
large set comprises the data from Parts A and B together.

A. Spoofing systems

We implemented five speech synthesis (SS) and eight voice
conversion (VC) spoofing systems, as summarised in Table I.
These systems were built using both open-source software (to
facilitate reproducible research) as well as our own state-of-
the-art systems (to provide comprehensive results):

NONE: This is a baseline zero-effort impostor trial in which
the impostor’s own speech is used directly with no attempt to
match the target speaker.

SS-LARGE-16: An HMM-based TTS system built with the
statistical parametric speech synthesis framework described
in [44]. For speech analysis, the STRAIGHT vocoder with
mixed excitation is used, which results in 60-dimensional
Bark-Cepstral coefficients, logF0 and 25-dimensional band-
limited aperiodicity measures [45], [46]. Speech data from
257 (115 male and 142 female) native speakers of British

9http://homepages.inf.ed.ac.uk/jyamagis/page3/page58/page58.html
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TABLE I
SUMMARY OF THE SPOOFING SYSTEMS USED IN THIS PAPER. MGC, BAP AND F0 MEAN MEL-GENERALISED CEPSTRAL (MGC) COEFFICIENTS, BAND

APERIODICITY (BAP) AND FUNDAMENTAL FREQUENCY (F0).
Spoofing Sampling # training Background Known or Open source
Algorithm Rate utterances Vocoder Features data required? Unknown? Toolkit?

SS-LARGE-16 HMM TTS 16k 40 STRAIGHT MGC, BAP, F0 Yes Known Yes
SS-LARGE-48 HMM TTS 48k 40 STRAIGHT MGC, BAP, F0 Yes Unknown Yes
SS-SMALL-16 HMM TTS 16k 24 STRAIGHT MGC, BAP, F0 Yes Known Yes
SS-SMALL-48 HMM TTS 48k 24 STRAIGHT MGC, BAP, F0 Yes Unknown Yes
SS-MARY Unit Selection TTS 16k 40 None Waveform No Unknown Yes
VC-C1 C1 VC 16k 24 STRAIGHT MGC, BAP, F0 No Known No
VC-EVC Eigenvoice VC 16k 24 STRAIGHT MGC, BAP, F0 Yes Unknown No
VC-FEST GMM VC 16k 24 MLSA MGC, F0 No Known Yes
VC-FS Frame selection VC 16k 24 STRAIGHT MGC, BAP, F0 No Known No
VC-GMM GMM VC 16k 24 STRAIGHT MGC, BAP, F0 No Unknown No
VC-KPLS KPLS VC 16k 24 STRAIGHT MGC, BAP, F0 No Unknown No
VC-LSP GMM VC 16k 24 STRAIGHT LSP, F0 No Unknown No
VC-TVC Tensor VC 16k 24 STRAIGHT MGC, BAP, F0 Yes Unknown No

English is used to train the average voice model. In the speaker
adaptation phase, the average voice model is transformed
using structural variational Bayesian linear regression [47]
followed by maximum a posteriori (MAP) adaptation, using
the target speaker’s data from Parts A and B. To synthesise
speech, acoustic feature parameters are generated from the
adapted HMMs using a parameter generation algorithm that
considers global variance (GV) [48]. An excitation signal
is generated using mixed excitation and pitch-synchronous
overlap and add [49], and used to excite a Mel-logarithmic
spectrum approximation (MLSA) filter [50] corresponding to
the STRAIGHT Bark cepstrum, to create the final synthetic
speech waveform.

SS-LARGE-48: Same as SS-LARGE-16, except that 48
kHz sample rate waveforms are used for adaptation. The use
of 48 kHz data is motivated by findings in speech synthesis
that speaker similarity can be improved significantly by using
data at a higher sampling rate [51].

SS-SMALL-16: Same as SS-LARGE-16, except that only
Part A of the target speaker data is used for adaptation.

SS-SMALL-48: Same as SS-SMALL-16, except that 48
kHz sample rate waveforms are used to adapt the average
voice.

SS-MARY: Based on the Mary-TTS10 unit selection synthe-
sis system [52]. Waveform concatenation operates on diphone
units. Candidate units for each position in the utterance are
found using decision trees that query the linguistic features of
the target diphone. A preselection algorithm is used to prune
candidates that do not fit the context well. The target cost
sums linguistic (target) and acoustic (join) costs. Candidate
diphone and target diphone labels and their contexts are used
to compute the linguistic sub-cost. Pitch and duration are used
for the join cost. Dynamic programming is used to find the
sequence of units with the minimum total target plus join
cost. Concatenation takes place in the waveform domain, using
pitch-synchronous overlap-add at unit boundaries.

VC-C1: The simplest voice conversion method, which
modifies the spectral slope simply by shifting the first
Mel-Generalised Cepstral coefficient (MGCs) [53]. No other
speaker-specific features are changed. The STRAIGHT

10http://mary.dfki.de/

vocoder is used to extract MGCs, band aperiodicities (BAPs)
and F0.

VC-EVC: A many-to-many eigenvoice conversion (EVC)
system [54]. The eigenvoice GMM (EV-GMM) is constructed
from the training data of one pivot speaker in the ATR
Japanese speech database [55], and 273 speakers (137 male,
136 female) from the JNAS database11. Settings are the same
as in [56]. The 272-dimensional weight vectors are estimated
by using the Part A of the training data. STRAIGHT is
used to extract 24-dimensional MGCs, 5 BAPs, and F0. The
conversion function is applied only to the MGCs.

VC-FEST: The voice conversion toolkit provided by the
open-source Festvox system. It is based on the algorithm
proposed in [57], which is a joint density Gaussian mix-
ture model with maximum likelihood parameter generation
considering global variance. It is trained on the Part A set
of parallel training data, keeping the default settings of the
toolkit, except that the number of Gaussian components in the
mixture distributions is set to 32.

VC-FS: A frame selection voice conversion system, which
is a simplified version of exemplar-based unit selection [58],
using a single frame as an exemplar and without a concate-
nation cost. We used the Part A set for training. The same
features as in VC-C1 are used, and once again only the MGCs
are converted.

VC-GMM: Another GMM-based voice conversion method
very similar to VC-FEST but with some enhancements, which
also uses the parallel training data from Part A. STRAIGHT
is used to extract 24-dimensional MGCs, 5 BAPs, and F0.
The search range for F0 extraction is automatically optimized
speaker by speaker to reduce errors. Two GMMs are trained
for separately converting the 1st through 24th MGCs and 5
BAPs. The number of mixture components is set to 32 for
MGCs and 8 for BAPs, respectively. GV-based post-filtering
[59] is used to enhance the variance of the converted spectral
parameter trajectories.

VC-KPLS: Voice conversion using kernel partial least
square (KPLS) regression [60], trained on the Part A parallel
data. Three hundred reference vectors and a Gaussian kernel
are used to derive kernel features and 50 latent components

11http://www.milab.is.tsukuba.ac.jp/jnas/instruct.html
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are used in the PLS model. Dynamic kernel features are not
included, for simplicity. STRAIGHT is used to extract 24-
dimensional MGCs, 25 BAPs, and F0.

VC-TVC: Tensor-based arbitrary voice conversion (TVC)
system [56]. To construct the speaker space, the same Japanese
dataset as in VC-EVC is used. The size of the weight matrices
that represent each speaker is set to 48 × 80. The same part
of the SAS database and the same features as in VC-EVC are
used, and again only MGCs are converted, without altering
other features.

VC-LSP: This system is also based on the standard GMM-
based voice conversion method similar to VC-GMM using the
parallel training data from Part A. STRAIGHT is used as the
speech analysis-synthesis method. 24-dimensional line spectral
pairs (LSPs) and their delta coefficients are used as the spectral
features. A 16-component GMM is trained for the modelling
of joint LSP feature vectors. For each component, the four
blocks of its covariance matrix are set to be diagonal. No
quality enhancement or post-filtering techniques are applied
during the reconstruction of converted speech.

In addition to the above descriptions, for all the voice
conversion approaches, F0 is converted by a global linear
transformation: simple mean-variance normalisation. In VC-
KPLS, VC-EVC, VC-TVC, VC-FS and VC-C1, the source
speaker BAPs are simply copied, without undergoing any
conversion.

B. Speaker Verification and Countermeasure Evaluation Pro-
tocol

For the evaluation of ASV systems, enrolment data for
each client (speaker) were selected from Part C under two
conditions: 5-utterance or 50-utterance enrolments. For five
utterances, this is about 5-10 seconds of speech while for 50
utterances it is about 1 minute of speech. The development
set, used to tune the ASV system and decide thresholds, was
taken from Part D and involves both genuine and impostor
trials. All utterances from a client speaker in Part D were
used as genuine trials, and this results in 1498 male and 1999
female genuine trials. For the impostor trials, ten randomly
selected non-target speakers were used as impostors. All Part
D utterances from a specific impostor were used as impostor
trials against the client’s model, leading to 12981 male and
17462 female impostor trials. The evaluation set is taken from
Part E and is arranged into genuine and imposter trials in
a similar way to the development set, with 4053 male and
5351 female genuine trials, and 32833 male and 46736 female
impostor trials. A summary of the development and evaluation
sets is shown in Table II.

TABLE II
NUMBER OF TRIALS IN THE DEVELOPMENT AND EVALUATION SETS.

Development Evaluation
Male Female Male Female

Target speakers 15 20 20 26
Genuine trials 1498 1999 4053 5351
Impostor trials 12981 17462 32833 46736
Spoofed trials 12981×5 17462×5 32833×13 46736×13

We used the synthetic speech and voice conversion sys-
tems described above to generate artificial speech for both
development and evaluation sets. During the execution of
spoofing attacks, the transcript of an impostor trial was used
as the textual input to each speech synthesis system, and the
speech signal of the impostor trial was the input to each voice
conversion system. As a result, the zero-effort impostor trial,
the speech synthesis spoofed trial, and the voice conversion
spoofed trial all have the same language content (i.e., word
sequence). In this way, the number of spoofed trials of one
spoofing system is exactly the same as the number of impostor
trials presented in Table II. This allows a fair comparison
between non-spoofed and spoofed speaker verification results.
Only five of the available spoofing systems were used during
development, with all thirteen spoofing systems (Table I) being
run on the evaluation set. Hence, the number of total spoofed
trials is 12981×5 and 17462×5 for males and females, respec-
tively, for the development set, and 32833×13 and 46736×13
for male and female speakers, respectively, for the evaluation
set.

TABLE III
NUMBER OF SPEAKERS AND TRIALS FOR TRAINING, DEVELOPMENT AND

EVALUATION SETS OF THE COUNTERMEASURE PROTOCOL.

#Speakers #Trials
Male Female Genuine Spoofed

Training 10 15 3750 12625
Development 15 20 3497 152215
Evaluation 20 26 9404 1034397

In the countermeasure evaluation protocol, we used a further
25 speakers’ voices as training data and only implemented five
attacks (as known attacks) on the training set. The 25 speakers
do not appear in the development and evaluation sets for ASV,
and this allows us to develop speaker- and gender-independent
countermeasures. For countermeasure development and evalu-
ation sets, the same speakers and same spoofed trials are used
as those for ASV. This allows us to integrate countermeasures
with ASV systems and to evaluate the integration performance.
A summary of the countermeasure protocol is presented in
Table III.

III. SPEAKER VERIFICATION SYSTEMS

We used three classical ASV systems: Gaussian Mix-
ture Models with a Universal Background Model (GMM-
UBM) [61], Joint Factor Analysis (JFA) [62] and i-vector with
Probabilistic Linear Discriminant Analysis (PLDA) [63]. In
this paper, we use PLDA to refer to this i-vector-PLDA sys-
tem. Each system was implemented under the two enrolment
scenarios: 5-utterance and 50-utterance enrolment. All systems
used the same front-end to extract acoustic features: 19-
dimensional Mel-Frequency Cepstral Coefficients (MFCCs)
plus log-energy with delta and delta-delta coefficients. By
excluding the static energy feature (but retaining its delta and
delta-delta), 59-dimensional feature vectors are obtained. To
extract MFCCs, we applied a Hamming analysis window, the
size of which is 25 ms with a 10-ms shift, and we employed
a mel-filter bank with 24 channels. We note that C0 is not
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TABLE IV
STATISTICS OF WALL STREET JOURNAL (WSJ0, WSJ0, WSJCAM) AND RESOURCE MANAGEMENT (RM) DATABASES USED TO TRAIN UBM AND

EIGENSPACES.

WSJ0+WSJ1 RM WSJCAM Total
Male Female Male Female Male Female Male Female

Speakers 149 152 108 52 76 59 333 264
Utterances 14900 15199 7881 3982 6697 5148 29478 24329
Hours ∼26.3 ∼27.9 ∼5.6 ∼2.9 ∼12.1 ∼9.5 ∼44 ∼40.4

retained in the extracted MFCCs. In practice, the SPro toolkit12

was used to extract MFCCs. The AudioSeg toolkit was used
to perform voice activity detection (VAD) [64].

GMM-UBM: with 512 Gaussian components in the UBM,
and a client speaker model obtained by performing maximum
a posteriori (MAP) adaptation, with the relevance factor set
to 10. Only mean vectors were adapted, keeping diagonal
covariance matrices and mixture weights the same as in the
UBM.

JFA: using a UBM with the same 512 components as the
GMM-UBM as well as eigenvoice and eigenchannel spaces
with 300 and 100 dimensions, respectively. Cosine scoring
was performed on the speaker variability vectors.

PLDA: a PLDA system operating in i-vector space. An
i-vector is a low-dimensional vector to represent a speaker-
and channel-dependent GMM supervector M through a low
rank matrix T , as M = m + Tw, where m is a speaker-
and channel-independent supervector, which is realised by a
UBM supervector in this work; T is also called the total
variability matrix; and w is the i-vector. In this work, 400-
dimensional i-vectors were extracted with the maximum a
posteriori (MAP) criterion and using the same UBM as the
JFA system. Linear discriminant analysis (LDA) was first
applied to reduce the i-vector dimension to 200. Then, i-
vectors were centred, length-normalised, and whitened. The
whitening transformation was learned from i-vectors in the
development set. After that, a Gaussian PLDA model was
trained using the expectation-maximisation (EM) algorithm
which was run for 20 iterations. The rank of the eigenspace
(number of columns in the eigenmatrix) was set to 100.
Scoring was done with a log-likelihood ratio test. In practice,
the MSR Identity Toolbox [65] was used to implement the
PLDA system.

We used three WSJ databases (WSJ0, WSJ1, and WSJ-
CAM) and the Resource Management database (RM1) for
training the UBM, eigenspaces, and LDA. The statistics of
the three databases are presented in Table IV. The sampling
rate of all four database is 16 kHz. We note that our prelim-
inary experimental results suggested that WSJCAM was very
useful for improving verification performance. The maximum
likelihood criterion was employed to train the UBM and
eigenspaces while the Fisher criterion was used to train LDA.

The 50 enrolment utterances were merged into 10 sessions
(each being the concatenation of 5 utterances); either 1 or 10 of
these sessions were used in enrolment, for the two enrolment
scenarios. For PLDA, when using 10 enrolment sessions, i-
vectors were extracted from each session then averaged as
suggested in [66]; for JFA, all features from all sessions

12Available at: http://www.irisa.fr/metiss/guig/spro/

were merged. We denote the ASV systems with 5 enrolment
utterances (presented as 1 session) as GMM-UBM-5, JFA-5
or PLDA-5 and those with 50 enrolment utterances (presented
as 10 sessions) as GMM-UBM-50, JFA-50 or PLDA-50.

IV. ANTI-SPOOFING COUNTERMEASURES

We now examine five countermeasures13, described below
along with the features they are based on, and then propose a
fusion of these countermeasures in order to learn complemen-
tary information and improve anti-spoofing performance.

Given a speech signal x(n), short-time Fourier analysis can
be applied to transform the signal from the time domain to the
frequency domain by assuming the signal is quasi-stationary
within a short time frame, e.g., 25ms. The short-time Fourier
transform of the speech signal can be represented as follows:

X(ω) = |X(ω)|ejϕ(ω), (1)

where X(ω) is the complex spectrum, |X(ω)| is the magnitude
spectrum and ϕ(ω) is the phase spectrum. It is usual to define
|X(ω)|2 as the power spectrum, from which features that only
contain magnitude information, e.g., MFCCs, can be derived.
The proposed feature-based countermeasures are derived from
the complex spectrum X(ω) that has two parts: a real part
XR(ω) and an imaginary part XI(ω), and from which the
phase spectrum ϕ(ω) can be obtained.

To extract frame-wise features, we employ a hamming
window, the size of which is 25ms, with a 5ms shift. The
FFT length is set to 512.

A. Cosine Normalised Phase Feature

Even though phase information is important in human
speech perception [67], most speech synthesis and voice con-
version systems use a simplified, minimum phase model which
may introduce artefacts into the phase spectrum. The cosine
normalised phase (CosPh) feature is derived from the phase
spectrum, and can be used to discriminate between human and
synthetic speech. The feature is computed as follows:

1) Unwrap the phase spectrum.
2) Compute the CosPh spectrum by applying the co-

sine function to the spectrum in 1) to normalise to
[−1.0, 1.0].

3) Apply a discrete cosine transform (DCT) to the spectrum
in 2).

13The cosine normalised phase feature, modified group delay cepstral
feature, segment-based modulation feature and pitch pattern feature based
countermeasures have been presented in our previous conference papers [35],
[31], [30]. The current study examines the generalisation abilities of each
individual countermeasure and their combination in the face of various
spoofing attacks.
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4) Keep the first 18 cepstral coeffcients, and compute their
delta and delta-delta coeffcients as features.

By normalizing the values of the unwrapped phase spectrum,
we can simplify subsequent statistical modeling. We note that
the motivation for applying the DCT is decorrelation and
dimensionality reduction; C0 is not retained.

B. Modified Group Delay Cepstral Feature

In addition to the artefacts in the phase spectrum, the
statistical averaging inherent in parametric modeling of the
magnitude spectrum may also introduce artefacts, such as
oversmoothed spectral envelopes. The use of both phase and
magnitude spectra can therefore be useful for detecting syn-
thetic speech. The Modified Group Delay Cepstral Coefficients
(MGDCCs) can be used to detect artefacts in both spectra of
synthetic speech. The MGDCC feature has also been used
in speech recognition [68] and speaker verification [69]. The
MGDCCs are derived from the complex spectrum as follows:

1) Apply the fast Fourier transform (FFT) to a windowed
speech signal, x(n) and nx(n) to compute X(ω) and
Y (ω), respectively. Here nx(n) is the re-scaled signal
of x(n).

2) Compute the cepstrally-smoothed power spectrum14

|S(ω)|2 of |X(ω)|2.
3) Compute the MGD spectrum (R and I denote the real

and imaginary parts of the spectrum)

τρ(w) =
XR(w)YR(w) + YI(w)XI(w)

|S(w)|2ρ
. (2)

4) Reshape τρ(w) as

τρ,γ(w) =
τρ(w)
|τρ(w)|

|τρ(w)|γ . (3)

5) Apply the DCT to τρ,γ(w) and keep the first 18 cepstral
coefficients with their delta and delta-delta coefficients
as MGDCC features.

In (2) and (3), ρ and γ are two weighting variables that
control the shape of the MGD spectrum. We set ρ = 0.7 and
γ = 0.2 based on the performance on the development set.

C. Segment-Based Modulation Feature

In speech synthesis and voice conversion, the speech signal
is usually divided into overlapping frames for modeling, and
this frame-by-frame or state-by-state modeling may introduce
artefacts in the temporal domain due to the independence
assumptions made by the underlying statistical model. These
temporal artefacts are evident in the modulation domain and
can be used to detect synthetic and voice-converted speech.
The Segment-based Modulation Feature (SMF) is extracted
from the MGD cepstrogram based on our previous work [31].
The procedure for computing the SMF is illustrated in Fig. 1
and described as follows:

14Cepstrally-smoothed spectrum is obtained through the following steps: a)
compute the log-amplitude spectrum from X(ω), and apply a median filter to
smooth the spectrum; b) apply the DCT to the log spectrum and keep the first
30 cepstral coefficients; c) apply the inverse DCT to the cepstral coeffcients
to obtain the cepstrally-smoothed spectrum S(ω).

1) Divide the 18-dimensional MGD spectrogram into over-
lapping segments using a 50-frame window with 20-
frame shift.

2) Apply mean and variance normalisation to the MGD
trajectory of each dimension to make it have zero mean
and unit variance15.

3) Take the FFT of the normalised 18-dimensional trajec-
tories to compute modulation spectra.

4) Concatenate the modulation spectra in one cepstrogram
segment into a supervector, and use this as the SMF
feature vector.

5) Average all the SMF vectors of one utterance to get an
average feature vector. This averaged feature vector will
be used as the feature vector for the utterance.
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Frame index

|FFT|2

Modulation vector of 
the 6th MGD feature
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 of the MGD segment

The 6th vector in the 
modulation supervector

MVN

MGD spectrogram

A segment spanning 
50 frames with 
20 frames shift

Trajectory of the 6th 
dimension MGD feature

Fig. 1. The process to extract Segment-based Modulation Features (SMFs)
from modified group delay cepstral features.

In practice, we used a 64-point FFT to extract a 32-
dimensional modulation spectrum for each MGD trajectory.
Hence, the modulation supervector of each segment is 18 ×
32 = 576. We pass this supervector to a support vector
machine (SVM) for classification. In practice, we employed
the LIBSVM toolkit [70] to implement the SVM. We used a
radial basis kernel, and set the penalty factor to 34.

D. Utterance-Based Modulation Feature

To extract the segment-based modulation feature, a speech
signal needs to be divided into short segments first and then the
corresponding modulation features are extracted for each seg-
ment. An alternative approach is to extract modulation features
at the utterance level, to obtain Utterance-based Modulation
Features (UMFs).

The process to extract UMFs is similar to that of SMFs, but
only steps 2 – 4 are applied, without dividing the utterances

15The motivation to perform mean-variance normalisation is to make the
trajectory of each dimension in the same scale.
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into frames. In practice, we used a 1024-point FFT to extract
the modulation spectrum for each MGD trajectory, then ap-
plied a DCT to the modulation spectrum, and after that kept
the first 32 coefficients as features. Hence, the dimensionalities
of UMF and SMF for each utterance are the same: 576. Again,
we pass the feature vector to an SVM for classification. The
configuration of the SVM here is the same as that for SMF in
Section IV-C.

E. Pitch Pattern Feature

The prosody of synthetic speech is generally not the same
as natural speech [71] and therefore the pitch pattern is
another good candidate feature for a countermeasure. The
pitch pattern, φ[n,m], is calculated by dividing the short-range
autocorrelation function, r[n,m] by a normalization function,
p[n,m] which is proportional to the frame energy [72]

φ[n,m] =
r[n,m]
p[n,m]

(4)

where

r[n,m] =
m/2∑

k=−m/2

x[n+ k −m/2]x[n+ k +m/2], (5)

p[n,m] =
1
2

m/2∑
k=−m/2

x2[n+ k −m/2] +

1
2

m/2∑
k=−m/2

x2[n+ k +m/2], (6)

and n, m are the sample instant and lag, respectively, over
which the autocorrelation is computed. The lag parameter is
chosen such that pitch frequencies can be observed [72]; in
this work, we choose 32 ≤ m ≤ 320 for a sample rate of
16kHz.

Once the pitch pattern is computed, we segment it into a
binary pitch pattern image through the rule

φseg[n,m] =
{

1, φ[n,m] ≥ θ
0, φ[n,m] < θ

(7)

where θ is a threshold; we set θ = 1/
√

2 for all n, based on
preliminary results on the development set. An example pitch
pattern image is shown in Fig. 2.

Extracting features from the pitch pattern is a two-step
process: 1) computation of the pitch pattern; 2) image analysis.
First, the pitch pattern is computed using (4) and segmented
using (7) to form a binary image. In the second step, image
processing of the segmented binary pitch pattern is performed
in order to extract the connected components (CCs), i.e., black
regions in Fig. 2. This processing includes determining the
bounding box and area of a CC, which are then used to
distinguish between two types of CC: pitch pattern connected
components (PPCC) and irregularly-shaped components or
artefacts.

The resulting CCs are then analysed and the mean pitch
stability µs, mean pitch stability range µR, and time support
(TS) of each CC are computed as in [29]. The proposed image
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Fig. 2. Example binary pitch pattern image illustrating pitch stability Sc,
pitch stability range Rc, upper edge τU, lower edge τL, connected component
time support, and artefacts.

processing-based approach determines parameters on a per-
connected component basis and then computes statistics over
the connected components of the utterance. The six element
utterance feature vector used for classification contains µR
and the TS of the artefacts, the number of artefacts, µS and
TS of the PPCC, and standard deviation of the TS of PPCC.
Other utterance features were considered during the training
and development stage but were found not to contribute to the
classifier accuracy.

For the pitch pattern countermeasure, a maximum likelihood
classifier based on the log-likelihoods computed from the
utterance feature vectors was used for classification. During
training, human and spoofing utterance feature vectors were
modeled as multivariate Gaussian distributions with full co-
variance matrices. During testing, the utterance is determined
to be human if the log-likelihood ratio is greater than a
threshold calibrated to produce equal error rate (EER) on the
development set.

F. Fused countermeasure

To benefit from the multiple feature-based countermea-
sures, we propose a fused countermeasure. In speaker ver-
ification, system fusion is one way to combine multiple
individual speaker verification systems to achieve better per-
formance [73], [74]. A similar strategy can be applied for
anti-spoofing, as each feature-based countermeasure discussed
above has its own pros and cons. For example, the pitch
pattern feature-based countermeasure is expected to work well
in detecting waveform concatenation based spoofing attacks,
while other countermeasures are expected to detect phase and
temporal artefacts. It is expected the fused countermeasure can
benefit from the pros of each individual countermeasure.

We perform linear fusion at the score level. We first train
a linear fusion function on the development set which only
contains known attacks, and then apply the fusion function
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on the evaluation scores; finally, the fused score is used to
discriminate between human and spoofed speech. In practice,
we used the BOSARIS Toolkit16 to train the fusion function.

V. EXPERIMENTS

A. Evaluation Metric

In both speaker verification and spoofing detection, there are
two types of errors: 1) genuine or human speech is accepted as
impostor or spoofed speech; 2) impostor or spoofed speech is
accepted as genuine or human. The first type of error is a false
rejection error, while the second type is a false acceptance.
When the false acceptance rate (FAR) equals to the false
rejection rate (FRR), we are at the equal error rate (EER)
point. In this work, when reporting the false acceptance rates
(FARs) and the false rejection rates (FRRs) for a specific
spoofing algorithm, the decision threshold is set to achieve
the EER operating point for that spoofing algorithm. When
reporting overall spoofing performance, all the spoofed sam-
ples are pooled together and treated as one (unknown) spoofing
algorithm when setting the threshold, because in practice one
may not know the exact type of spoofing algorithm.

B. Spoofing ASV Systems without Countermeasures

We evaluated the performance of the ASV systems for
the various synthetic speech and voice conversion variants
described in Section II-A. Prior to the evaluation, the ASV
decision threshold was set to the EER point on the develop-
ment set, using only human speech.

Speaker verification results are presented in Table V. The
FARs for the baseline experiment, which uses only human
speech, are low (as expected) because the SAS database has
near-ideal recordings, free from channel and background noise.
In particular, the lowest FARs for GMM, JFA and PLDA
systems are 0.09%, 1.25% and 1.16%, respectively. Note that
the short duration of the trials preculdes even lower FARs and
FRRs.

Whilst the ASV systems achieve excellent verification per-
formance, they are still vulnerable to spoofing. The simple
VC-C1 spoofing attack, which only modifies the spectral
slope of the source speaker, increases FAR for nearly every
ASV system. The attacks using speech synthesis or voice
conversion, with more advanced algorithms, lead to FARs as
high as 99.95%. On average, speech synthesis leads to FARs
of over 95% for male voices and over 80% for female voices,
and more sophisticated voice conversion algorithms lead to
FARs of close to 80% for both male and female voices.
These observations are consistent with previous studies on
clean speech [16] and telephone quality speech [18], [19],
and confirm the vulnerability of ASV systems to a diverse
range of spoofing attacks. In general, our experiments suggest
that it is easier to spoof male speakers than female speakers
in the sense that the FARs for the various spoofing attacks
for female speakers are generally lower than that for male
speakers. We speculate that it is relatively harder to model

16https://sites.google.com/site/bosaristoolkit/

female speech or perform female-to-female conversion due to
the higher variability of female speech.

Although ASV systems that have more enrolment data
available to them give lower FARs in the baseline case, they
are not necessarily more resistant to spoofing attack. For
example, under the VC-FEST attack, the FARs of JFA-5 and
PLDA-5 male systems are 91.25% and 97.41%, respectively,
and the FARs of JFA-50 and PLDA-50 are even higher at
97.71% and 99.54%, respectively. Similar patterns can be
observed for other spoofing algorithms, as well as for female
speech.

From the perspective of spoofing, the first interesting obser-
vation is that voice conversion is as effective at spoofing as
speech synthesis, given the same amount of training data. Most
of the speech synthesis systems used in this work require a
large amount of data to train the average voice model, which is
adapted to the target. On the other hand, most voice conversion
algorithms, including VC-FEST, VC-GMM and VC-FS, only
need source and target speech data to train their conversion
functions. Voice conversion spoofing is sometimes even more
effective than speech synthesis. It is worth highlighting that
the publicly-available voice conversion toolkit VC-FEST is at
least as effective as the other voice conversion and speech
synthesis techniques.

The second interesting observation is that, although VC-
TVC and VC-EVC use a Japanese database to train eigen-
voices for adaptation to English data, these methods still
increase FARs as much as the other variants. This suggests
that attackers could use alternate speech resources, i.e. speech
corpora in another language, if they cannot find enough
resources for the target language.

The third observation is that the use of higher sampling
rate training data in speech synthesis results in higher FARs
of ASV systems. This suggests that such data includes more
speaker-specific characteristics and that attackers can use this
to conduct more effective spoofing if they have access to such
data.

The last observation is that more training data can im-
prove the effectiveness of speech synthesis and voice con-
version spoofing systems. Comparing SS-SMALL-16k and
SS-LARGE-16k, using 40 instead of 24 training utterances
results in an increase of about 4% absolute FAR. In contrast,
using more enrollment data for ASV systems does not seem to
be helpful in defending against spoofing attacks (except VC-
C1), although it does improve the baseline ASV performance
without spoofing. We speculate that, as the spoofed speech
sounds more like the target speaker, it will achieve higher
likelihood scores under any target speaker model that has
been trained using more enrollment data, and hence results
in higher FARs. This also explains why ASV systems with
more enrollment data succeed in defending against the VC-
C1 attack, which can be easily distinguished by the human
ear in terms of speaker similarity, as shown in Table VIII.

Given the wide-ranging spoofing results in Table V and
the above observations, it is clear that countermeasures are
needed. So, we next present an evaluation and analysis of a
range of countermeasures, including a proposed new fused
countermeasure.
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TABLE V
FALSE ACCEPTANCE RATES (FARS) IN %, ON THE EVALUATION SET FOR THE TWO VARIANTS (-5 AND -50) OF THREE SPEAKER VERIFICATION SYSTEMS

BASED ON: A GAUSSIAN MIXTURE MODEL WITH UNIVERSAL BACKGROUND MODEL (GMM-UBM); JOINT FACTOR ANALYSIS (JFA); AND
PROBABILISTIC LINEAR DISCRIMINANT ANALYSIS (PLDA). THE DECISION THRESHOLD IS SET TO THE EQUAL ERROR RATE (EER) POINT ON THE

DEVELOPMENT SET.

Male Female
GMM- GMM- JFA- JFA- PLDA- PLDA- GMM- GMM- JFA- JFA- PLDA- PLDA-

Spoofing UBM-5 UBM-50 5 50 5 50 UBM-5 UBM-50 5 50 5 50
Baseline 4.05 0.09 2.76 1.25 1.41 1.16 11.10 0.66 6.24 2.47 1.52 0.99
SS-LARGE-16 79.86 97.86 88.62 96.17 93.45 97.76 90.13 89.34 84.31 84.65 86.04 95.95
SS-LARGE-48 97.35 99.95 97.62 98.93 99.12 99.09 98.52 99.28 90.58 94.28 94.80 98.39
SS-MARY 86.57 99.39 91.09 96.81 96.77 98.74 95.23 99.17 91.37 95.11 95.28 98.10
SS-SMALL-16 75.65 91.62 83.64 91.25 89.21 94.87 86.49 81.72 80.60 77.97 81.60 93.14
SS-SMALL-48 95.63 98.89 94.97 95.75 97.07 96.63 97.44 97.63 86.46 90.36 93.02 96.86
VC-C1 4.78 0.11 2.62 1.46 1.83 1.67 17.68 1.94 12.71 6.80 3.92 3.56
VC-EVC 50.64 56.63 43.38 58.52 69.84 79.50 71.60 67.45 67.82 66.50 72.14 79.10
VC-FEST 79.67 98.29 91.25 97.71 97.41 99.54 91.30 94.39 85.77 91.76 86.11 93.53
VC-FS 79.12 98.65 78.68 91.62 91.05 96.16 86.61 94.77 71.19 75.32 79.37 90.33
VC-GMM 76.03 97.35 89.14 96.22 95.10 98.70 91.94 97.53 85.72 92.93 90.57 97.42
VC-KPLS 59.60 72.76 61.92 82.90 81.17 89.31 77.30 72.96 70.99 71.72 80.87 86.32
VC-LSP 57.98 71.57 51.71 68.37 74.99 89.82 75.26 75.44 65.30 60.27 70.99 75.14
VC-TVC 58.64 70.94 63.28 78.75 80.20 87.14 77.16 75.37 70.87 71.41 74.83 82.20

C. Evaluation of Stand-Alone Countermeasures

We conducted experiments to evaluate the performance of
stand-alone countermeasures, i.e. their ability to discriminate
between human and artificial speech. When training counter-
measures, five of the spoofing systems listed in Table I, were
used: SS-SMALL-16, SS-LARGE-16, VC-C1, VC-FEST and
VC-FS.

For MFC, CosPh, MGD and PP features, GMM-based
maximum likelihood classifiers were employed, while for SMS
and UMS features, SVM classifiers were used. Whilst many
combinations of features and classifier could of course be
imagined, these choices give us a representative range of
countermeasures to compare. For each countermeasure, the
detection threshold was set to achieve the EER point on the
development set under all five known attacks, and then the
countermeasure was applied to the evaluation set to compute
the FARs shown in Table VI. These results show that the
frame-based features MFCC, CosPh and MGD achieve better
performance than the long-term features SMS, UMS and PP.
Even though the modulation features SMS and UMS are
derived from the MGD features, they do not perform as well
as frame-based MGD features. This observation is consistent
with our previous work [31]. In the database, due to the short
duration of trials, long-term features generally only provide a
rather small number of feature vectors per utterance.

In respect of the frame-based features, the MGD-based
countermeasure achieves the best overall performance in terms
of low FARs and works well at detecting most types of
spoofed speech with the notable exception of the SS-MARY
attack. The MGD features include both magnitude and phase
spectrum information, whereas MFCCs only capture magni-
tude spectrum and CosPh only phase spectrum. With respect
to long-term features, both SMS and UMS perform well at
detecting statistical parametric speech synthesis spoofing, yet
fail to detect most of the voice conversion algorithms or unit
selection speech synthesis.

The pitch pattern countermeasure detects synthetic speech
well, but does not detect some voice conversion speech such as
that from VC-C1, VC-FEST, VC-KPLS and VC-LSP. This is

TABLE VI
SPOOFING COUNTERMEASURE RESULTS IN TERMS OF FALSE

ACCEPTANCE RATE (FAR) IN % ON THE EVALUATION SET. THE DECISION
THRESHOLD IS SET TO THE EER POINT ON THE DEVELOPMENT SET. THE
FIRST GROUP OF 5 ATTACK METHODS IS KNOWN AND THE REMAINING 8

ARE UNKNOWN.

MFC CosPh MGD SMS UMS PP Fusion
SS-SMALL-16 0.01 1.41 0.10 5.31 8.43 0.00 0.00
SS-LARGE-16 0.01 1.03 0.11 5.44 8.10 0.00 0.00
VC-C1 27.08 0.44 4.07 45.20 33.70 68.73 0.80
VC-FEST 0.84 21.89 4.61 37.76 39.75 60.56 0.43
VC-FS 0.10 0.04 0.07 4.18 4.80 7.66 0.00
SS-LARGE-48 0.01 0.00 0.00 0.62 0.46 0.00 0.00
SS-MARY 89.30 92.76 93.92 81.81 87.91 1.96 97.76
SS-SMALL-48 0.00 0.01 0.00 0.71 0.43 0.00 0.00
VC-EVC 2.72 0.01 1.87 23.28 4.18 0.00 0.02
VC-GMM 1.61 19.68 4.37 37.93 33.08 9.86 0.79
VC-KPLS 1.15 0.06 0.54 21.08 7.56 68.64 0.00
VC-LSP 4.86 0.03 0.84 56.93 19.46 73.26 0.15
VC-TVC 2.97 0.02 1.58 23.11 5.31 0.01 0.01
known 5.61 4.96 1.79 19.58 18.95 27.39 0.25
unknown 12.83 14.07 12.89 30.68 19.80 19.22 12.34
all attacks 10.05 10.57 8.62 26.41 19.47 22.36 7.69

probably due to the fact that speech synthesis usually predicts
fundamental frequency (F0) from text (and so produces rather
unnatural trajectories) whereas voice conversion usually copies
a source speaker’s F0 trajectories to generate a target speaker’s
voice. Hence, voice conversion introduces fewer pitch pattern
artefacts than speech synthesis. We note that the pitch pattern
countermeasure achieves the best performance of 1.96% FAR
against the SS-MARY unit selection synthesis attack.

In general, most of the countermeasures achieve better
performance for known attacks than for unknown attacks, as
spoofing data from known attacks are available for training
countermeasures and those from unknown attacks are not
available to train the detectors. From the perspective of spoof-
ing algorithms, SS-MARY is the most difficult to detect, and
this is presumed to be due to the fact that it uses original
waveforms to generate spoofed speech and thus introduces
fewer artefacts when compared with other methods.

We also fused the six individual countermeasures at the
score level to create a new countermeasure as detailed in Sec-
tion IV-F. The linear combination weights for MFC, CosPh,
MGD, SMS, UMS and PP countermeasures are 26.71, 9.56,
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TABLE VII
FALSE ACCEPTANCE RATES (FARS) ON THE EVALUATION SET FOR THE TWO VARIANTS (5 AND 50) OF THREE SPEAKER VERIFICATION SYSTEMS WITH

INTEGRATED COUNTERMEASURE. THESE ASV SYSTEMS ARE EACH BASED ON A GAUSSIAN MIXTURE MODEL WITH UNIVERSAL BACKGROUND MODEL
(GMM-UBM), JOINT FACTOR ANALYSIS (JFA) OR PROBABILISTIC LINEAR DISCRIMINANT ANALYSIS (PLDA). THE DECISION THRESHOLD IS SET TO

THE ASV EQUAL ERROR RATE (EER) POINT ON THE DEVELOPMENT SET USING ONLY HUMAN SPEECH.

Male Female
GMM- GMM- JFA- JFA- PLDA- PLDA- GMM- GMM- JFA- JFA- PLDA- PLDA-

Spoofing UBM-5 UBM-50 5 50 5 50 UBM-5 UBM-50 5 50 5 50
SS-LARGE-16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SS-LARGE-48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SS-MARY 84.91 97.48 89.46 95.01 95.08 96.91 94.27 98.09 90.48 94.21 94.31 97.14
SS-SMALL-16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SS-SMALL-48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
VC-C1 0.11 0.00 0.05 0.02 0.03 0.02 0.03 0.00 0.05 0.02 0.01 0.01
VC-EVC 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.05 0.04 0.06 0.04 0.06
VC-FEST 0.50 0.69 0.63 0.68 0.68 0.71 0.21 0.24 0.23 0.24 0.22 0.24
VC-FS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
VC-GMM 0.39 0.46 0.45 0.47 0.47 0.48 0.89 0.95 0.92 0.93 0.89 0.92
VC-KPLS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
VC-LSP 0.02 0.01 0.01 0.01 0.02 0.02 0.17 0.18 0.17 0.16 0.15 0.17
VC-TVC 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.03 0.03 0.03 0.03 0.03

6.58, 0.53, -0.07 and 0.97, respectively. The results for this
are presented in the last column of Table VI. The fused
countermeasure detects most spoofing attacks, achieving FARs
under 1% against all but one spoofing method; it fails to detect
SS-MARY. Although the PP countermeasure can discriminate
extremely well between human and SS-MARY speech, this
ability is not picked up by the fused countermeasure because
PP has a low weight. This is because the weights were learned
on the development set, which of course only contains known
attacks (the first group of 5 countermeasures in Table VI),
but the PP countermeasure performs poorly on many of those
known attacks, especially the voice conversion ones. Hence,
it is given a low weight, and essentially ignored in the fused
countermeasure.

D. Spoofing ASV Systems that Employ a Countermeasure

We conducted experiments to evaluate the overall perfor-
mance of speaker verification systems that include a coun-
termeasure. We only consider the proposed fused counter-
measure here, because it exhibited better overall performance
than any individual countermeasure. We integrated the fused
countermeasure with each of the ASV systems as a post-
processing module – as illustrated in Fig. 3 – to reflect the
practical use case in which a separately-developed standalone
countermeasure is added to an already-deployed ASV system
[16] without significant modification of that system.

ASV system
Spoofing

countermeasure
Acceptance

Spoofed 
speech

Reject claimed identity

Human 
speech

Speech signal and
claimed identity

Accept 
claimed 
identity

Reject claimed identity

Fig. 3. A speaker verification system with an integrated countermeasure.
The integrated system only accepts a claimed identity if it is accepted
by the speaker verification system and classified as human speech by the
countermeasure [16].

A good countermeasure should reduce FARs by rejecting
non-human speech. The FAR results of systems with an inte-
grated countermeasure are presented in Table VII. Comparing

against the FARs of the ASV systems without a countermea-
sure in Table V, we can make the following observations.
First, the FARs of all ASV systems are reduced dramatically
for both male and female speech, and go down from about
70%-100% to below 1% in the face of most types of spoofing
attack. This indicates that the fused countermeasure can be
effectively integrated with any ASV system without needing
additional joint optimisation. Second, the integrated system is
robust against attacks from various state-of-the-art statistical
parametric speech synthesis and voice conversion systems.
However, it is still vulnerable to the unit selection synthesis
(SS-MARY) spoofing attack. This suggests that new coun-
termeasures are needed specifically for waveform selection-
based spoofing attacks. Third, although our stand-alone ASV
systems achieve better performance for male than for female
speakers, the integrated systems work equally well for both.
In contrast, others have reported integrated systems working
better for male speakers than for female speakers [40].

In general, by using the proposed fused countermeasure, the
FARs of ASV systems under spoofing attack are reduced sig-
nificantly. This indicates that the countermeasure is effective
in detecting spoofing attacks.

E. Human Versus Machine

To complement the comparisons already presented, we
now benchmark automatic (machine-based) methods against
speaker verification by human listeners. To do this, three
listening tests were conducted: two speaker verification tasks
and one spoofing detection task. The first verification task
contained only human speech signals, the second verification
task contained human speech but all test signals were artificial
(synthetic and voice-converted speech). The third task, a de-
tection task, contained both human and artificial speech signals
and the goal for the listener was to correctly discriminate these
signals. All three tasks covered the 46 target speakers in the
evaluation set of the SAS corpus.

In order to encourage listeners to engage with the tasks
to the best of their ability, they were presented as role-play
scenarios. The human listening tasks were designed to be
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as similar to the ASV tasks as possible (to facilitate direct
comparisons), whilst taking into account listener constraints
such as fatigue or memory limitations. Listening protocols
were inspired by the ones used in [75] and the experiments
were carried out via a web browser. In total, 100 native
English listeners took part in the experiments. They were
seated in sound-isolated booths and listened to all samples
using Beyerdynamic DT 770 PRO headphones. Each listener
performed three tasks and, on average, it took about an hour to
complete the experiment. We only report results from listeners
who completed all sessions in each task.

Task 1: Speaker Verification of Human Speech: In the
speaker verification task, listeners were asked to imagine
they were responsible for giving people access to their bank
accounts. They were informed that they would only have a
short recording of a person’s voice to base their judgement
on. It was stressed that it was important to not give access to
“impostors” but equally important that access was given to the
“bank account holder”.

The listeners were given five sentences from each target
speaker to familiarise themselves with the voice. After lis-
tening to the training samples, they were given 21 trials to
judge as “same” or “different.” The trials were pairs of samples
which include a reference and a test sample. This was repeated
for three different target speakers. In this task, each target
speaker was judged by 5 listeners. The number of targets
versus non-targets varied per speaker to keep listeners from
keeping count for individual speakers. On average there were
10 targets and 11 non-targets per speaker. Genders were not
mixed within a trial.

Listeners recognised impostors as genuine targets 2.39%
of the time (FAR) while 9.38% of genuine trials were mis-
classified as impostors (FRR). Comparing with the baseline
ASV performance in Table V, the results demonstrate that the
speaker verification performance of humans is not as good
as that of the best automatic systems. For example, PLDA-5
gives a FAR around 1.5% for both male and female speakers.
This finding is similar to that in [76] for the NIST SRE 2008
dataset.

Task 2: Speaker Verification of Artificial Speech: In the
second task, listeners were asked to decide whether an artificial
voice17 sounded like the original speaker’s voice. The listeners
were informed that the artificial voice would sometimes sound
quite degraded but were asked to ignore the degradations
as much as possible. Additionally, they were told that there
would be artificial voices that were supposed to sound like
the intended speaker as well as artificial voices that were not
supposed to match the original speaker. The task was framed
as “Your challenge is to decide which of the artificial voices
are based on the ‘bank account holder’s voice’ and which are
based on an ‘impostor’s voice.’ ”

As in the first task, listeners were given five natural speech
samples from the intended speaker to familiarise themselves
with the voice. After listening to these training samples, sub-
jects were presented with pairs of reference and test samples

17Artificial was explained to the listeners as being “produced by a machine,
computer-generated, for example a synthetic voice”.

to judge as “same” or “different.” It was made clear to the
listeners that the test sample would be an artificial voice.
Each target speaker was judged by 5 listeners. For each target
speaker there were 65 trials (13 systems, each presented 5
times). On average there were 39 targets and 26 non-targets
per speaker. Once again gender was not mixed within any of
the trials.

The results are presented in Table VIII (second column).
The acceptance rate is not directly comparable with the auto-
matic results presented in Table V but the relative differences
across spoofing algorithms are comparable18.

It can be observed that SS-MARY gives the highest accep-
tance rate (i.e., listeners said that it sounded like the original
speaker), while VC-C1 gives the lowest acceptance rate – this
pattern is similar to that in the ASV results where SS-MARY
achieves relatively high FARs and VC-C1 relatively low FARs.
The results also indicate that spoofing systems that use more
training data generally achieve higher acceptance rates with
human listeners, mirroring what we saw earlier in the ASV
results in Section V-B. An interesting difference between the
ASV and human listener results is that, for human listeners,
the use of higher sampling rate speech by some spoofing
systems (SS-SMALL-48, SS-LARGE-48) leads to a lower
acceptance rate than for lower sampling rate training data
(SS-SMALL-16, SS-LARGE-16). This suggests that, whilst
these types of spoofing systems (SS: statistical parametric
speech synthesis) are able to generate information above 8
kHz that contributes to improved naturalness [51], listeners
judge it as being more dissimilar to the natural speaker. This
similarity observation is different from that in [51], where
speaker-dependent speech synthesis is examined. An informal
listening test gives the impression that SS-LARGE-48/SS-
SMALL-48 produces more natural speech than SS-LARGE-
16/SS-SMALL-16, as expected. However, as the reference
target speech is a clean recording without any distortion, we
speculate that it is more challenging for listeners to decide
on the speaker similarity of the poor quality, buzzy-sounding
speech of SS-LARGE-16/SS-SMALL-16.

Task 3: Detection: In the final task, listeners were asked to
judge whether a speech sample was a recording of a human
voice, or a sample of an artificial voice. The challenge to the
listeners was formulated as: “Imagine an impostor trying to
gain access to a bank account by mimicking a person’s voice
using speech technology. You must not let this happen. Your
challenge in this final section is to correctly tell whether or
not the sample is of a human or of a machine.”

Listeners were again given some training speech signals.
They listened to five samples of human speech from one
speaker (not present in the detection task) and five examples of
artificial speech generated using five known spoofing systems.

18In Task 2, the acceptance rate means the percentage of genuine speech
recognised as the original speaker. The genuine speech is artificial speech
using the target speaker’s voice as the reference for adaptation or voice
conversion, and the impostor speech is also artificial speech but using a non-
target speakers voice as the reference for adaptation or voice conversion.
When computing the acceptance rate, zero is used as the threshold. On the
other hand, the FAR in Table IV is the percentage of spoofed trials accepted
as genuine. When computing the FAR, the threshold is determined at the EER
point on the non-spoofed trials.
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TABLE VIII
TASK 2 –SPEAKER VERIFICATION (ARTIFICIAL)– AND TASK 3 –SPOOFING

DETECTION– RESULTS.

Task 2: Task 3:
Speaker Verification Spoofing Detection

Acceptance rate Detection Error Rate
Human - 11.94
SS-SMALL-16 35.33 5.48
SS-SMALL-48 32.19 7.86
SS-LARGE-16 39.46 5.71
SS-LARGE-48 36.18 8.10
SS-MARY 76.07 8.10
VC-GMM 30.63 13.57
VC-KPLS 29.06 6.90
VC-TVC 20.51 5.48
VC-EVC 21.23 8.10
VC-FS 35.47 4.29
VC-C1 7.26 23.81
VC-FEST 28.63 6.90
VC-LSP 23.36 7.38

At this point, the listeners were informed that the training
samples did not cover all possible types of artificial speech.
In Task 3, there were 130 samples (65 human, 65 artificial
(13 × 5)), and those samples were randomly selected from
the evaluation set for each listener. 84 listeners participated in
the test.

The human detection results are presented in Table VIII
(third column). In general, human listeners detect spoofing
less well than most of the automatic approaches presented in
Table VI. For most spoofing systems, the automatic approaches
give FARs below 1%, while human listeners have FARs
above 4%. However, humans are much better than any of
the automatic countermeasures (except PP) in detecting SS-
MARY. Most of the countermeasures exhibit FARs in excess
of 80% for SS-MARY, while the FAR of human listeners is
only 8%.

VI. DISCUSSION AND FUTURE WORK

In this section, we summarise the findings in this work, and
also discuss some of its limitations. Both the findings and the
limitations suggest areas needing further research.

A. Research Findings

The main findings from this study are:
• All three classical ASV systems: GMM-UBM, JFA and

PLDA systems are vulnerable to all the spoofing methods
considered, with the exception of VC-C1. This confirms
the findings of previous studies that only considered
one or two spoofing algorithms. This also shows the
importance of developing spoofing countermeasures to
secure ASV systems.

• The effectiveness of speech synthesis and voice conver-
sion spoofing are comparable. Previous studies employed
various databases for each attack which made direct
comparisons of effectiveness across attacks difficult or
impossible. The standardised protocol that we propose
here, using our SAS database, allows direct comparisons.

• When higher sampling rate and/or more training data
are available to train spoofing systems, FARs of ASV
systems increase significantly, as expected. This indicates

that ASV systems are more vulnerable to attackers who
have access to better quality and/or greater quantity of
training data.

• Generally, the spoofing countermeasures proposed in
this work perform well in detecting statistical paramet-
ric speech and voice conversion attacks. However, they
mostly fail to detect rather straightforward waveform
concatenation, as in the case of the SS-MARY attack.
Because SS-MARY directly concatenates waveforms in
the time-domain, the resulting spoofed speech has no
distortions in the phase domain (except perhaps at the
concatenation points); so, phase-based countermeasures
are not a good way to detect such a spoofing attack.

• ASV systems have reached a point where they routinely
outperform ordinary humans19 on speaker recognition
and spoofing detection tasks. However, humans are still
better able to detect waveform concatenation. An obvious
practical approach at the current time, for example in call-
centre applications, would be to combine the decisions of
both human and automatic systems.

B. Limitations and Future Directions

We suggest future work in ASV spoofing and countermea-
sures along the following lines:
• More diverse spoofing materials: The current SAS

database is biased towards the STRAIGHT vocoder, and
only one type of unit selection system was used to gen-
erate the waveform concatenation materials. Moreover,
replay attack – which does not require any speech pro-
cessing knowledge on the part of the attacker – was not
considered here. A generalised countermeasure should be
robust against all spoofing algorithms and any vocoder.
The development of generalised countermeasures might
be accelerated by collecting more diverse spoofing mate-
rials. As the amount of spoofing materials increases, ASV
systems can access more representative prior information
about spoofing, and the security of ASV systems should
be enhanced as a result.

• Truly generalised countermeasures: The proposed
countermeasures did not generalise well to unknown
attacks, and in particular to the SS-MARY attack. This
is because the proposed countermeasures were biased
towards detecting phase artefacts. To detect the SS-
MARY attack or similar waveform concatenation attacks,
we suggest further development of pitch pattern-based
countermeasures. Discontinuity detection for concatena-
tive speech synthesis [77] might also be useful in inspir-
ing novel countermeasures against such attacks. Lastly,
novel system fusion methods might also be a way to
implement generalised countermeasures. A good fusion
method should be able to benefit from all the individual
countermeasures. Our proposed fusion method failed to
take advantage of the strengths of the pitch pattern
countermeasure, for example.

19It would be interesting in the future to use either ‘super recognisers’
or forensic speech scientists, if we could access sufficient numbers of such
listeners.
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• Noise or channel robustness: The work here delberately
focussed on clean speech without significant noise or
channel effects. To make the proposed countermeasures
appropriate for practical applications, it would of course
be important to take channel and noise issues into con-
sideration.

• Text-dependent ASV: The current work assumes text-
independent speaker verification. To make systems suit-
able for other voice authentication applications, spoofing
countermeasures for text-dependent ASV must also be
developed.

VII. CONCLUSIONS

All existing literature that we are aware of in the areas
of ASV spoofing and anti-spoofing, report results for just
one or two spoofing algorithms, and generally assumes prior
knowledge of the spoofing algorithm(s) in order to implement
matching countermeasures. As discussed in [8], the lack of a
large-scale, standardised dataset and protocol was a fundamen-
tal barrier to progress in this area. We hope that this situation
is now rectified, by our release of the standard dataset SAS,
combined with the benchmark results presented in this paper.

To acheive this, speech synthesis, voice conversion, and
speaker verification researchers worked together to develop
state-of-the-art systems from which to generate spoofing ma-
terials, and thus to develop countermeasures. The SAS corpus
developed in this work is publicly released under a CC-BY
license [78]. We hope that the availability of the SAS corpus
will facilitate reproducible research and as a consequence drive
forward the development of novel generalised countermeasures
against speaker verification system spoofing attacks.
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and A. Sizov, “ASVspoof 2015: the first automatic speaker verification
spoofing and countermeasures challenge,” in Proc. Interspeech, 2015.

[43] C. S. Greenberg, A. F. Martin, L. Brandschain, J. P. Campbell, C. Cieri,
G. R. Doddington, and J. J. Godfrey, “Human assisted speaker recog-
nition in nist sre10.” in Proc. Odyssey: the Speaker and Language
Recognition Workshop, 2010.

[44] H. Zen, K. Tokuda, and A. W. Black, “Statistical parametric speech
synthesis,” Speech Communication, vol. 51, no. 11, pp. 1039–1064,
2009.

[45] H. Kawahara, I. Masuda-Katsuse, and A. Cheveigné, “Restructuring
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[76] V. Hautamäki, T. Kinnunen, M. Nosratighods, K. A. Lee, B. Ma, and
H. Li, “Approaching human listener accuracy with modern speaker
verification,” in Proc. Interspeech, 2010.

[77] Y. Pantazis, Y. Stylianou, and E. Klabbers, “Discontinuity detection in
concatenated speech synthesis based on nonlinear speech analysis,” in
Proc. Interspeech, 2005.



IEEE TRANS. AUDIO, SPEECH AND LANGUAGE PROCESSING 16

[78] Z. Wu, A. Khodabakhsh, C. Demiroglu, J. Yamagishi, D. Saito, T. Toda,
Z.-H. Ling, and S. King, “Spoofing and Anti-Spoofing (SAS) corpus
v1.0,” 2015. [Online]. Available: http://dx.doi.org/10.7488/ds/252

Zhizheng Wu received his Ph.D. from Nanyang
Technological University, Singapore. He was a vis-
iting intern at Microsoft Research Asia as a visiting
intern and a visiting researcher at the University of
Eastern Finland. Since 2014, he is a research fel-
low in the Centre for Speech Technology Research
(CSTR) at the University of Edinburgh. He received
the best paper award at the Asia Pacific Signal and
Information Processing Association Annual Submit
and Conference (APSIPA ASC) 2012, co-organised
the first Automatic Speaker Verification Spoofing

and Countermeasures Challenge (ASVspoof 2015) at Interspeech 2015, de-
livered a tutorial on ”Spoofing and Anti-Spoofing: A Shared View of Speaker
Verification, Speech Synthesis and Voice Conversion” at APSIPA ASC 2015
and co-organised the first Voice Conversion Challenge (VCC 2016).

Phillip De Leon (SM ’03) received the B.S. Electri-
cal Engineering and the B.A. in Mathematics from
the University of Texas at Austin, in 1989 and
1990 respectively and the M.S. and Ph.D. degrees in
Electrical Engineering from the University of Col-
orado at Boulder, in 1992 and 1995 respectively. In
2002, he was a visiting professor in the Department
of Computer Science at University College Cork,
Ireland. In 2008, he was selected by the U. S.
State Department as a Fulbright Faculty Scholar and
served as a visiting professor at Technical University

in Vienna (TU-Wien). He currently holds the Paul W. and Valerie Klipsch
Distinguished Professorship in Electrical and Computer Engineering at NMSU
and directs the Advanced Speech and Audio Processing Laboratory. He has
co-authored over 70 refereed papers in international journals and conferences.
His research interests include machine learning, speaker recognition, speech
enhancement, and time-frequency analysis. He is a member of the Industrial
Digital Signal Processing Technical Committee (IDSP-TC).

Cenk Demiroglu obtained the B.S. degree in electri-
cal and electronics engineering from Bogazici Uni-
versity in 1999, the M.S. degree from the Electrical
and Electronics Engineering Department of Univer-
sity of Nebraska, Lincoln, in 2001, and the Ph.D. de-
gree from the Electrical and Computer Engineering
Department of the Georgia Institute of Technology
in 2005. After the Ph.D. degree, he was with the
R&D groups of speech technology companies in the
USA for five years. He played lead roles in the
development of large-vocabulary speech recognition

systems for three years and the development of embedded text-to-speech
synthesis systems for two years. He joined the Ozyegin University Electrical
and Electronics Engineering Department in 2009 as an Assistant Professor.
His research and consulting activities are focused on speech synthesis, speech
recognition, and speaker verification.

Ali Khodabakhsh obtained the B.Sc. degree in
electrical engineering from the University of Tehran,
Tehran, Iran, in 2011, and the M.Sc. degree in
computer science from Ozyegin University, Istan-
bul, Turkey, in 2015. His research interests include
speaker recognition, spoofing and anti-spoofing, and
deep learning.

Simon King (M’95–SM08–F15) holds
M.A.(Cantab) and M.Phil. degrees from Cambridge
and a Ph.D. from Edinburgh. He has been with
the Centre for Speech Technology Research at
the University of Edinburgh since 1993, where he
is now Professor of Speech Processing and the
director of the centre. His interests include speech
synthesis, recognition and signal processing and
he has around 200 publications across these areas.
He has served on the ISCA SynSIG board and
currently co-organises the Blizzard Challenge. He

has previously served on the IEEE SLTC and as an associate editor of IEEE
Transactions on Audio, Speech and Language Processing, and is currently
an associate editor of Computer Speech and Language.

Zhen-Hua Ling (M10) received the B.E. degree in
electronic information engineering, M.S. and Ph.D.
degree in signal and information processing from
University of Science and Technology of China,
Hefei, China, in 2002, 2005, and 2008, respectively.
From October 2007 to March 2008, he was a Marie
Curie Fellow at the Centre for Speech Technology
Research (CSTR), University of Edinburgh, UK.
From July 2008 to February 2011, he was a joint
Postdoctoral Researcher at the University of Science
and Technology of China and iFLYTEK Co., Ltd.,

China. He is currently an Associate Professor at the University of Science
and Technology of China. He also worked at the University of Washington,
USA, as a Visiting Scholar from August 2012 to August 2013. His research
interests include speech processing, speech synthesis, voice conversion, speech
analysis, and speech coding. He was awarded IEEE Signal Processing Society
Young Author Best Paper Award in 2010.

Daisuke Saito received the B.E., M.S., and Dr. Eng.
degrees from the University of Tokyo, Tokyo, Japan,
in 2006, 2008, and 2011, respectively. From 2010 to
2011, he was a Research Fellow (DC2) of the Japan
Society for the Promotion of Science. He is currently
an Assistant Professor in the Graduate School of
Information Science and Technology, University of
Tokyo. He is interested in various areas of speech
engineering, including voice conversion, speech syn-
thesis, acoustic analysis, speaker recognition, and
speech recognition. Dr. Saito is a member of the

International Speech Communication Association (ISCA), the Acoustical So-
ciety of Japan (ASJ), the Information Processing Society of Japan (IPSJ), the
Institute of Electronics, Information and Communication Engineers (IEICE),
and the Institute of Image Information and Television Engineers (ITE). He
received the ISCA Award for the best student paper of INTERSPEECH 2011,
the Awaya Award from the ASJ in 2012, and the Itakura Award from ASJ in
2014.



IEEE TRANS. AUDIO, SPEECH AND LANGUAGE PROCESSING 17

Bryan Stewart received the B.S., M.S. and Ph.D.
degrees in Electrical Engineering from New Mexico
State University in 2004, 2006, and 2016 respec-
tively. In 2006, he started working in the System En-
gineering Directorate at White Sand Missile Range,
NM on Unmanned Autonomous Systems Test and
Evaluation. In 2010, he started working for the Naval
Surface Warfare Center Port Hueneme Division and
leads a team of engineers in developing augmented
reality, prognostics, secure wireless, and cybersecu-
rity capability for the surface Navy. His interests

include machine learning, natural language processing, and cybersecurity.

Tomoki Toda received his B.E. degree from Nagoya
University, Japan, in 1999 and his M.E. and D.E.
degrees from Nara Institute of Science and Technol-
ogy (NAIST), Japan, in 2001 and 2003, respectively.
He was a Research Fellow of the Japan Society
for the Promotion of Science from 2003 to 2005.
He was then an Assistant Professor (2005-2011)
and an Associate Professor (2011-2015) at NAIST.
From 2015, he has been a Professor in the Infor-
mation Technology Center at Nagoya University.
His research interests include statistical approaches

to speech processing. He received more than 10 paper/achievement awards
including the IEEE SPS 2009 Young Author Best Paper Award and the 2013
EURASIP-ISCA Best Paper Award (Speech Communication Journal).

Mirjam Wester received the Ph.D. degree from the
University of Nijmegen, the Netherlands, in 2002.
She was a visiting researcher at ICSI, Berkeley, CA
from March 2000 to March 2001. Since 2003 she
has been a Research Fellow at the Centre for Speech
Technology Research, University of Edinburgh, UK.
Her research interests focus on taking knowledge
of human speech production and perception and
applying it to speech technology.

Junichi Yamagishi (Senior Member, IEEE) was
awarded a Ph.D. by the Tokyo Institute of Tech-
nology in 2006 for a thesis that pioneered speaker-
adaptive speech synthesis and was awarded the
Tejima Prize as the best Ph.D. thesis of Tokyo
Institute of Technology in 2007. He is an Associate
Professor at the National Institute of Informatics in
Japan. He is also a Senior Research Fellow in the
Centre for Speech Technology Research (CSTR) at
the University of Edinburgh, UK. Since 2006, he has
authored and co-authored about 150 refereed papers

in international journals and conferences. He was awarded the Itakura Prize
from the Acoustic Society of Japan, the Kiyasu Special Industrial Achieve-
ment Award from the Information Processing Society of Japan, and the Young
Scientists Prize from the Minister of Education, Science and Technology in
2010, 2013, and 2014, respectively. He was a scientific committee and area
coordinator for Interspeech 2012. He was one of organizers for the above
special sessions on ”Spoofing and Countermeasures for Automatic Speaker
Verification at Interspeech 2013 and ASVspoof at Interspeech 2015. He has
been a member of the Speech & Language Technical Committee (SLTC) and
an Associate Editor of the IEEE Transactions on Audio, Speech and Language
Processing.


