389 research outputs found

    Acoustic Echo and Noise Cancellation System for Hand-Free Telecommunication using Variable Step Size Algorithms

    Get PDF
    In this paper, acoustic echo cancellation with doubletalk detection system is implemented for a hand-free telecommunication system using Matlab. Here adaptive noise canceller with blind source separation (ANC-BSS) system is proposed to remove both background noise and far-end speaker echo signal in presence of double-talk. During the absence of double-talk, far-end speaker echo signal is cancelled by adaptive echo canceller. Both adaptive noise canceller and adaptive echo canceller are implemented using LMS, NLMS, VSLMS and VSNLMS algorithms. The normalized cross-correlation method is used for double-talk detection. VSNLMS has shown its superiority over all other algorithms both for double-talk and in absence of double-talk. During the absence of double-talk it shows its superiority in terms of increment in ERLE and decrement in misalignment. In presence of double-talk, it shows improvement in SNR of near-end speaker signal

    Sparseness-controlled adaptive algorithms for supervised and unsupervised system identification

    No full text
    In single-channel hands-free telephony, the acoustic coupling between the loudspeaker and the microphone can be strong and this generates echoes that can degrade user experience. Therefore, effective acoustic echo cancellation (AEC) is necessary to maintain a stable system and hence improve the perceived voice quality of a call. Traditionally, adaptive filters have been deployed in acoustic echo cancellers to estimate the acoustic impulse responses (AIRs) using adaptive algorithms. The performances of a range of well-known algorithms are studied in the context of both AEC and network echo cancellation (NEC). It presents insights into their tracking performances under both time-invariant and time-varying system conditions. In the context of AEC, the level of sparseness in AIRs can vary greatly in a mobile environment. When the response is strongly sparse, convergence of conventional approaches is poor. Drawing on techniques originally developed for NEC, a class of time-domain and a frequency-domain AEC algorithms are proposed that can not only work well in both sparse and dispersive circumstances, but also adapt dynamically to the level of sparseness using a new sparseness-controlled approach. As it will be shown later that the early part of the acoustic echo path is sparse while the late reverberant part of the acoustic path is dispersive, a novel approach to an adaptive filter structure that consists of two time-domain partition blocks is proposed such that different adaptive algorithms can be used for each part. By properly controlling the mixing parameter for the partitioned blocks separately, where the block lengths are controlled adaptively, the proposed partitioned block algorithm works well in both sparse and dispersive time-varying circumstances. A new insight into an analysis on the tracking performance of improved proportionate NLMS (IPNLMS) is presented by deriving the expression for the mean-square error. By employing the framework for both sparse and dispersive time-varying echo paths, this work validates the analytic results in practical simulations for AEC. The time-domain second-order statistic based blind SIMO identification algorithms, which exploit the cross relation method, are investigated and then a technique with proportionate step-size control for both sparse and dispersive system identification is also developed

    LMS Based Adaptive Channel Estimation for LTE Uplink

    Get PDF
    In this paper, a variable step size based least mean squares (LMS) channel estimation (CE) algorithm is presented for a single carrier frequency division multiple access(SC-FDMA) system under the umbrella of the long term evolution (LTE). This unbiased CE method can automatically adapts the weighting coefficients on the channel condition. Therefore, it does not require knowledge of channel,and noise statistics. Furthermore, it uses a phase weighting scheme to eliminate the signal fluctuations due to noise and decision errors. Such approaches can guarantee the convergence towards the true channel coefficient. The mean and mean square behaviors of the proposed CE algorithm are also analyzed. With the help of theoretical analysis and simulation results, we prove that the proposed algorithm outperforms the existing algorithms in terms of mean square error (MSE) and bit error rate (BER) by more than around 2.5dB

    A Robust Variable Step Size Fractional Least Mean Square (RVSS-FLMS) Algorithm

    Full text link
    In this paper, we propose an adaptive framework for the variable step size of the fractional least mean square (FLMS) algorithm. The proposed algorithm named the robust variable step size-FLMS (RVSS-FLMS), dynamically updates the step size of the FLMS to achieve high convergence rate with low steady state error. For the evaluation purpose, the problem of system identification is considered. The experiments clearly show that the proposed approach achieves better convergence rate compared to the FLMS and adaptive step-size modified FLMS (AMFLMS).Comment: 15 pages, 3 figures, 13th IEEE Colloquium on Signal Processing & its Applications (CSPA 2017

    An affine combination of two LMS adaptive filters - Transient mean-square analysis

    Get PDF
    This paper studies the statistical behavior of an affine combination of the outputs of two LMS adaptive filters that simultaneously adapt using the same white Gaussian inputs. The purpose of the combination is to obtain an LMS adaptive filter with fast convergence and small steady-state mean-square deviation (MSD). The linear combination studied is a generalization of the convex combination, in which the combination factor λ(n)\lambda(n) is restricted to the interval (0,1)(0,1). The viewpoint is taken that each of the two filters produces dependent estimates of the unknown channel. Thus, there exists a sequence of optimal affine combining coefficients which minimizes the MSE. First, the optimal unrealizable affine combiner is studied and provides the best possible performance for this class. Then two new schemes are proposed for practical applications. The mean-square performances are analyzed and validated by Monte Carlo simulations. With proper design, the two practical schemes yield an overall MSD that is usually less than the MSD's of either filter

    Robust adaptive filtering algorithms for system identification and array signal processing in non-Gaussian environment

    Get PDF
    This dissertation proposes four new algorithms based on fractionally lower order statistics for adaptive filtering in a non-Gaussian interference environment. One is the affine projection sign algorithm (APSA) based on L₁ norm minimization, which combines the ability of decorrelating colored input and suppressing divergence when an outlier occurs. The second one is the variable-step-size normalized sign algorithm (VSS-NSA), which adjusts its step size automatically by matching the L₁ norm of the a posteriori error to that of noise. The third one adopts the same variable-step-size scheme but extends L₁ minimization to Lp minimization and the variable step-size normalized fractionally lower-order moment (VSS-NFLOM) algorithms are generalized. Instead of variable step size, the variable order is another trial to facilitate adaptive algorithms where no a priori statistics are available, which leads to the variable-order least mean pth norm (VO-LMP) algorithm, as the fourth one. These algorithms are applied to system identification for impulsive interference suppression, echo cancelation, and noise reduction. They are also applied to a phased array radar system with space-time adaptive processing (beamforming) to combat heavy-tailed non-Gaussian clutters. The proposed algorithms are tested by extensive computer simulations. The results demonstrate significant performance improvements in terms of convergence rate, steady-state error, computational simplicity, and robustness against impulsive noise and interference --Abstract, page iv
    corecore