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ABSTRACT

This dissertation proposes four new algorithms based on fractionally lower

order statistics for adaptive filtering in a non-Gaussian interference environment. One

is the affine projection sign algorithm (APSA) based on L1 norm minimization, which

combines the ability of decorrelating colored input and suppressing divergence when

an outlier occurs. The second one is the variable-step-size normalized sign algorithm

(VSS-NSA), which adjusts its step size automatically by matching the L1 norm of

the a posteriori error to that of noise. The third one adopts the same variable-

step-size scheme but extends L1 minimization to Lp minimization and the variable

step-size normalized fractionally lower-order moment (VSS-NFLOM) algorithms are

generalized. Instead of variable step size, the variable order is another trial to facilitate

adaptive algorithms where no a priori statistics are available, which leads to the

variable-order least mean pth norm (VO-LMP) algorithm, as the fourth one.

These algorithms are applied to system identification for impulsive interference

suppression, echo cancelation, and noise reduction. They are also applied to a phased

array radar system with space-time adaptive processing (beamforming) to combat

heavy-tailed non-Gaussian clutters.

The proposed algorithms are tested by extensive computer simulations. The

results demonstrate significant performance improvements in terms of convergence

rate, steady-state error, computational simplicity, and robustness against impulsive

noise and interference.
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1 INTRODUCTION

1.1 BACKGROUND

The adaptive filter is one of the most important operations of digital signal

processing with deep theoretical challenges and immense practical relevance. In the

last thirty years the adaptive filter has made significant achievements and has been

used widely in many applications: radar, sonar, communication, navigation, seismol-

ogy, biomedical engineering, and financial engineering [1, 2].

An adaptive filter is classified as linear if its input-output map obeys the

principle of superposition when its parameters are fixed. Otherwise, the adaptive

filter is said to be nonlinear. The linear adaptive filter is illustrated in Fig.1.1, where

x(k) denotes the input signal, w(k) denotes the weight vector of the taped delay line,

y(k) = wT (k)x(k) is the filter output signal, and d(k) defines the observed signal.

The error signal e(k) is calculated as the difference between observed signal and the

actual filter output, e(k) = d(k) − y(k). The objective of the adaptive filter is to

extract information of interest contained in the observed noisy signal d(k) according

to some statistical criterion. To implement this objective, the first step of designing

an adaptive filter is to choose a cost function of the error signal e(k). Minimization

of the cost function of error means minimization of the noise effects on the adaptive-

filter output and guarantees that the adaptive-filter output signal matches the desired

signal in a certain statistical sense.

The minimum mean-square error (MMSE) criterion based on the L2 norm

is well-known and serves as the fundamental and origin of the the adaptive filter.

One reason of the high importance of the MMSE criterion lies in its optimality for

a Gaussian distributed signal. The tails of Gaussian distribution are shown to have
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decay rates with exponential square order which guarantees that the MMSE criterion

is adequate to provide effective estimation under the Gaussian assumption. Another

reason its feasibility of mathematical manipulations. The optimum solution is found

to be the conditional expectation of variables of interest given observed ones. Such

conditional expectation is generally hard to evaluate in closed-form, this is the reason

that we try to find a linear estimator which can work effectively in practice. The

optimum solution of MMSE for a linear filter is commonly known as the Wiener

filter. Specially, we solved

min
w(k+1)

E[|e(k)|2]. (1.1)

+

−

w(k)

d(k) e(k)

x(k) y(k)

Figure 1.1. Adaptive filter

Designing and implementing a Wiener filter requires a priori information about

the statistics of the input signal. However, the statistics are usually unknown and

are often changing over time, which makes the computation of the Wiener solution

impossible or no longer optimum. Moreover, direct implementation of Wiener filter

involves matrix inversion which is often prohibitive in practical systems due to long

filter length. In this situation, it becomes necessary to resort to an iterative procedure

to approximate the optimum solution. The most popular adaptive algorithms based

on the MMSE criterion are the least mean square (LMS) algorithm and the normalized
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LMS (NLMS) algorithm. The NLMS algorithm updates its weight vector as

w(k + 1) = w(k) + µ
x(k)e(k)

x(k)Tx(k)
. (1.2)

where x(k) = [x(k), x(k − 1), · · · , x(k − L+ 1)]T is the input signal vector. The

LMS and NLMS algorithms have the advantage of simplicity, low steady-state error,

and fast tracking. However, their major drawbacks are the slow convergence with

correlated input signal and performance degradation with non-Gaussian interference.

To speed up the convergence rate, the recursive least square (RLS) algorithm

is proposed at the cost of high computational complexity. The affine projection

algorithm (APA) provides a compromise of fast convergence and low computational

complexity between the LMS and RLS algorithms. The APA updates the weight

coefficients vector as

w(k + 1) = w(k) + µX(k)
[

XT (k)X(k) + ǫI
]−1

e(k), (1.3)

where X(k) = [x(k),x(k − 1), · · · ,x(k −M + 1)] is the input signal matrix and ǫ

is regularization parameter. Both the APA and the RLS algorithm can lead to an

optimal solution in the mean-square error sense and have decorrelation properties

that make them converge much faster than LMS and NLMS. Besides the APA and

the RLS algorithm, variable step-size LMS-type algorithms have also been proposed

to achieve both fast convergence and low steady-state errors. Nonlinear preprocessing

is another methods often used to combat a correlated input signal and non-Gaussian

interference. Most of the LMS-type algorithms have taken a combination of the above

approaches. However, the algorithms with the MMSE criterion are based on the error

e(k) being Gaussian which is often disobeyed in a real-world environment.

Impulsive, non-Gaussian interference often occurs in practical applications and

the signals with heavy-tailed statistics produce more large-magnitude outliers than
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observed in the Gaussian model. In phased array radar systems, non-Gaussian clut-

ters often occur in backscatters from mountain tops, dense forest canopy, rough sea

surfaces, and manmade concrete objects. In acoustic echo cancelation (AEC), double-

talk situations can also be viewed as an impulsive interference source. In these cases,

the algorithms based on the L2 norm, which have effective performance in a Gaussian

environment, suffer serious performance degradation in non-Gaussian environments.

This is because the characterization of a non-Gaussian signal by its second order

moment is no longer optimal and other moment characterizations may be required.

Many studies have shown that lower order statistics can lead to improved

convergence and robustness against non-Gaussian interference [3] by minimization of

least mean p-th norm

min
w(k+1)

E[|e(k)|p] (1.4)

where 1 ≤ p ≤ 2. The approach using lower order statistics yields several robust al-

gorithms against heavily-tailed interference, including the normalized sign algorithm

(NSA) or least absolute deviation (LAD) algorithm and fractional lower-order mo-

ment/statistic (FLOM or FLOS) algorithm. These algorithms are based on the L1,

Lp, respectively, rather than the L2 norm. We refer to this class of algorithms as the

least mean p-norm (LMP) algorithms, where p = 2 leads to the conventional LMS

algorithm and p = 1 leads to the LAD algorithm. To combine the benefits of different

norms, the mixed-norm algorithm is proposed based on the weighted combination of

the L1 and L2 norms. The switched-norm algorithm which switches between L1 and

L2 norms is proposed afterwards.

1.2 PROBLEM STATEMENT

Although lower-order moment statistics have proved to provide an robustness

against impulsive environment in the general sense, its adaptive algorithms have
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not been researched as rigorously as the LMS algorithm and a lot of challenging

problems still remain. First, with the same step-size parameters, the LMP algorithms

converge faster but have a greater steady-state error than the LMS algorithm. The

fixed step size cannot provide a good compromise among fast convergence and small

steady-state error and fast tracking. Second, the LMP algorithms with orders smaller

than two suffers lower satiability than the LMS algorithms. Third, the fractional

order increases computational cost by computing fractional statistics. Fourth, similar

to the LMS algorithm, the LMP algorithms also suffer degradation with a highly

correlated input signal. Fifth, convergence analysis for lower-order statistics adaptive

algorithms remains scarce thus limited design guidelines are available in terms of the

convergence rate, steady-state error, tracking properties, robustness to system error,

and computational requirements.

Based on the discussion above, this work addresses the problems on lower-

order statistic algorithms and proposes several new adaptive algorithms based on L1

and Lp norm with 1 < p < 2. By applying the idea of affine projection, the proposed

algorithms are developed based on the cost function

min
w(k+1)

E[‖d(k)−XT (k)w(k + 1)‖pp]

subject to q-th norm constraints. (1.5)

where d(k) is the filter output vector defined as y(k) = [y(k), y(k−1), · · · , y(k−M+

1)]T . The value of q could be chosen as 1 ≤ q ≤ 2.

My research in this dissertation yields promising results in two special cases.

One is the affine projection sign algorithm (APSA) which uses L1 minimization with
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the minimum disturbance constraint, which has the cost function

min
w(k+1)

E[‖y(k)−XT (k)w(k + 1)‖1]

subject to ‖w(k + 1)−w(k)‖22 ≤ δ2. (1.6)

This constraint ensures that the updating weight coefficients vector does not change

dramatically thus improving the algorithm’s stability with impulsive outliers.

The second is the variable step-size LMP algorithms which are based on the

cost function

min
w(k+1)

E[|y(k)− xT (k)w(k + 1)|p]

subject to E{|ε(k)|p} = E{|v(k)|p}. (1.7)

where ε(k) denotes the a posteriori error and v(k) is background noise plus impulsive

interference. The variable step size is chosen in the way of making the p-th norm of

the a posteriori error equal to the p-th norm of the noise and interference in order

to provide a compromise among fast convergence, small misadjustment, and good

tracking ability. To avoid estimating the a priori information which is not available,

this work mainly focusing on deriving nonparametric VSS algorithms [4].

Among all the lower-order algorithms, the family of sign algorithms based on

the L1-norm minimization has attracted more attention due to its considerably low

computational cost and easy implementation. This is why the L1 norm is sorted out

and researched independently.

In addition to deriving lower-order statistic algorithms, convergence analysis

is another important problem in adaptive filters [2]. Although an adaptive filter

is physically implemented as a linear combiner, it is a highly nonlinear estimator

in reality. For this reason, convergence analysis of adaptive algorithms is rather
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challenging. The independence assumption and ordinary differential-equation method

[1,2] is commonly used in convergence analysis of many LMS-type adaptive algorithms

and leads to reasonable agreements between theory and practice. These assumptions

and methods are also used in the analysis of the lower-order statistic algorithms in

this work.

These new algorithms proposed in this work are applied to phased array an-

tennas systems and acoustic echo cancelation (AEC). In array radar systems, heavy-

tailed spiky clutters often occur in radar clutters and cause traditional methods to

suffer significant performance degradation. In AEC systems, double talk also acts as

a large-level uncorrelated impulsive interference source and easily causes the adap-

tive filter to diverge. The problem of impulsive noise shows the value of lower-order

statistics methods in real applications.

1.3 SUMMARY OF CONTRIBUTIONS

This dissertation will consist of the journal publications and conference papers

listed in the publication list. The published and expected contributions are:

1. Affine projection sign algorithm robust against impulsive interferences. A

new affine projection sign algorithm (APSA) is proposed, which is robust against non-

Gaussian impulsive interferences and has fast convergence. The conventional affine

projection algorithm (APA) converges fast at a high cost in terms of computational

complexity and it also suffers performance degradation in the presence of impulsive

interferences. The family of sign algorithms (SAs) stands out due to its low com-

plexity and robustness against impulsive noise. The proposed APSA combines the

benefits of the APA and SA by updating its weight vector according to the L1-norm

optimization criterion while using multiple projections. The features of the APA and

the L1-norm minimization guarantee the APSA an excellent candidate for combatting
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impulsive interference and speeding up the convergence rate for colored inputs at a

low computational complexity.

2. A variable step-size sign algorithm for acoustic echo cancelation. A vari-

able step size normalized sign algorithm (VSS-NSA) is proposed, for acoustic echo

cancelation, which adjusts its step size automatically by matching the L1-norm of the

a posteriori error to that of the background noise plus near-end signal. Simulation

results show that the new algorithm combined with double-talk detection outper-

forms the dual sign algorithm (DSA) and the normalized triple-state sign algorithm

(NTSSA) in terms of convergence rate and stability.

3. Variable step-size fractional lower-order moment algorithm for system iden-

tification in non-Gaussian interference environments. A variable step-size fractional

lower-order moment (VSS-FLOM) algorithm is proposed for system identification in

an impulsive noise environment, which adapts the weight vector via the p-th moment

of the a priori error. The step-size is automatically adjusted by matching the power

of the a posteriori error to that of the background white noise. This low-complexity

iterative algorithm is developed using time-averaging estimates of the second and p-

th (1 ≤ p ≤ 2) error moments. The excess MSE and misalignment of the proposed

VSS-FLOM algorithm are evaluated intensively by computer simulation under Gaus-

sian and impulsive non-Gaussian interference environments, with white or colored

Gaussian inputs, and for real and complex systems. The results show that the new

VSS-FLOM algorithm combines the benefit of variable step size with the robustness

of lower order statistics algorithms against impulsive interference.

4. Fast-converging space-time adaptive processing algorithm for non-Gaussian

clutter suppression. Several new variable step-size and variable order least mean p-

norm (VSS-LMP) algorithms are proposed for phased array radar application with

space-time adaptive processing to combat heavy-tailed non-Gaussian clutters. The

variable step-size LMP algorithms automatically change the step size according to the
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estimated lower-order statistics of the error while the variable order LMP algorithm

changes orders according a specific scheme for faster convergence. These algorithms

are evaluated via a space-slow-time STAP example and the excess mean square error

(MSE) and misalignment results show that the proposed algorithms converges fast

and reach lower steady-state error than the fixed step-size or fixed order LMP al-

gorithm. It also provides a better compromise between convergence speed and low

steady state error than existing variable step-size LMS algorithms in both Gaussian

and Compound K clutter environments.
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10

PAPER

I. AN AFFINE PROJECTION SIGN ALGORITHM

ROBUST AGAINST IMPULSIVE INTERFERENCE

Tiange Shao, Yahong Rosa Zheng, and Jacob Benesty

Abstract—A new affine projection sign algorithm (APSA) is proposed, which is

robust against non-Gaussian impulsive interferences and has fast convergence. The

conventional affine projection algorithm (APA) converges fast at a high cost in terms

of computational complexity and it also suffers performance degradation in the pres-

ence of impulsive interferences. The family of sign algorithms (SAs) stands out due

to its low complexity and robustness against impulsive noise. The proposed APSA

combines the benefits of the APA and SA by updating its weight vector according to

the L1-norm optimization criterion while using multiple projections. The features of

the APA and the L1-norm minimization guarantee the APSA an excellent candidate

for combatting impulsive interference and speeding up the convergence rate for col-

ored inputs at a low computational complexity. Simulations in a system identification

context show that the proposed APSA outperforms the normalized least-mean-square

(NLMS) algorithm, APA, and normalized sign algorithm (NSA) in terms of conver-

gence rate and steady-state error. The robustness of the APSA against impulsive

interference is also demonstrated.

1 Introduction

Adaptive filters have been commonly used in various applications of system

identification, such as channel estimation, noise cancelation, echo cancelation, image
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restoration, and seismic system identification [1]. The most popular adaptive fil-

ters are the least-mean-square (LMS) and normalized LMS (NLMS) algorithms due

to their simplicity. However, their major drawbacks are slow convergence and per-

formance degradation with colored input signals or in the presence of heavy-tailed

impulsive interferences [2].

To overcome the deterioration of convergence performance caused by colored

input signals, an affine projection algorithm (APA), which is based on affine subspace

projections, has been proposed in [3]. Many variants of the APA have been developed

in recent years [4]. The family of APAs updates the weight coefficients by multiple,

most recent input vectors instead of a single, current data vector used in the LMS

and NLMS algorithms. As the projection order of the APA increases, the convergence

rate increases and so does the computational complexity. This is why computational

efficient methods have also been developed to reduce the computational cost, such

as the fast affine projection (FAP) algorithm [5]. In addition to the drawback of

computational complexity, the APA also suffers performance degradation in non-

Gaussian interference due to the nature of the L2-norm optimization. Interfering

signals with heavy-tailed distributions produce more outliers than Gaussian models

and the L2-norm minimization criterion is no longer a proper choice.

Many studies have shown that lower-order norms lead to robustness against

impulsive and intensive interference. The least mean p-norm (LMP) algorithm based

on the Lp norm is proposed in [2]. Among all the lower-order algorithms, the family

of sign algorithms based on the L1-norm minimization has attracted more attention

due to its considerably low computational cost and easy implementation. Only the

sign of the error signal is involved in the updating process. Many variants of the

sign algorithm have been developed, including the normalized sign algorithm (NSA)

[6], dual sign algorithm (DSA) [7], and variable step-size sign algorithm [8, 9]. The

mixed-norm algorithm based on the weighted combination of the L1 and L2 norms
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is proposed in [10]. The switched-norm algorithm is proposed in [11] which switches

between L1 and L2 norms. Although the sign algorithms achieve good performance

in many applications due to their low complexity and robustness against impulsive

noise, they suffer from slow convergence rate, especially for highly correlated input

signals.

We proposes an affine projection sign algorithm (APSA) which updates the

weight vector with the L1-norm optimization criterion by using multiple input vec-

tors. The combination of the benefit of affine projection and L1-norm minimization

improves performance on combatting impulsive interference, speeding up the conver-

gence rate with colored input signals, and lowering the computational complexity. The

weight adaptation of the proposed algorithm does not involve any matrix inversion

but only uses the sign operation of the error vector. The increase of the computa-

tional burden caused by high projection orders is much lower than the conventional

APA.

The performance of the proposed APSA is evaluated in the context of system

identification and compared with the NSA, APA, and NLMS algorithm. Simulation

results with BG interference and colored input signals demonstrate the robustness

of the APSA against impulsive interference, outperforming the APA and NLMS al-

gorithm. The APSA also converges much faster and reaches a smaller steady-state

misalignment than the NSA.

2 Conventional Affine Projection Algorithm

Consider a system identification problem where all signals are real. The out-

put signal from an unknown system with a weight coefficients vector w is y(k) =

wTx(k) + v(k), where x(k) = [x(k), x(k − 1), · · · , x(k − L+ 1)]T is the input signal
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vector of length L. The variable v(k) represents the background noise plus interfer-

ence signal. The superscript ()T denotes vector transpose operation. Let ŵ(k) be an

estimate of w at iteration k. The a priori is defined as e(k) = y(k) − ŵT (k)x(k),

while the a posteriori errors is defined as ε(k) = y(k) − ŵT (k + 1)x(k). Grouping

the M recent input vectors x(k) together gives the input signal matrix: X(k) =

[x(k),x(k − 1), · · · ,x(k −M + 1)]. We define the a priori and a posteriori error vec-

tors as

e(k) = [e(k), e(k − 1), · · · , e(k −M + 1)]T , (1)

ep(k) = [ε(k), ε(k − 1), · · · , ε(k −M + 1)]T , (2)

and they can be computed as

e(k) = y(k)−XT (k)ŵ(k), (3)

ep(k) = y(k)−XT (k)ŵ(k + 1), (4)

where y(k) is the output vector defined as y(k) = [y(k), y(k−1), · · · , y(k−M +1)]T .

The classical APA [3] is obtained by minimizing

‖ŵ(k + 1)− ŵ(k)‖22

subject to y(k)−XT (k)ŵ(k + 1) = 0. (5)

The APA updates the weight coefficients vector as

ŵ(k + 1) = ŵ(k) + µX(k)
[

XT (k)X(k) + ǫI
]−1

e(k), (6)

where the step size µ and regularization ǫ (both are positive numbers) have been

added in (6) for a better control of the algorithm.
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3 Affine Projection Sign Algorithm

The proposed affine projection sign algorithm is obtained by minimizing the

L1-norm of the a posteriori error vector with a constraint on the filter coefficients,

min
ŵ(k+1)

‖y(k)−XT (k)ŵ(k + 1)‖1 (7)

subject to ‖ŵ(k + 1)− ŵ(k)‖22 ≤ δ2, (8)

where δ2 is a parameter ensuring that the updating weight coefficients vector does

not change dramatically [11]. We can also view (8) as the minimum disturbance con-

straint. The minimum disturbance δ controls the convergence level of the algorithm

and it shall be as small as possible. Using the method of Lagrange multipliers, the

unconstrained cost function can be obtained by combining (7) and (8),

J(ŵ(k + 1))=‖ep(k)‖1 + β
[

‖ŵ(k+1)−ŵ(k)‖22−δ2
]

, (9)

where β is a Lagrange multiplier. The derivative of the cost function (9)with respect

to the weight vector ŵ(k + 1) is

∂J(ŵ(k + 1))

∂ŵ(k + 1)
=−

M−1
∑

m=0

sgn(ε(k−m))x(k−m)+2β [ŵ(k+1)−ŵ(k)]

= −X(k)sgn(ep(k))+2β [ŵ(k+1)−ŵ(k)] , (10)

where sgn(·) denotes the sign function and sgn(ep(k)) = [sgn(ε(k)), · · · , sgn(ε(k −M + 1))]T .

Setting the derivative of J(ŵ(k + 1)) equal to zero, we get

ŵ(k + 1) = ŵ(k) +
1

2β
X(k) · sgn(ep(k)). (11)
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Substituting (11) into the constraint (8), we obtain

1

2β
=

δ
√

sgn(eTp (k))X(k)XT (k)sgn(ep(k))
. (12)

Substituting (12) into (11), the update equation for the weight vector is then:

ŵ(k+1) = ŵ(k)+
δX(k) · sgn(ep(k))

√

sgn(eTp (k))X
T(k)X(k)sgn(ep(k))

. (13)

Since the a posteriori error vector ep(k) depends on ŵ(k + 1) which is not accessi-

ble before the current update, it is reasonable to approximate it with the a priori

error vector e(k). The minimum disturbance δ controls the convergence level of the

algorithm and it should be much smaller than one to guarantee convergence. It

serves the similar purpose as the step-size parameter in conventional adaptive algo-

rithms. Following the conventions, we replace δ by the step-size parameter µ. Defin-

ing xs(k) = X(k)sgn(e(k)) with sgn(e(k)) = [sgn(e(k)), · · · , sgn(e(k −M + 1))]T , we

obtain the APSA:

ŵ(k + 1) = ŵ(k) + µ
xs(k)

√

xT
s (k)xs(k) + ǫ

, (14)

where ǫ represents the regularization parameter which should be a positive number.

Since µ comes from the minimum disturbance constraint δ, we should choose 0 <

µ ≪ 1 to ensure the stability of the algorithm and to achieve a small steady-state

misalignment.

As shown in (14), no matrix inversion is needed for the proposed APSA and it

only requires L multiplications at each iteration for the normalization. In comparison,

the computational complexities of the APA and FAP algorithm are 2LM +KinvM
2

and 2L+20M [5] multiplications respectively, where Kinv is the factor associated with

the complexity required in matrix inversion. The proposed APSA is much simpler

in implementation than the APA and even the FAP algorithm. Besides, it does not
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have the numerical problems that the FAP exhibits. It is worth mentioning that

the APSA with M = 1 reduces to a new kind of normalized sign algorithm, whose

normalization is based on the Euclidean norm of the input vector. This is different

from the normalized least-mean-absolute deviation (NLMAD) algorithm in [6] which

is normalized by the L1 norm of the input vector.

4 Algorithm Performance

The proposed APSA is compared to the NLMS, APA, and NSA via system

identification applications. The adaptive filter has a length L = 256 taps. The input

signal is chosen to be a colored Gaussian process. This input is generated by filtering

a white Gaussian noise through a first order system with a pole at 0.8 or 0.95. An

independent white Gaussian noise is added to the system background with a 30 dB

signal-to-noise ratio (SNR). In addition, a strong interference signal is also added to

the system output y(k) with a signal-to-interference ratio (SIR) of −30 to 10 dB. The

Bernoulli-Gaussian (BG) distribution [11] is used for modeling the interference signal,

which is generated as the product of a Bernoulli process and a Gaussian process, i.e.,

z(k) = ω(k)n(k), where n(k) is a white Gaussian random sequence with zero mean

and variance σ2
n, and ω(k) is a Bernoulli process with the probability mass function

given as P (ω) = 1− Pr for ω = 0, and P (ω) = Pr for ω = 1. The average power of

a BG process is Pr · σ2
n. Keeping the average power constant, a BG process is spikier

when Pr is smaller. It reduces to a Gaussian process when Pr = 1.

The convergence is evaluated by the normalized misalignment [1] defined as

M(k) = 20 log10{||ŵ(k) − w||2 \ ||w||2}. The ensemble average of 20 trails is used

for M(k). The regularization parameter ǫ is set to 0.0001 for the APA and 0 for the

APSA.
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This work first examines the performance of the APSA with different projec-

tion orders M , as shown in Fig. 1, where M = 1, 2, 5, 10, 20, and the interference is

a BG with SIR = −30 dB and Pr = 0.001 is used. The APSA with higher projec-

tion order achieves both faster convergence and lower misalignment for M = 1 to 10.

When M is larger than a certain value (in this case is 10), the convergence is faster

with a larger M but the steady-state misalignment level is higher. Increasing the

projection order also means increased computational complexity. Therefore a proper

selection of M provides good tradeoff between convergence rate and computational

complexity.
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APSA, µ=0.01, BG interference 
with SIR=−30dB, Pr=0.001
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Figure 1. Misalignment of the APSA with varying values of M = 1, 2, 5, 10, 20 and
same step size of µ = 0.01. The input is an AR(1) with pole at 0.8. The background
noise is Gaussian with SNR=30 dB. The interference is a BG with SIR=−30 dB and
Pr = 0.001.

This work also examines the effect of the step size on the misalignment of

the APSA, as shown in Fig. 2, where four step sizes, µ = 0.1, 0.01, 0.0025, 0.001, are
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Figure 2. Misalignment of the APSA with varying step sizes of µ =
0.1, 0.01, 0.0025, 0.001 and same projection order of M = 2. Other parameters are
the same as those in Fig. 1.
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Figure 3. Misalignment comparison of the APSA, NLMS, APA, and NSA. Other
parameters are the same as those in Figs 1 and 2.
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Figure 4. Misalignment comparison of the APSA, NLMS, APA, and NSA.
SIR=−10 dB. Other parameters are the same as those in Fig. 3.
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Figure 5. Misalignment comparison of the APSA, NLMS, APA, and NSA.
SIR=10 dB, Pr = 0.001. Other parameters are the same as those in Fig. 3.
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Figure 6. Misalignment comparison of APSA, NLMS, APA, and NSA. No impulsive
noise. The input is an AR(1) with pole at 0.95.

used in the simulations. A small step size slows down the convergence rate but also

lowers the steady-state misalignment. In contrast, a large step size speeds up the

convergence rate but gives a higher steady-state misalignment.

The comparisons of the proposed APSA with the conventional NLMS, APA,

and NSA are shown in Figs. 3 to 5 under a BG interference with various SIRs but

with a fixed value of Pr. The SIR is chosen as −30 dB, −10 dB, and 10 dB. The value

of Pr is set to 0.001. In all three cases, the APA and NLMS are more likely to diverge

in more intensive interference while the two sign algorithms are robust against the

impulsive interference. The APSA converges faster and achieves smaller steady-state

misalignment than the NSA.

The case of no impulsive interference is shown in Fig. 6, where only background

noise with an SNR of 30 dB is present. The input is a higher correlated AR(1) process

with a pole at 0.95. The APA performs best and the NSA performs worst. The APSA

performs in the middle, but no worse than the NLMS.
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Finally, this work studies the effect of the impulsiveness of the BG interference

on the performance of the APSA and NSA, as shown in Fig. 7. The SIR is fixed at

−10 dB and the values of Pr are selected to be 0.001, 0.01, and 0.1. The more spikier

the interference, the better the APSA and NSA perform. In all the interference

scenarios, the APSA outperforms the NSA and the performance gain of the APSA

are greater than that of the NSA.
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Figure 7. Misalignment comparison of APSA and NSA under a BG interference
with various levels of impulsiveness. SIR=−10 dB, the values of Pr are chosen as
0.001, 0.01, and 0.1. The input is an AR(1) with pole at 0.8.

5 Conclusions

This paper has proposed an affine projection sign algorithm (APSA) that

updates its weight vector according to the sign of the a priori error vector based on
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the L1-norm optimization. A constraint is applied on variations of the weight vector,

leading to normalization based on the correlation matrix of the input signal. The

proposed APSA combines the benefits of the APA and sign algorithm. The affine

projection makes the APSA converge fast with colored input signals while the L1

optimization guarantees its robustness against impulsive interference. In addition, the

APSA has much lower computational complexity than the conventional APA because

its adaptation only involves the sign operation. As a result, a large projection order

can be selected to achieve faster convergence rate with affordable computational cost.

Simulations have also confirmed the APSA’s improved ability to combat impulsive

interferences and accelerate the convergence rate with colored input signals.
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II. A VARIABLE STEP-SIZE NORMALIZED SIGN ALGORITHM

FOR ACOUSTIC ECHO CANCELATION

Tiange Shao, Yahong Rosa Zheng, and Jacob Benesty

Abstract—A variable step size normalized sign algorithm (VSS-NSA) is proposed,

for acoustic echo cancelation, which adjusts its step size automatically by matching

the L1 norm of the a posteriori error to that of the background noise plus near-end

signal. Simulation results show that the new algorithm combined with double-talk

detection outperforms the dual sign algorithm (DSA) and the normalized triple-state

sign algorithm (NTSSA) in terms of convergence rate and stability.

1 Introduction

In echo cancelation applications, the family of sign algorithms have become

popular due to its simplicity and ease of implementation. Only the sign of the error

signal is involved in the updating process. However, the fixed step-size normalized al-

gorithms can not meet the conflicting goals of fast convergence and small steady-state

error. A large step size leads to fast convergence but large steady-state error while

a small step size yields small steady-state error but slow convergence. Another con-

flict is that high convergence rate is usually more sensitive to near-end disturbances,

especially accompanied by high divergence rate in the presence of double talk.

Several variable step-size sign algorithms have been proposed in the litera-

tures [1, 2, 3, 4] to overcome these conflicts. The dual sign algorithm (DSA) [1] op-

erates as if two sign algorithms with different step-size parameters are working in

cooperation. It transits from a large step size to a small one at the presence of

double talk, thus reducing the divergence rate and improving stability. However,
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switching between two step-size parameters does not ensure non-divergence during

double talk, especially at sharp and large transitions between non-speech and speech

at near-end. The normalized triple-state sign algorithm (NTSSA) [2] improves upon

the DSA by inserting a third step size to provide a better trade-off between stability

and convergence. Unlike the hard-switching of the DSA, the NTSSA which involves

three-state step size ensures soft transition from one step size to another. The design

and performance of the DSA and NTSSA are determined by the values of transition

thresholds, hangover times and the selections of two (for DSA) or three (for NTSSA)

step-size parameters. Three parameters are involved in the DSA and a rough rule is

provided in [1, 3] for the selection of these parameters. In contrast, the NTSSA has

to choose 13 parameters including 3 step-size parameters, 5 thresholds, 5 hangover

times. The selection and coordination of these parameters are critical to the per-

formance of the algorithm and they are dependent on near-end/far-end signals and

background noises. Unfortunately, no clear guidance has been provided for parameter

selection of the NTSSA and the selection is done by trial and error, making it very

difficult to implement in practical applications.

In this paper, we propose a novel variable step-size normalized sign algorithm

which adjusts its time-varying step size automatically, according to input and error

statistics. It avoids complicated, manual selection of parameters and ensure automatic

change of the step size. It achieves both fast convergence and small steady-state error.

The proposed VSS-NSA is combined with Geigel double-talk detection algorithm

[5, 6, 7] to ensure stability at simultaneous present of far-end and near-end signals.
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Figure 1. Block diagram of an echo canceler. x(k)–far-end signal vector, v(k)–near-
end signal plus background noise.

2 The Proposed Variable step-size Normalized Sign Algorithm

The echo cancelation system can be modeled as a system identification prob-

lem, as shown in Fig. 1. The echo canceler’s goal is to detect and remove echo,

thereby enhancing voice quality of the near-end speech. The echo is generated by

filtering the far-end speech x(k) by the echo path vector w of length L. The micro-

phone signal y(k) is the echo plus background noise, including the near-end speech

when double talk happens, which is expressed as

y(k) = wTx(k) + v(k), (1)

where v(k) is the background noise plus near-end speech. The superscript ()T denotes

transpose. Let ŵ(k) be an estimate for the true echo path vector w at iteration k.

The cost function used here is the mean absolute value:

J(ŵ) = E
{

|y(k)− ŵTx(k)|
}

, (2)
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where E{·} is the expectation operator. The sign algorithm updates the filter coef-

ficients along the steepest descent of the cost function in (2). Using the stochastic

gradient approach, the filter coefficients are solved iteratively by [3]:

ŵ(k) = ŵ(k − 1) + µ(k)sign(e(k))x(k), (3)

where µ(k) is the variable step size.

The a priori and a posteriori errors are defined respectively as

e(k) = y(k)− ŵT (k − 1)x(k), (4)

ε(k) = y(k)− ŵT (k)x(k). (5)

Substituting (2) into (8) and substituting (5) yields

ε(k) = e(k) + [ŵ(k − 1)− ŵ(k)]T x(k)

= e(k)− µ(k)sign(e(k))xT (k)x(k). (6)

In the absence of noise, a reasonable method for selecting a variable step size is to

set ε(k) equal to 0. However, in the presence of noise, a better criterion [8] is to set

[w − ŵ(k)]Tx(k) equal to 0 for all k. This implies, based on (8), that the variable

step size is selected to ensure

E{|ε(k)|} = E{|v(k)|}. (7)
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Substituting (6) into (7) , the a posteriori error in terms of µ(k) can be expressed as

E [|ε(k)|] = E
[

|e(k)− µ(k)sign(e(k))xT (k)x(k)|
]

= E
[

||e(k)| − µ(k)xT (k)x(k)|
]

= E [|v(k)|] . (8)

Assume µ(k) is much smaller than 1 and the power of the input signal is normalized

to 1, approximation can be made as follow by first-order Taylor expansion:

E [|ε(k)|] ≈ E [|e(k)|]− µ(k)E
[

xT (k)x(k)
]

= E [|v(k)|] . (9)

The variable step size µ(k) is directly obtained from (9):

µ(k) =
L1(e(k))− L1(v(k))

E [xT (k)x(k)]
, ifL1(e(k)) ≥ L1(v(k)) (10)

where L1(e(k))
.
= E[|e(k)|] and L1(v(k))

.
= E[|v(k)|]. In practical implementation,

the expectation E
[

xT (k)x(k)
]

can be replaced by the instantaneous signal energy

xT (k)x(k). The function L1(e(k)) can be estimated by time averaging

L̂1(e(k)) = λL̂1(e(k − 1)) + (1− λ)|e(k)|, (11)

where λ is the forgetting factor. This yields a variable step-size normalized sign

algorithm

ŵ(k + 1) = ŵ(k) +
L̂1(e(k))− L1(v(k))

xT (k)x(k) + δ
sign(e(k))x(k), (12)

if L1(e(k)) ≥ L1(v(k)). Otherwise, the algorithm stops updating. The value of δ is a

regulation parameter.
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3 Geigel Double-Talk Detection

The performance of an echo canceler during double talk is an important mea-

surement because near-end speech often causes divergence, especially at high conver-

gence rate. A double-talk detector (DTD) is a good method to meet the contradictory

requirement of low divergence rate and fast convergence in echo cancelation. It in-

hibits updates while the far- and near-end speeches are present simultaneously. To

ensure the stability of the algorithm, the proposed VSS-NSA is combined with a

simple DTD algorithm, the Geigel DTD algorithm [7]. The Geigel DTD detects the

near-end signals by comparing the magnitude of current far-end sample and the max-

imum magnitude of the recent past samples of the near-end signals, which means

declaring double-talk when

|y(k)| > T max{|x(k)|, |x(k − 1)|, · · · , |x(k − L+ 1)|}. (13)

The factor of T is usually set to 0.5 based on the assumption of 6 dB hybrid atten-

uation. Once the double talk is declared, the updates is inhibited for some hangover

time in order to reduce the miss of detection.

4 Algorithm Performances

The proposed VSS-NSA was compared to the DSA and NTSSA via an echo

cancelation application. The echo path w was taken from an acoustic impulse re-

sponse of a room, which was generated according to the image model [9] and trun-

cated to L = 256 taps. The far-end and near-end speech was sampled at 8 kHz. The

power of near-end signal was 10 dB less than the far-end signal. An independent white
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Gaussian noise was added as system background noise with a 30 dB signal-to-noise

ratio (SNR). We used two sets of near-end speeches, as shown in Fig. 2(b) and Fig.

4(b) to test the algorithms. The far-end speech remained the same, as shown in Fig.

2(a) and Fig. 4(a). The Geigel double-talk detection was used with the assumption

of 0 dB hybrid attenuation and the threshold T was set to 1.2. The detection results

of the two cases are shown in Fig. 2(c) and Fig. 4(c), respectively, where the value

of 1 stands for a double-talk declaration while the value of 0 stands for no near-end

speech.

For both the DSA and NTSSA, parameter selection affected the algorithms

directly. Although the study of the step size for the DSA had been carried out in [1,3]

and offered methods of calculating the appropriate parameters, those methods only

yielded a rough range of the parameter estimation based on the statistics of the

input signal. Manual adjustment of each parameter was needed to achieve good

performance. As for the NTSSA proposed in [2], which involved more parameters

(3 step sizes, 5 transition thresholds, and 5 handover times), there were no general

rules and the selection was done by trial and error. Besides, the statistics of speech

signals had great impact on the parameter selection and consequently on the algorithm

performance. Once speech signals were changed, the old parameters might not work

any more and they needed to be re-tuned. In contrast, the VSS-NSA updated its

step size automatically without off-line calculation of statistics. The step size became

small when DTD declared double talk and large when DTD declared no double talk.

In case 1, we chose 0.03 and 0.3 for the two step sizes and 80 for the transition

threshold in simulations of the DSA based on the rough guide of [1]. For the NTSSA,

we chose 2−2, 2−3, 2−6 for the three step sizes, other requiring parameters were the

same as in [2]. The forgetting factor λ was set to 0.976 for both the DSA and NTSSA

while set to 0.998 for the VSS-NSA. The initial step size of the VSS-NSA was set to
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1. The hangover time for the Geigel DTD was set to 200 samples equivalent to 25

ms.

In case 2, in order to get better performance, the two step-size parameters of

the DSA had to be changed to 0.01 and 0.5 while the three step-size parameters of the

NTSSA had to be changed to 2−3, 2−4, 2−6 and its forgetting factor λ was changed

to 0.99. No changes were needed for any parameters of the VSS-NSA.

The convergence performances were evaluated by the normalized misalignment

M(k) defined as [10]

M(k) = 20 log10
||ŵ(k)−w||

||w|| . (14)

The comparisons of the three sign algorithms for case 1 and case 2 are shown

in Fig. 3 and Fig. 5, respectively. In both the two cases, the NTSSA was superior

to the DSA. The VSS-NSA outperformed both the NTSSA and DSA in terms of

convergence rate. In addition, the VSS-NSA was robust against the change of the

near-end speeches and did not need recalculating the parameters like the DSA and

NTSSA.

Actually, the Geigel DTD was not very effective on acoustic signal detection.

There were a lot of misses and false alarms. When a miss happened, the step size

that should had been frozen to zero increased greatly and caused a little divergence,

as shown in Fig. 3. Fortunately, the VSS-NSA was robust enough to prevent the

divergence in a short time. As a result, the VSS-NSA ensured the system stability

with the help of Geigel DTD. The combination of the VSS-NSA and Geigel DTD

served as a robust algorithm for acoustic echo cancelation.
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Figure 2. Case 1 of acoustic echo cancelation. (a) the far-end speech; (b) the near-end
speech; (c) results of the Geigel DTD.
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Figure 3. Misalignment of the VSS-NSA, DSA, and NTSSA for case 1. The VSS-NSA
converged faster than the DSA and NTSSA even though the DTD had lots of false
alarms and the VSS-NSA froze adaptation at each declared double talk.
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Figure 4. Case 2 of acoustic echo cancelation. (a) the far-end speech; (b) the near-end
speech; (c) results of the Geigel DTD.
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5 Conclusions

In this paper, a variable step-size normalized sign algorithm (VSS-NSA) has

been proposed and compared with other popular sign algorithms such as the dual

sign algorithm (DSA) and normalized triple-state sign algorithm (NTSSA) for appli-

cation of acoustic echo cancelation. The DSA and NTSSA involve several step-size

parameters and transition thresholds based on off-line calculation of signal statistics.

In addition, the two kinds of sign algorithms are affected greatly by practical param-

eters selection. Different from the DSA and NTSSA, the VSS-NSA is much more

intelligent in that it automatically adjusts the step size by matching the L1 norm of

the a posterior error to that of the unwanted noise. The proposed VSS-NSA improves

convergence rate while reduces the steady-state error. However, the fast convergence

is also accompanied with high divergence rate during double-talk periods. In this

paper, we use the Geigel double-talk detector to help the VSS-NSA combat the dou-

ble talk. Simulations demonstrate that the proposed VSS-NSA combined with Geigel

double-talk detection outperforms other sign algorithms in terms of both convergence

rate and system stability.
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III. A VARIABLE STEP-SIZE NORMALIZED FRACTIONALLY

LOW-ORDER MOMENT ALGORITHMS FOR NON-GAUSSIAN

INTERFERENCE ENVIRONMENT

Yahong Rosa Zheng, Tiange Shao, and Vitor Nascimento

Abstract—Two variable step-size normalized fractionally lower-order moment (VSS-

NFLOM) algorithms are proposed for system identification in a non-Gaussian inter-

ference environment. The two algorithms automatically adjust their step-sizes and

adapt the weight vector by minimizing the p-th moment of the a posteriori error,

where p is the order with 1 ≤ p ≤ 2. The proposed VSS-NFLOM algorithms are ap-

plied to both real- and complex-valued systems using low-complexity time-averaging

estimation of the lower-order moments. Simulation results show that the misalign-

ment of the proposed VSS-NFLOM algorithms with a smaller p converges faster and

achieves lower steady-state error in impulsive interference and/or a colored input envi-

ronment. The VSS-NFLOM algorithms also perform better than the Fixed Step-Size

(FSS) NFLOM in both Gaussian and impulsive interference environments.

1 Introduction

Adaptive filters have been commonly used in various applications of system

identification, such as channel estimation [1], noise cancelation [2], echo cancela-

tion [3], image restoration [4, 5], and seismic system identification [6, 7]. The most

popular adaptive filtering algorithms are the least mean square (LMS) algorithm

and normalized LMS (NLMS) algorithm, which have the advantage of simplicity,

low steady-state error, and fast tracking. However, their major drawbacks are slow

convergence [8] and performance degradation in colored input or non-Gaussian inter-

ference [9].
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Over the past two decades, many variants of LMS have been proposed to

overcome these problems [10, 11, 12, 13, 14, 15, 16, 17, 18, 5, 19, 9, 20]. Most of these

algorithms take one or a combination of four approaches: 1) using variable step size

to achieve both fast convergence and low steady-state errors [11,10,16,12,13,14,15];

2) using a small-order affine projection [17, 16] to compromise fast convergence and

low computational complexity for colored inputs; 3) using nonlinear filtering such as

median filtering, higher or lower order moment algorithms to combat non-Gaussian

interference [5, 18, 9, 21, 22, 19, 23]; and 4) using combinations of algorithms with

different properties [24, 25].

Impulsive, non-Gaussian interference often occurs in practical applications and

the LMS algorithm, as an optimal method for Gaussian models, suffers performance

degradation in non-Gaussian environments. Interfering signals with heavy-tailed dis-

tributions produce more outliers than those assumed by Gaussian models. The char-

acterization of a non-Gaussian signal by its second order moment is no longer optimal

and many studies have shown that higher or lower order statistics can lead to im-

proved convergence or improved robustness against non-Gaussian interference. The

approach using higher or lower order statistics yields several families of algorithms

including the normalized sign algorithms (NSA) or least absolute deviation (LAD)

algorithms [26, 5, 27], fractional lower-order moment/statistic (FLOM or FLOS) al-

gorithms [9, 21], and least mean fourth-moment (LMF) algorithms [28]. These algo-

rithms are based on the norms L1, Lp with 1 < p < 2, and L4, respectively, rather

than the L2 norm. We refer to this class of algorithms as the least mean p-norm

(LMP) algorithms, where p = 2 leads to the conventional LMS algorithm and p = 1

leads to the LAD algorithm.

In particular, the FLOM algorithms (or LMP with 1 ≤ p < 2) have been

developed for very impulsive models. They were first proposed for systems with

alpha-stable distributed inputs [9], and later reformulated to the normalized FLOM
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algorithm [19]. It has been shown [4, 5, 29] that the NFLOM algorithms perform

better than the NLMS in heavy-tailed non-Gaussian interference, but slightly worse

in a Gaussian interference environment. When the order p is smaller, the NFLOM

algorithm achieves faster convergence but with higher steady-state errors than the

NLMS algorithm. The conflicting goals of fast convergence and low steady-state error

are caused by the inherent limitation of the fixed step size in both the NLMS and

NFLOM algorithms. A large step size results in fast convergence but large steady-

state errors; whilst a small step size achieves small steady-state errors but with slow

convergence.

Several variable step-size NLMS algorithms have been proposed in the liter-

ature [10, 11, 16, 30, 15, 14, 12, 13]. The basic idea is to use a time-varying step size

to achieve a compromise between fast convergence and small steady-state error. The

step size is automatically adjusted according to a criterion. For example, the step

size is selected in [10] based on the correlation between the a priori error and the

a posteriori error, or in [30, 16] by minimizing the mean-square deviation. In [14]

and references therein, the proportionate NLMS algorithms control the step size at

each filter tap individually based on the difference between the current value of the

coefficient and the averaged, past values. In [11], the step size is chosen by matching

the a posteriori mean-square error (MSE) to the power of the background white noise

rather than simply minimizing the MSE. This matching of powers leads to a quadratic

function of the step size and an approximate solution to the quadratic function re-

sults in a nonparametric VSS-NLMS algorithm. In [12] and [13], a mixed-norm and

a switched-norm algorithm are proposed, respectively, combining the NLMS with the

NSA according to the error dynamics.

In [24,25] two different algorithms are run in parallel, and their outputs com-

bined in a convex manner. While the resulting filter has excellent convergence and

tracking properties, its complexity is double that of a conventional filter.
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This paper proposes two variable step-size (VSS) algorithms for NFLOM adap-

tive filters, thus combining the benefits of variable step sizes with the robustness of

the lower order statistics algorithms against impulsive interference. The weight vector

is adapted by minimizing the p-th moment of the a posteriori error where 1 ≤ p ≤ 2.

The step-size is automatically controlled by approximating the power of the a posteri-

ori error to that of the background white noise as in [11]. The proposed VSS-NFLOM

algorithms extend the VSS-NLMS method [11] in two aspects: first, we extend the

nonparametric variable step size approach to the lower order moment algorithms

where the derivation using a lower-order moment 1 ≤ p < 2 is non-trivial; second,

a different approximation is also derived to solve the quadratic equation of the step

size along with the approximation used in [11], thus leading to two VSS-NFLOM

algorithms. In contrast, the exact solution to the quadratic equation does not lead

to a good VSS algorithm.

The proposed VSS-NFLOM algorithms are evaluated extensively by computer

simulations under different interference and input signals, and for real- and complex-

coefficient systems. The results indicate that the proposed VSS-NFLOM algorithms

achieve faster or comparable convergence rate and smaller steady-state error than the

fixed step-size NFLOM (FSS-NFLOM) algorithms in all signal scenarios. The VSS-

NFLOM algorithms with p = 1 achieve the best performance among all scenarios

and for both real- and complex-coefficient systems. The tracking performance and

stability of the proposed algorithms are also investigated.
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2 The Proposed VSS-NFLOM Algorithm

Consider a system identification problem where the output signal from an

unknown system described by a complex coefficient vector wo is

y(k) = wH
o x(k) + v(k) (1)

where x(k) is the input signal vector of length L and v(k) is the background noise plus

interference signal. The superscript ()H denotes conjugate transpose (Hermitian). Let

ŵ(k) be an estimate for wo at iteration k and define the a priori and a posteriori

errors as

ek = y(k)− ŵH(k − 1)x(k), (2)

εk = y(k)− ŵH(k)x(k) = [wo − ŵ(k)]H x(k) + v(k), (3)

respectively. The adaptive filter must minimize the cost function selected as the p-th

order moment of εk

J(ŵ(k)) = E
{

|y(k)− ŵH(k)x(k)|p
}

, (4)

where E{·} is the expectation operator.

The FLOM algorithm provides an approach similar to the LMS algorithm for

updating the filter coefficients along the steepest descent of the cost function (2).

Using the stochastic gradient approach, the filter coefficients are solved iteratively

by [9]

ŵ(k) = ŵ(k − 1) + µ(k)e<p−1>
k x(k) (5)
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where µ(k) is the step size, the operation z<p> is defined as z∗|z|p−1, with superscript

∗ denoting the conjugate and | · | the absolute value.

In the absence of noise and interference, a reasonable method for selecting

a variable step size is to set εk equal to 0. However, in the presence of noise and

interference, a better criterion [11] is to set [wo − ŵ(k)]Hx(k) equal to 0 for all k.

This implies, based on (8), that the variable step size is selected to satisfy

Sε(k) = E{εkε∗k} ≈ E{v(k)v∗(k)} = Sv. (6)

where Sv is the noise-plus-interference power which is often estimated during the

absence of the input signal (for example, during periods of silence in speech). Sub-

tracting (2) from (8) and substituting (5), the a posteriori error in terms of µ(k) can

be expressed as,

εk = ek + [ŵ(k − 1)− ŵ(k)]Hx(k),

= ek − µ(k)[e<p−1>
k ]∗xH(k)x(k). (7)

Substituting (7) in (6) yields

Sε(k) = E
[

|ek|2
]

− 2µ(k)E
[

|ek|pxH(k)x(k)
]

+ µ2(k)E
[

|ek|2p−2|xH(k)x(k)|2
]

(8)

Equating (8) to Sv gives a quadratic equation in µ(k):

1− 2
b(k)

Se(k)
µ(k) +

a(k)

Se(k)
µ2(k) ≈ Sv

Se(k)
. (9)
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where Se(k) = E [|ek|2] and

b(k) := E
[

|ek|pxH(k)x(k)
]

, (10)

a(k) := E
[

|ek|2p−2(xH(k)x(k))2
]

. (11)

We also noticed that in some situations the following approximations lead to better

filter performance:

b(k) ≈ Lp(ek)Sxx(k), (12)

a(k) ≈ L2p−2(ek)Pxx(k)). (13)

where Lp(ek) := E[|ek|p], L2p−2(ek) := E[|ek|2p−2], Sxx(k) := E[xH(k)x(k)], and

Pxx(k) := E[|xH(k)x(k)|2]. These approximations are equivalent to assuming that

ek and x(k) are independent. This is only approximately true after the filter con-

verged; however, as our simulations will show, the alterative filters also show good

performance in the transient.

The quadratic function (9) can be easily solved using the time-averaged esti-

mates of a(k), b(k) and Se(k). However, the exact roots of the quadratic equation are

often complex or out of the stability range (see Appendix). Even if one or both roots

of (9) are real and valid at some instant k, using those exact roots for µ(k) can cause

large jumps in the step size and does not lead to a good variable step size algorithm.

Instead, we use two approximate solutions to (9) to derive two good variable step-size

algorithms.

Replacing b(k)/Se(k) by
√

a(k)/Se(k) yields the VSS-NFLOMa algorithm

[

1−
√

a(k)

Se(k)
µ(k)

]2

≈ Sv

Se(k)
(14)



44

The variable step size is then formulated as

µ(k) =

√

Se(k)

a(k)

[

1−
√

Sv

Se(k)

]

, if Sv ≤ Se(k) (15)

where Se(k) and a(k) can be estimated by time averaging using a forgetting factor λ

Ŝe(k) = λŜe(k − 1) + (1− λ)|ek|2, (16)

â(k) = λâ(k − 1) + (1− λ)|ek|2p−2
(

xH(k)x(k)
)2

. (17)

A variant of VSS-NFLOMa uses (13) instead of (11) and the variable step size

becomes

µ(k) =

√

Se(k)

L2p−2(ek)Pxx(k)

[

1−
√

Sv

Se(k)

]

, if Sv ≤ Se(k) (18)

using time-averaging estimates L2p−2(ek) and Pxx(k) instead of â(k).

P̂xx(k) = λP̂xx(k − 1) + (1− λ)|xH(k)x(k)|2, (19)

L̂2p−2(ek) = λL̂2p−2(ek−1) + (1− λ)|ek|2p−2. (20)

An alternative approximation to (14) is to replace a(k)/Se(k) by [b(k)/Se(k)]
2

[

1− b(k)

Se(k)
µ(k)

]2

≈ Sv

Se(k)
(21)

This results in the VSS-NFLOMb algorithm with variable step size as

µ(k) =
Se(k)

b(k)

[

1−
√

Sv

Se(k)

]

if Sv ≤ Se(k) (22)
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Again, a variant of the VSS-NFLOMb using (12) instead of (10) yields

µ(k) =
Se(k)

Lp(ek)Sxx(k)

[

1−
√

Sv

Se(k)

]

, if Sv ≤ Se(k) (23)

In practical implementations, the expectation Sxx(k) = E[xH(k)x(k)] can be replaced

by the instantaneous signal energy xH(k)x(k). This is the approach taken by [11] for

VSS-NLMS. It is interesting to notice that the step-size µ(k) in (23) is inversely

proportional to E
[

xH(k)x(k)
]

, so that the filter includes normalization. All other

variants of VSS-NFLOM, (15), (18), (22) also include some form of normalization, in

the sense that the denominator for µ(k) includes a term that is related to ‖x(k)‖2.

We show in the Appendix that the ratio a(k)Se(k)/b
2(k) is very close to one

for p = 2 and large filter length L, thus in this case the VSS-NFLOMa is equivalent

to the VSS-NFLOMb. However, for small L and p < 2, the two algorithms are

significantly different, and Section 4 will show that VSS-NFLOMa performs better

than VSS-NFLOMb for small p.

The proposed two VSS-NFLOM algorithms and their variants are summarized

in Table 1, where δ and ǫ are small positive constants to avoid division by zero, and

µ0 is a step size multiplier often selected as µ0 ≤ 1. The left column gives the

VSS-NFLOMa algorithms and the right column shows VSS-NFLOMb.

3 Performance Analysis

The proposed VSS-NFLOM algorithms were evaluated through computer sim-

ulation for two system identification applications. One was a real-coefficient system

with real-valued signals and coefficients often used in speech or image processing ap-

plications, such as acoustic echo cancelation and watermark detection. Another was a
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Table 1. The VSS-NFLOM algorithms
Parameters λ = 1− 1/(ηL), forgetting factor, with 2 ≤ η ≤ 10

Sv= variance of background noise and interference
δ = CLσ2

x, C = constant, σ2
x = power of input signal

ǫ > 0, small constant to avoid division by zero
µ0= step size multiplier

Initialization ŵ(0) = 0, Ŝe(0) = 0

Init (original) original â(0) = 0 b̂(0) = 0

Init. (variant) L̂2p−2(e0) = 0, P̂xx(0) = 0 L̂p(e0) = 0, Ŝxx(0) = 0
Error ek = y(k)− ŵH(k − 1)x(k)

Estimates Ŝe(k) = λŜe(k − 1) + (1− λ)|ek|2
γ(k) =

[

1−
√

Sv

Ŝe(k)+ǫ

]

Lx(k) = xH(k)x(k)

Est. (original) â(k) = λâ(k − 1) + (1 −
λ)|ek|2p−2L2

x(k)
b̂(k) = λb̂(k − 1) + (1 −
λ)|ek|pLx(k)

Est. (variant) P̂xx(k) = λP̂xx(k − 1) + (1 −
λ)L2

x(k)
Ŝxx(k) = λŜxx(k − 1) + (1 −
λ)Lx(k)

L̂2p−2(ek) = λL̂2p−2(ek−1) +
(1− λ)|ek|2p−2

L̂p(ek) = λL̂p(ek−1) + (1 −
λ)|ek|p

Update (original) α(k) =
√

Ŝe(k)
â(k)+δ2

β(k) = Ŝe(k)

b̂(k)+δ

Update (variant) α(k) =

√

Ŝe(k)

L̂2p−2(ek)P̂xx(k)+δ2
β(k) = Ŝe(k)

L̂p(ek)Ŝxx(k)+δ

Step-size µ(k) = µ(k) =
{

µ0α(k)γ(k), ifSv ≤ Ŝe(k)
0, otherwise

{

µ0β(k)γ(k), ifSv ≤ Ŝe(k)
0, otherwise

Weight vector ŵ(k) = ŵ(k − 1) + µ(k)x(k)e<p−1>(k)

complex-coefficient system, often found in communications and radar signal process-

ing, such as channel estimation and adaptive beamforming [1]. The adaptive filter

had a length of L = 128 taps and the input was chosen to be a white or colored Gaus-

sian process. The colored input, denoted as AR(1) signal, was generated by filtering

white Gaussian noise through a first order system with a pole at 0.8 for the real-

coefficient system and a pole at 0.5 for the complex-coefficient system. Independent

white Gaussian noise was added to the system background and the signal-to-noise
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ratio (SNR) was 30 dB. In addition, a strong interference signal was also added to

the system output y(k) with an interference-to-noise ratio (INR) of 20 dB.

In the real system, two types of distributions, a Gaussian and an impulsive

Bernoulli-Gaussian [18], were considered for the interference signals. The Bernoulli-

Gaussian interference was generated as the product of a Bernoulli process and a

Gaussian process

z(k) = ω(k)N(k) (24)

where N(k) was a white Gaussian random sequence with zero mean and variance σ2
N ,

and ω(k) was a Bernoulli process with the probability mass function given as

P (ω) =











1− Pr, ω = 0

Pr, ω = 1
(25)

The average power of the BG process was Pr · σ2
N . In general, a BG process is spikier

when Pr is smaller and it reduces to a Gaussian process when Pr = 1. BG interference

is often seen in seismic system identification [6, 7] and can also model double talk in

network echo cancellation [12, 31, 32].

In the complex system, the input, noise, and interference signals were all as-

sumed complex. The real and imaginary parts of the input and noise were generated

independently as white or filtered Gaussian and the complex interference signal was ei-

ther complex Gaussian or compound K distributed [33]. The compound K distributed

signal was generated as the product of two random processes: Zc(k) =
√

G(k) ·N(k),

where G(k) was a Gamma-distributed texture and N(k) was a complex Gaussian

speckle. The envelope of Zc(k), denoted as r(k), exhibited compound K distribution
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as [33]

f
R
(r) =

4√
βΓ(ν)

(

r√
β

)ν

Kν−1

(

2r√
β

)

, r ≥ 0 (26)

where Kν(·) is the modified Bessel function of the second kind and with order ν, ν is

the shape parameter, and β the scale parameter. The average power of the compound

K process is β · ν. With a fixed average power, the compound K distribution with a

smaller ν has a higher envelope tail. When ν → ∞, it reduces to the Rayleigh dis-

tribution, which is the envelope distribution of a complex Gaussian random variable.

Compound K distribution is often found in radar array applications and underwater

acoustic communications [33, 34, 35].

For all simulation studies in both the real and complex systems, the VSS-

NFLOM algorithms used a forgetting factor λ = 1 − 1/(ηL), where η = 2 for white

input signal, and η = 6 for AR(1) input signal, unless specified otherwise. The small

constants were selected as δ = 0.04Lσ2
x and ǫ = 10−3. The step size multiplier for

VSS-NFLOM was µ0 = 1 and the step size for FSS-NFLOM was µ = 0.1. The

multipliers were chosen so that the initial rate of convergence of all filters is the same.

The convergence performance was evaluated by the normalized misalignment

M(k) defined as [1]

M(k) = 20 log10
||ŵ(k)−wo||

||wo||
(27)

An ensemble average of 100 trials was used for the evaluation of M(k).

3.1 Comparison of VSS-NFLOM algorithms and variants

The performance of the proposed two VSS-NFLOM algorithms and their vari-

ants were compared with the FSS-NFLOM algorithms using the example of L = 128

real-coefficient system. With white input and Gaussian interference, all VSS-NFLOM
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Figure 1. Misalignment of VSS-NFLOM algorithms in a real-coefficient system.
SNR=30 dB. SIR=10 dB. δ = 0.04Lσ2

x, η = 4. The two VSS-NFLOM algorithms
had very similar performance as their variants for all orders of p.

algorithms performed better than the FSS-NFLOM, as shown in Fig. 3.1(a). The two

VSS-NFLOM algorithms had convergence rates very similar to their variants for all

values of p. Their steady-state errors were slightly different, but the differences were

less than 2 dB. With AR(1) input, BG interference and p = 2, both VSS-NFLOM

algorithms and their variants performed similarly, as shown in Fig. 3.1(b). Their

convergence rate was slightly inferior to the FSS-NFLOM, but the steady-state er-

rors were slightly lower than that of the FSS-NFLOM. For p = 1, the VSS-NFLOMa

performed better than the VSS-NFLOMb with more than 5 dB lower steady-state

error. Both VSS-NFLOM algorithms performed better than the FSS-NFLOM. The

variants of the VSS-NFLOMb algorithm exhibited 2 dB lower steady-state error than

the original VSS-NFLOMb algorithm; while the original VSS-NFLOMa converged

slightly faster than its variant but achieved the same steady-state error.
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In the following subsections, we only present detailed performance evaluation

for the original VSS-NFLOM algorithms and omit those of the variants due to their

small differences.

3.2 Convergence of Real-Coefficient Systems

The misalignment of the VSS-NFLOM algorithms for a real-coefficient system

was compared with the FSS-NFLOM algorithm under white or colored inputs and

Gaussian or BG interference scenarios, as shown in Fig. 2. In white input and

Gaussian interference, the two VSS-NFLOM algorithms achieved faster convergence

and lower steady-state error than the FSS-NFLOM for all orders of p, as shown in

Figs. 3.2(a), 3.2(c), and 3.2(e). For AR(1) input and Gaussian interference, the VSS-

NFLOM algorithms exhibited similar initial convergence but slightly slower secondary

convergence than the FSS-NFLOM. On the other hand, they converged to much lower

steady state error than the FSS-NFLOM. Both VSS-NFLOM algorithms behaved

similarly in their misalignment curves, and the same was observed in their excess

MSE curves (not shown). The VSS-NFLOM algorithms achieved similar steady-state

error and convergence rate for all p. In contrast, the FSS-NFLOM with a larger

order p converged more slowly but to a lower steady-state error than that of a smaller

order. This means that the selection of order for the VSS-NFLOM algorithms has

low importance to the performance in Gaussian interference.

In the BG interference cases as shown in Figs. 3.2(b), 3.2(d), and 3.2(f),

the VSS-NFLOM algorithms converged faster and achieved lower steady-state error

than the corresponding FSS-NFLOM for all orders when the input was white. The

two VSS-NFLOM algorithms behaved similarly when p is large, but quite differently

when p = 1, with the VSS-NFLOMa achieving lower steady-state error than the VSS-

NFLOMb. With the AR(1) input, the two VSS-NFLOM algorithms with a smaller
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order performed much better than their corresponding FSS-NFLOM, while the VSS-

NFLOM algorithms with a larger order performed comparably to the corresponding

FSS-NFLOM. Among all algorithms, the VSS-NFLOMa with p = 1 had the best

performance in all signal and interference scenarios achieving both fast convergence

and low steady state error.

Comparing the two VSS-NFLOM algorithms, the VSS-NFLOMa and VSS-

NFLOMb have similar behavior when p is large, but different behavior when p → 1,

especially in impulsive interference. The VSS-NFLOMa (p = 1) greatly outperformed

the VSS-NFLOMb in terms of steady-state error in BG interference, as shown in

Fig. 3.2(f). These results may be explained by the analysis of the coefficient ratio

b2(k)Se(k)/a(k) in the Appendix. When p = 2, the ratio is close to 1 for large filters

length, which results in similar performance of the VSS-NFLOMa and VSS-NFLOMb.

When p → 1, or L is small, or interference is impulsive, the ratio drops dramatically

and the VSS-NFLOMa is shown to perform better than the VSS-NFLOMb.

3.3 Convergence of Complex-Coefficient Systems

The performance of the VSS-NFLOM algorithm for the complex system was

also compared with the FSS-NFLOM algorithm, as shown in Fig. 3. The complex-

coefficient system was generated as a sum of sinusoids [36] for each of the 128 taps.

Compound K interference with shape parameter of ν = 0.7 was generated using [37].

The misalignment of the VSS-NFLOM algorithms performed similarly for all orders,

achieving faster convergence and smaller steady-state error than the corresponding

FSS-NFLOM algorithm. We also verified that the excess mean square error (MSE)

curves (not shown here) of the VSS-NFLOM algorithms exhibited similar performance

gains over the FSS-NFLOM.
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Figure 2. Misalignment of the VSS-NFLOM and FSS-NFLOM algorithms for a real
system with L = 128 taps. Solid lines – FSS-NFLOM, Dash-dotted lines – VSS-
NFLOMa, Dashed lines –VSS-NFLOMb. All VSS-NFLOM algorithms performed
better than FSS-NFLOM, and VSS-NFLOMa performed significantly better than
VSS-NFLOMb for p = 1.
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Figure 3. Misalignment of the VSS-NFLOM and FSS-NFLOM algorithms for a
complex-coefficient system with L = 128 taps. The inputs were white or colored com-
plex Gaussian and the interference was compound K distributed with shape parameter
ν = 0.7. Dotted lines – FSS-NFLOM, Solid lines – VSS-NFLOMa, Dash-dotted lines
–VSS-NFLOMb.

3.4 Tracking Performance

The tracking performance of the VSS-NFLOM algorithms was evaluated with

a real-coefficient system. The ideal system impulse response was modified at iteration

2.5× 104 by multiplying the weight coefficients by −1. The tracking performance of

both VSS-NFLOM algorithms was compared in BG interference with white or colored

inputs, as shown in Fig 4. Both VSS-NFLOM algorithms with all values of p were

able to track the sudden change and converged quickly to the new system response.

In other input and interference scenarios, the tracking performance was similar to

those in Fig. 4 with slightly different convergence rate and steady-state errors. The

tracking performance of the FSS-NFLOM algorithm also behaved similarly to the

VSS-NFLOM algorithms.
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Figure 4. Tracking performance of the VSS-NFLOM algorithms for a real system
with L = 128 taps. The inputs were white or colored Gaussian and interference was
BG. Other parameters were the same as Fig. 2. Dash-dotted lines – VSS-NFLOMa.
Solid lines – VSS-NFLOMb.

3.5 Discussion on Stability

For normalized LMS, it is well known that the step size multiplier has to satisfy

0 < µ0 < 2 to ensure stability [1]. This applies to the selection of variable step sizes in

the VSS-NFLOM algorithms with p = 2. The variable step size selected in (18) and

(23) with µ0 ≤ 1 ensures that the two VSS-NFLOM algorithms satisfy the stability

condition when p = 2, thus ensuring the stability of the VSS-NFLOM algorithms. In

practice we noted that the filters remain stable even for p < 2 with the choice µ0 ≤ 1.

For p = 1, the FLOM algorithm becomes a member of the L1-norm (or sign

algorithm) family. For fixed step size sign algorithms, limited studies are devoted

on the convergence analysis of the sign algorithm and its variants [27, 38, 39, 26, 40,

41, 42]. Attempts to finding a stability bound for the SA family have been reported

in [27, 38, 39] using a second order stochastic model similar to that in the analysis
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of the L2-norm algorithms. However, this approach is proven to be incorrect for

the L1-norm algorithms [26]. Instead, an interesting result for L1-norm algorithms

is that the sign algorithm is asymptotically bounded for any step-size greater than

zero [26,41,42]. This property is not present in the L2-norm algorithms and it proves

to be a significant advantage of the sign algorithm family in terms of robustness.

Upper bounds for the time-averaged mean absolute deviation (weight misalignment)

and time-averaged mean square error at steady state are derived as functions of

the step size in [26, 41], which give guidelines for choosing the step size in practical

applications. As a variant of the sign algorithm, the FSS-NFLOM with p = 1 also

exhibits the asymptotic convergence property for step sizes greater than zero. This

is verified by simulation for the asymptotic misalignment, as shown in Fig. 5. The

steady-state misalignment was bounded for all step sizes µ > 0 and p = 1.

To the best of our knowledge, a rigorous analysis for the stability of FSS-

NFLOM algorithms with fractional order does not exist in the literature. Our sim-

ulation results show that the FSS-NFLOM with p = 1.5 also guaranteed asymptotic

convergence for any step size greater than zero, as shown in Fig. 5. In contrast, the

misalignment of the FSS-NFLOM with p = 2 was bounded only when µ < 2 for both

Gaussian and BG interference scenarios. Comparing the steady-state misalignment

of the three orders, the misalignment of p = 2 remained nearly the same for the two

interference scenarios, while the FSS-NFLOM with p < 2 performed better in BG

interference when the step size was small. The FSS-NFLOM with p = 1.5 achieved

smaller steady-state misalignment than that of p = 1 when step size µ < 3, and the

FSS-NFLOM with p = 1 performed better than that of p = 1.5 when µ > 3. For prac-

tical applications, a small µ ≪ 2 is suggested for all orders of p in the FSS-NFLOM

to ensure small steady state errors.

It is worth noting that the guaranteed stability of the FSS-NFLOM with p < 2

and µ > 0 does not mean that the VSS-NFLOM algorithms are also guaranteed to
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Pr = 0.01

Figure 5. Steady-state misalignment of fixed step-size FLOM algorithms as a function
of the step-size µ. The input was a real-coefficient white Gaussian signal with SNR=
30 dB. The interference was Gaussian or BG.

be stable with the step size multiplier µ0 > 0 for p < 2. The stability analysis for the

fractional-order VSS-NFLOM algorithms is even more difficult than that of p = 1 or

p = 2. We resort to simulation results to show that µ0 = 1 guarantees the stability

of the VSS-NFLOM algorithms for 1 ≤ p ≤ 2. However, µ0 > 1 may cause the

VSS-NFLOM to diverge for all 1 ≤ p ≤ 2, as illustrated in Fig. 6, where the step size

multiplier used was µ0 = 2. The two VSS-NFLOM algorithms with p = 1 and the

VSS-NFLOMa with p = 2 diverged in both white and AR(1) input scenarios with

BG interference.
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Figure 6. Diverged misalignment curves for VSS-NFLOM with the step size multiplier
µ0 = 2. Other parameters were the same as Fig. 2. Misalignment was averaged over
100 trials.

4 Conclusions

Two variable step-size normalized fractionally lower-order moment (VSS-NFLOM)

algorithms have been proposed for system identification applications, which automat-

ically adjust the step size by approximating the power of the a posteriori error to that

of the background noise. Variants of implementation using time-averaged estimates

of error and signal statistics are also developed for each VSS-NFLOM algorithm. The

proposed VSS-NFLOM algorithms have been evaluated extensively by computer sim-

ulations under Gaussian or heavy-tailed non-Gaussian interference signals with white

or colored inputs, and for real- and complex-coefficient systems. The results have

shown that the new VSS-NFLOM algorithms combine the benefits of variable step

sizes with the robustness of the NFLOM algorithms against impulsive interference,

thus achieving better tradeoff between fast convergence and small steady-state error
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than the FSS-NFLOM and the VSS-NLMS [11]. The proposed VSS-NFLOM algo-

rithms with order p = 1 exhibit best performance in both Gaussian and impulsive

interference environments and its asymptotic convergence is guaranteed for all step

sizes µ(k) > 0 when the step size multiplier satisfies 0 < µ0 ≤ 1.

5 Appendix

We show the relationship between the coefficients of the quadratic equation

(9) under the assumption that the a priori error is independent from the input signal.

First let us consider the statistics of xH(k)x(k) and assume that the input signal

x(k) is white or colored (real/complex) Gaussian with zero mean and average power

σ2
x. Denote the correlation matrix of the input vector x(k) as Rxx(k) = E[x(k)xH(k)]

whose eigenvalue decomposition is Rxx(k) = UΣU∗, where U is a unitary matrix and

Σ is a diagonal matrix of nonnegative eigenvalues, σ(l), l = 1, · · · , L. The input vector

can be linearly transformed from L independent, identically distributed Gaussian

variables h(l) ∼ N (0, 1), l = 1, · · · , L. Therefore, the distribution of xH(k)x(k) is the

same as the distribution of Z =
∑L

l=1 σ(l)|h(l)|2. The statistics of Z are

Sxx(k) = E[Z] =

L
∑

l=1

σ(l)E[|h(l)|2] =
L
∑

l=1

σ(l); (28)

Pxx(k) = E[|Z|2] = E

[

L
∑

l1=1

σ(l1)|h(l1)|2
L
∑

l2=1

σ(l2)|h(l2)|2
]

=
L
∑

l=1

σ2(l)E
[

|h(l)|4
]

+ 2
L−1
∑

l1=1

L
∑

l2=l1+1

σ(l1)σ(l2)E
[

|h(l2)|2|h(l2)|2
]

= 3

L
∑

l=1

σ2(l) + 2

L−1
∑

l1=1

L
∑

l2=l1+1

σ(l1)σ(l2) (29)
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The last equality uses the 4-th moment of a zero-mean Gaussian distribution. If

the input signal is white, then the singular values σ(l) are all equal to one and Z is

Chi-square distributed with E[Z] = Lσ(1) and E[|Z|2] = (L2+2L)σ(1). If the input

is colored Gaussian, then Sxx(k) remains the same as that of white Gaussian input

because
∑L

l=1 σ(l) = trace[Rxx(k)] = Lσ2
x, but Pxx(k) is usually different from that

of the white input.

Next, consider the statistics of the a priori error. Based on (1) and (2), we

have

ek = [wo − ŵ(k − 1)]H x(k) + v(k). (30)

In the steady state, the first term on the right-hand side becomes very small and the

statistics of ek are dominated by v(k). Analytical results for the p-th moment of the

error can be obtained for ek being Gaussian; while numerical evaluation of the error

statistics is used for non-Gaussian distributions.

For a zero-mean Gaussian distribution, the p-th moment is [9]

E[|N (0, σ2
e)|p] =

2p/2Γ(p+1
2
)√

π
σp
e , p > 0, (31)

where σ2
e is the second order moment (which is double the dispersion parameter γ

in [9]), and the Gamma function is defined as Γ(x) =
∫

∞

0
tx−1e−tdt.
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Using (28), (29), and (31), we have for Gaussian inputs and Gaussian inter-

ference

b(k)

Se(k)
=

Lp(ek)

Se(k)
Sxx(k) =

2p/2Γ(p+1
2
)√

π
σp−2
e

L
∑

l=1

σ(l) (32)

a(k)

Se(k)
=

L2p−2(ek)

Se(k)
Pxx(k) (33)

=
2(2p−2)/2Γ(2p−1

2
)√

π
σ2p−4
e

[

L
∑

l=1

3σ2(l) + 2
L−1
∑

l1=1

L
∑

l2=l1+1

σ(l1)σ(l2)

]

, p > 1.

The ratios of the two coefficients, b2(k)Se(k)/a(k), for different order, p, were

computed based on the theoretical analysis for Gaussian interference, as shown in

Fig. 7, with both white and colored input signals. When the tap length was large

(L = 512), the two curves for white or AR(1) inputs were very close, ranging from

0.631 (for p = 1) to 0.996 (for p = 2) with white input, and from 0.625 (for p = 1) to

0.985 (for p = 2) with AR(1) inputs. When the tap length was small (L = 32), the

distance between curves with white and AR(1) inputs became large. In all cases, the

ratio was greater than 0.5 for Gaussian interference.

The analysis for other types of interference is more involved and it is difficult

to exhaust all types. We use simulated signals to compute the ratios and results are

shown in Fig. 8. The BG interference with Pr = 1 corresponds to Gaussian inter-

ference and the curves based on simulated signals matched the theoretical analysis.

The ratios for small p were reduced significantly for more impulsive BG interference,

as shown in Fig. 5.8(a), with the smallest ratio being 0.167 for p = 1. The ratios

for compound K interference exhibited a similar trend, with the smallest ratio being

0.22 for the most impulsive interference and p = 1. This implies that the two VSS-

NFLOM algorithms are similar for p large, but they are quite different for p small.
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IV. A VARIABLE STEP-SIZE LMP ALGORITHM FOR

HEAVY-TAILED INTERFERENCE SUPPRESSION IN PHASED

ARRAY RADAR

Yahong Rosa Zheng, Tiange Shao

Abstract—A new variable step-size Least Mean p-norm (VSS-LMP) algorithm is

proposed for phased array radar application with space-time adaptive processing to

combat heavy-tailed non-Gaussian clutters. The algorithms automatically change the

step size according to the estimated p-th and (2p−2)-th moments of the error, where

1 ≤ p ≤ 2. The algorithm is evaluated via a space-slow-time STAP example and the

excess Mean Square Error (MSE) and misadjustment results show that the proposed

VSS-LMP converges fast and reaches lower steady-state error than the fixed step-size

LMP. It also provides a better compromise between convergence speed and low steady

state error than existing VSS Least Mean Square (LMS) algorithms in both Gaussian

and Compound K clutter environments.

1 Introduction

In Radar and Sonar applications, adaptive filters are commonly used for space-

time adaptive processing (STAP) [1,2] which combines spatial beamforming with tem-

poral Doppler filtering, thus provides significant performance gain in clutter suppres-

sion and target detection. Special challenges are encountered in STAP applications,

including non-Gaussian, heavy-tailed clutter distribution, high computational com-

plexity of large array size, and slow convergence of adaptive algorithms. Especially,

heavy-tailed clutters, often modeled as the compound-K distribution [3], degrade the
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conventional STAP and adaptive algorithms significantly, resulting in low signal-to-

interference-noise-ratio (SINR) at filter output and high false alarm rate of target

detectors [2, 4, 5, 6, 7].

Conventionally, optimal adaptive filters are designed using the minimum mean

square error (MMSE) criterion which leads to simple, closed-form solutions requiring

the inverse of the covariance matrix of the array input signal. In practice, the Sam-

ple Matrix Inversion (SMI) method is often employed [4] and iterative adaptation

algorithms, such as the least mean square (LMS) algorithm, can provide an alterna-

tive, low-complexity, real-time solution. The advantage of the LMS algorithms are

its simplicity, low steady-state error, and fast tracking property. However, its major

drawback is its slow convergence [8] and degraded robustness against non-Gaussian

interference [5]. Over the past two decades, many variants of LMS have been pro-

posed to overcome these problems, including the variable step size approach [9, 10],

the affine projection algorithms (APA) [10], and the higher or lower order statistics

method [5]. The third approach yields many robust algorithms with improved con-

vergence and robustness against non-Gaussian interference, including the normalized

sign algorithm (NSA) or Least Absolute Deviation (LAD) [8], least mean p-norm

(LMP) or fractional lower-order moment/statistic (FLOM or FLOS) algorithm [5,7],

and least mean fourth-moment (LMF) algorithm. However, most NSA and LMP

algorithms use a fixed step size for adaptation and the VSS approach has not been

fully investigated for LMP algorithms.

In this paper, a new variable step-size Least Mean p-norm (VSS-LMP) al-

gorithm is proposed to combat heavy-tailed non-Gaussian clutters. The algorithms

automatically change the step size according to the estimated p-th and (2p − 2)-th

moments of the error, where 1 ≤ p ≤ 2. As its two special cases, the proposed

VSS-LMP algorithm becomes a new VSS-SNA and a new VSS-LMS when p = 1 and
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p = 2, respectively. The algorithm is evaluated via a space-slow-time STAP exam-

ple and the excess Mean Square Error (MSE) and misadjustment results show that

the proposed VSS-LMP converges fast and reaches lower steady-state error than the

fixed step-size LMP. It also provides a better compromise between convergence speed

and low steady state error than existing VSS-LMS algorithms in both Gaussian and

impulsive clutter environments.

2 STAP and NLMP Algorithm

Consider an arbitrary radar array antenna consisting of M elements with the

m-th element located at Θm in a spherical coordinate system. Coherent bursts of

K pulses are transmitted at a constant pulse repetition frequency (PRF) fr = 1/Tr,

where Tr is the pulse repetition interval (PRI). Radar returns are collected over a

coherent processing interval (CPI) of length KTr. Within each PRI, there are N

time (range) samples collected to cover the range interval. This multidimensional

data set can be visualized as a M ×K ×N cube of complex samples [2]. For STAP

performed in the space-slow-time domain, let L = M × K, then the concatenated

space-time sample vector is an L×1 column vector u(k) with k being the time index.

The radar return vector u(k) is a mixture of the target echo (us) with the

uncorrelated jammer (uJ), uncorrelated clutters (uc), and background noise (un):

u(k) = us(k) + uJ (k) + uc(k) + un(k), (1)
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where

us(k) = S(k)b(ωs)⊗ a(Θs),

uJ(k) =

NJ
∑

i=1

SJibJi ⊗ a(ΘJi)

uc(k) =
Nc
∑

i=1

Scib(ωci)⊗ a(Θci).

where the point target S(k) is located atΘs and with a Doppler frequency f0. The op-

erator ⊗ denotes the Kronecker matrix product, the temporal steering vector b(ωs) =

[1, · · · , e−jkωs, · · · , e−j(K−1)ωs]H with the normalized Doppler frequency ωs = 2πfs/fr.

The spatial steering vector a(Θs) =
[

1, e−jΩ(τ2s−τ1s), · · · , e−jΩ(τMs−τ1s)
]H

for location

Θs, where τms = |Θm −Θs|/c is the propagation delay from the signal source to the

m-th array element, c is the wave propagation speed, and Ω the operating frequency.

The NJ jammers SJi are at locations ΘJi with gain vectors bJi. The Nc independent

clutter patches are uniformly distributed in a circular ring/sphere around the radar

platform [2] with the i-th patch at Θci and having a Doppler frequency ωci propor-

tional to its angular location. The receiver noise un appears as a uniform noise floor

on the angle-Doppler plane.

The STAP system consists of a tapped-delay-line attached to each array el-

ement. Let w be the concatenated weight vector of the STAP processor, then the

output of the STAP y(k) can be expressed in a matrix form as y(k) = wHu(k).

where superscript ()H denotes conjugate transpose. The least mean p-norm adaptive

method is to minimize the p-th order statistic of the output with the weight vector

min
w

E {|y(k)|p} , subject to CHw = h, (2)

where E{·} is the expectation operator and | · | is the absolute value operator. The

matrix C is a set of linear constraints and h is the desired response vector. For
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example, a simple point constraint [1, Chapter 5] may be chosen as C = b(ωs)⊗a(Θs)

and h = 1, which enforces a unit gain response at the target location Θs and its

Doppler frequency fs.

For the special cases of p = 2 and p = 1, the constrained minimization prob-

lem (2) reduces to the Minimum Mean Square Error (MMSE) and Minimum Mean

Absolute Error (MMAE) solutions. For a fractional order p, however, there is no

closed-form solution and an iterative least mean p-norm (LMP) adaptation algorithm

has been derived as [6]. Here we present a Generalized Sidelobe Canceller (GSC) im-

plementation of the LMP. The weight vector is first decomposed into two orthogonal

components:

w(k) = wq −Cawa(k), (3)

where wa(k) is the unconstrained adaptive weight vector, the signal blocking matrix

Ca is orthogonal to C satisfying CHCa = 0. The transient vector wq is a fixed

beamformer determined by

wq = C(CHC)−1h, (4)

The LMP adaptation algorithm for wa(k) estimation is then

ŵa(k + 1) = ŵa(k) + µy<p−1>(k)x(k), (5)

where µ is the step size, the operator z<p> = z∗|z|p−1 with the superscript ∗ denoting

the conjugate, and x(k) = CH
a u(k).
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3 The New VSS-NLMP Algorithms for STAP

To derive the variable step size LMP algorithm, we first decompose the STAP

output into two components

y(k) = d(k)−wH
a x(k), (6)

where d(k) = wH
q u(k). For the k-th iteration, we define the a priori and a posteriori

errors as

e(k) = d(k)− ŵH
a (k − 1)x(k) (7)

ε(k) = d(k)− ŵH
a (k)x(k) (8)

Substituting (7) into (8) yields

ε(k) = e(k) + [ŵa(k − 1)− ŵa(k)]
H
x(k)

= e(k)− µ(k)[e<p−1>(k)]∗xH(k)x(k). (9)

The second equality makes use of (5) and y(k) = e(k). For a small µ ≪ 1, the p-th

moment of the posteriori error can be approximated by

E [|ε(k)|p] = E
[

|e(k)|p|1− µ|e(k)|p−2xH(k)x(k)|p
]

≈ E [|e(k)|p]− pµ(k)E
[

|e(k)|2p−2xH(k)x(k)|p
]

(10)

Assume that the error e(k) and the input signal x(k) are uncorrelated and define

Sxx(k) = E
[

xH(k)x(k)
]

. For STAP applications, the desired output is the signal
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target S(k). Hence, we choose the step size such that

E [|ε(k)|p] = E [|S(k)|p] , Lp(S) (11)

and the solution to µ(k) is then

µ(k) = µ0
Lp(ek)− Lp(S)

pLq(ek)Sxx(k)
, ifLp(ek) ≥ Lp(S), (12)

where µ0 is a small constant to ensure that µ(k) is small, Lp(ek) , E [|e(k)|p], and

Lq(ek) , E [|e(k)|<2p−2>]. In practice, the average input power Sxx(k) can be replaced

by xH(k)x(k)+δ with δ being a regularization parameter. The p-th and q-th moments

of the error may be estimated by time averaging

L̂p(ek) = λL̂p(ek−1) + (1− λ)|e(k)|p (13)

L̂q(ek) = λL̂q(ek−1) + (1− λ)|e(k)|2p−2 (14)

where λ is the forgetting factor. This results in a normalized LMP algorithm for the

unconstrained weight vector

ŵa(k + 1) = ŵa(k) + µnlmp(k)
e<p−1>(k)x(k)

xH(k)x(k) + δ
, (15)

with a variable step-size

µnlmp(k) = µ0
L̂p(ek)− L̂p(S)

pL̂q(ek)
, (16)

if L̂p(ek) ≥ L̂p(S). Otherwise, the step size is set to zero.
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4 Simulation Results

The proposed VSS-NLMP algorithm was evaluated via computer simulation

of a linear phased array example. The array consisted of M = 10 equally spaced

elements at half wavelength of the operation frequency. The coherent pulse inter-

val (CPI) was K = 7. The target signal had a power of 0 dB with respect to the

background noise and was located at 20◦ angle of arrival (AoA) with a normalized

Doppler frequency of 0.25. The noises were independent white Gaussian among an-

tenna elements and CPI taps. Two wideband jammers presented at AoA of −20◦

and +50◦, respectively. Each jammer had a full Doppler spectrum and with 15 dB

power. In addition, many clutters impinged on the array from different AoAs which

were uniformly distributed between −180◦ and 180◦. The total clutter power was

30 dB above the background noise. Three types of clutter distribution were used: a

complex Gaussian (Rayleigh envelop) and two compound K distributions with shape

parameters ν = 2.0 and ν = 0.7, respectively. The complex Gaussian clutter was gen-

erated by sum of sinusoids (SoS) with proper clutter ridge/Doppler spectrum. The

compound K clutters were generated by multiplying a correlated gamma texture with

a complex Gaussian speckle [7]. The Matlab code from RadarWorks website [11] was

used to generate the correlated gamma texture. The probability density function of

the compound-K distribution is given by [3]

f
R
(r) =

4√
βΓ(ν)

(

r√
β

)ν

Kν−1

(

2r√
β

)

, r ≥ 0 (17)

where Kν is the modified Bessel function of the second kind and with order ν. It

exhibits heavier tail than complex Gaussian/Rayleigh distribution but is lighter than

the alpha-stable interference. A smaller shape parameter ν indicates a more impulsive
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interference and the Rayleigh distribution is its special case with ν = ∞. Compound-

K clutter with ν in the range of 0.3 to 5 are commonly encountered in practice [3].

The convergence performances were evaluated by the excess MSE Jex(k) and

the normalized misadjustment M(k) defined as [1]

Jex(k) = E
[

|ŵH(k)u(k)|2
]

− Jmin (18)

M(k) = 20 log10
||ŵ(k)−wopt||

||wopt||
(19)

where Jmin = E[|wH
optu(k)|2]. The ensemble average of 100 trails was used for Jex(k)

and M(k) calculation. For all simulation studies, the regularization constant was set

to δ = 0.4L∗SNR. The forgetting factor was chosen as λ = 1−η/L with L = MK = 70

and η = 0.1 for all cases.

The convergence curves of the new VSS-LMP algorithm are plotted in Fig. 1

and Fig. 2 for Gaussian and K clutters, respectively. The excess MSE and misadjust-

ment for order p = 1, 1.5, 2.0 are compared with the fixed step size (FSS) NLMP of

µ = 0.002. In Gaussian clutters, as shown in Fig. 4.1(a), the excess MSE curves of the

FSS-NLMP varied widely with the p = 2 curve converges slow but to a low steady-

state MSE, the p = 1 curve converged very fast but leveled off at a high MSE, and the

p = 1.5 curve performed in between. In contrast, the VSS-LMP curves for all p had

a similar fast initial convergence and then slowed down and converged to very low

MSE levels. The p = 2 curve of the VSS-LMP achieved the same level of steady-state

MSE as its FSS-NLMP counter part but with much faster convergence speed, and the

p = 1.5 and p = 1.0 curves of the VSS-LMP converged to a lower level steady-state

MSE than that of the corresponding FSS-NLMP curves. The improvement of the

VSS-LMP algorithms over the FSS-NLMP is clearly demonstrated.
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Figure 1. Performances of the VSS-LMP algorithm in Gaussian clutters. Each Jex(t)
and M(t) curve was an ensemble average of 100 trials. Step size curves were of one
trial. The FSS-NLMP used µ = 0.002.

For misadjustment in Gaussian clutters, as shown in Fig. 4.1(b), the FSS-

NLMP curves also varied widely: the p = 2 curve converged slow and leveled off

high; the p = 1 curve converged fast and continued dropping, and the p = 1.5 curve

performed in between. Although the misadjustment of the p = 1 curve of the FSS-

NLMP seemed to perform the best from system identification standpoint, its excess

MSE was the worst for STAP applications. This is due to the property that the p = 1
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Figure 2. Performances of the VSS LMP algorithm in compound-K clutters with
ν = 0.7. Each Jex(t) and M(t) curve was an ensemble average of 100 trials. Step size
curves were of one trial. The FSS-NLMP used µ = 0.002.

NLMP algorithm is less sensitive to the changes of inputs and thus yielding larger

excess MSE than the p = 2 FSS-NLMP. The misadjustment of the VSS-LMP for all

p behaved similar to that of the p = 1.5 FSS-NLMP.

The step sizes of the VSS-LMP algorithm are shown in Fig. 4.1(c) for one trial

in Gaussian clutters. The step size of the VSS-LMP behaved very similar with all

three p cases. It started at a large µ at around 0.08 and dropped quickly to below
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0.01 and stayed in the neighborhood of 0.002. This behavior matched their excess

MSE curves.

For K clutters with ν = 0.7, as shown in Fig. 2, the excess MSE and mis-

adjustment of the FSS-NLMP and VSS-LMP exhibited similar behaviors as those in

Gaussian clutters, but with much higher steady-state errors and much higher step

sizes for all p values. The performance gains of the VSS-LMP over the FSS-NLMP

were similar to those in Gaussian clutters. The robustness of the NLMP algorithms

against impulsive clutter is demonstrated.

The excess MSE curves of the VSS-LMP algorithm are compared for different

clutter environments in Fig. 3. Comparing the curves of p = 1 in Fig. 4.3(a) with

those of p = 2 in Fig. 4.3(b), both VSS-LMP algorithms achieved the same low excess

MSE in Gaussian clutters but the p = 1 VSS-LMP converged slightly slower than the

p = 2 VSS-LMP. In the K clutters, the p = 1 VSS-LMP converged faster but leveled

off at a higher excess MSE than the p = 2 VSS-LMP. The performance difference

between two types of K clutters was small with the p = 1 VSS-LMP, while the p = 2

VSS-LMP was more sensitive to the degree of clutter impulsiveness. With the same

order p, the initial convergence speed was similar, but the steady-state errors were

different for different clutter types.

It is also interesting to note that the new VSS-LMP algorithm reduces to

a VSS-LMS algorithm when p = 2. Therefore, we also compare the new p = 2

VSS-LMP with other two VSS-NLMS algorithms — the non-parametric (NP) VSS-

NLMS [9] and the switched mode (SM) VSS-NLMS [12]. The excess MSE curves

are shown in Fig. 4 for Gaussian and K (ν = 0.7) clutters. The FSS-NLMS curve

with µ = 0.002 is also plotted for comparison. In both clutter environments, the

NP-VSS-NLMS algorithm converged fast but leveled off at a high excess MSE, while

the SM-VSS-NLMS converged slower and achieved a lower excess MSE. The new

VSS-LMP algorithm converged slightly slower than the NP-VSS-NLMS and achieved
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Figure 3. Convergence of the new VSS NLMS algorithm in different clutter envi-
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steady-state errors were different for different clutters.
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Figure 4. Convergence of the three VSS NLMS algorithms in comparison with the
fixed step-size NLMS. The proposed new VSS-LMP with p = 2 becomes a VSS-
NLMS algorithm and it provides a good compromise between fast convergence and
low steady-state error.

a medium excess MSE as that of the FSS-NLMS (µ = 0.002). It is clear that the new

VSS-LMP provides a better compromise between fast convergence and low steady-

state error than the two VSS-NLMS algorithms.
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5 Conclusions

A new variable step-size Least Mean p-norm (VSS-LMP) algorithm has been

proposed for phased array radar application with space-time adaptive processing to

combat heavy-tailed non-Gaussian clutters. The algorithm automatically changes

the step size according to the estimated p-th and (2p − 2)-th moments of the error,

where 1 ≤ p ≤ 2. It has been evaluated via a space-slow-time STAP example in both

Gaussian and compound K clutters. The excess Mean Square Error (MSE) and mis-

adjustment results show that the proposed VSS-LMP converges fast and reaches lower

steady-state error than the fixed step-size LMP.It also provides a better compromise

between convergence speed and low steady state error than existing VSS Least Mean

Square (LMS) algorithms in both Gaussian and impulsive clutter environments .
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V. A FAST-CONVERGING SPACE-TIME ADAPTIVE PROCESSING

ALGORITHM FOR NON-GAUSSIAN CLUTTER SUPPRESSION

Yahong Rosa Zheng, Tiange Shao, and Erik Blasch

Abstract—The normalized fractionally-lower order moment (NFLOM) algorithm

differs from the normalized least mean square (NLMS) algorithm in that it mini-

mizes the lower order moment (p < 2) of the error rather than the variance (p = 2).

This paper first evaluates the performances of the NFLOM for space-time adaptive

processing in heavy-tailed compound K clutters in terms of the excess mean square er-

ror (MSE), misalignment, beampatterns, and output signal-to-interference-and-noise-

ratio (SINR). The results show that the MSE curve of a small-order NFLOM exhibits

faster convergence but higher steady-state error than a large-order NFLOM. Second,

this paper proposes a new variable-order FLOM algorithm to dynamically change the

order during adaptation, thus achieving both fast initial convergence and low steady-

state error. The new algorithm is applied to STAP for Gaussian and non-Gaussian

clutter suppression. The simulation results show that it achieves the best compromise

between fast convergence and low steady-state error in both types of clutters.

1 Introduction

Space-time adaptive processing (STAP) refers to combined spatial beamform-

ing and temporal filtering of radar/sonar returns in phased array systems. It uses

multiple antenna elements followed by tapped-delay-lines to coherently process mul-

tiple pulses, thus providing superior ability to suppress jammers and clutters while

preserving desired signal target [1]. Since its introduction, STAP has been rigorously

researched and has been shown to provide significant performance gains in interfer-

ence suppression and target detection [2]. Many STAP algorithms deal with common
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scenarios where clutters and noises are complex Gaussian, which leads to mathemat-

ically tractable solutions [1, 2, 3]. However, recent studies and field measurements

have found [4, 5, 6, 7, 8, 9, 10] that heavy-tailed non-Gaussian clutters often occur in

backscatters from mountain tops, dense forest canopy, rough sea surfaces, and man-

made concrete objects, etc. These radar clutters are spiky, impulsive in nature and

can cause significant performance degradation in STAP and target detection.

Several statistical models have been used to describe the impulsive non-

Gaussian clutter environment including the compound complex Gaussian [4], the

generalized complex Gaussian [5], and the complex alpha-stable [10, 11]. The com-

pound complex Gaussian model is often used in practice [4], where the clutter/noise

process is modeled as the product of two random processes: X =
√
τ · G, with τ

being the texture and G the speckle . If τ follows the Gamma distribution and G the

complex Gaussian, then the envelop of X , defined as the magnitude R = |X|, will

be the compound K distribution with the probability density function (pdf) given

as [4, 5]

f
R
(r) =

2

σΓ(ν)

( r

2σ

)ν

Kν−1

( r

2σ

)

(1)

where ν is the shape parameter, Kν() is the modified Bessel Function of the second

kind of order ν, and Γ(x) =
∫

∞

0
tx−1e−tdt is the Gamma function. The pdf’s of

the compound K distribution with different shape parameters are plotted in Fig. 1,

where all envelop distributions have a normalized second moment E(R2) = 2, and the

simulated compound K clutters are generated by the nonlinear memoryless transform

(NMLT) method [8, 9]. The tails of the compound K pdfs are much higher than the

Rayleigh distribution which is the envelope pdf of the complex Gaussian process.
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Figure 1. The envelop Probability Density Function (pdf) of the compound K clutters,
in comparison to complex Gaussian clutters whose envelop is Rayleigh (a special case
of compound K with ν = ∞). The compound K distributions exhibit much heavier
tails than Rayleigh clutter.

Besides the heavy-tailed distribution, non-Gaussian clutters also exhibit differ-

ent auto-covariance properties. The Rayleigh distributed speckle component, model-

ing the short-term fluctuation of the scatters, has a very fast-decaying auto-covariance

function (ACF) spanning only a few slow-time samples. The Gamma distributed tex-

ture component, on the other hand, represents modulations of the local power of the

clutters and often has a slowly-decaying ACF. The ACF of the Gamma texture is

commonly modeled as RG(t) = exp(−t/λ), where λ is on the order of several hun-

dred samples, as shown in Fig. 2 in comparison with the ACFs of the Rayleigh and

compound K clutters.

For Gaussian clutter suppression, the Minimum Variance Distortionless Re-

sponse (MVDR) method is commonly employed to minimize the output power with

constraints at target location and Doppler frequency. In practice, the Sample Matrix

Inversion (SMI) or Normalized Least Mean Square (NLMS) algorithm is often used
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Figure 2. The Auto-Covariance Functions (ACF) of Rayleigh, Gamma texture, and
compound K clutters. A larger λ indicates that the ACF decays slower.

for iterative adaptation. In contrast, a fractionally lower-order moments (FLOM)

adaptive algorithm and its normalized version (NFLOM) have been proposed in [10]

and [18] for suppressing heavy-tailed non-Gaussian clutters. The FLOM and NFLOM

algorithms differ from the MVDR and NLMS schemes in that they minimize the p-th

order moment (0 < p ≤ 2) of the output signal rather than its variance (p = 2), thus

reducing the detrimental effects of spiky clutter samples.

The FLOM algorithm, also called the Least Mean p-norm (LMP) algorithm

in the adaptive filtering literature [13, 14], has been shown to be effective in many

non-Gaussian interference environments. It has been applied to seismic system iden-

tification, synthetic aperture radar (SAR), magnetoencephalography, and medical

ultrasonic imaging, etc., where Bernoulli-Gaussian models [15, 16] or symmetrical

alpha-stable models [13, 14, 17] are often used for impulsive interference with an al-

gebraic tail. It has been shown that the FLOM algorithm performs significantly

better than the conventional LMS (2nd-order norm) algorithm. The effectiveness of
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the FLOM algorithm in less heavy-tailed compound K models remains unclear. Fur-

thermore, the majority of the existing results focus on the deviation of the adaptive

weights from the system impulse response, which is of the primary concern in sys-

tem identification type of applications [13,14,15,16]. The output Mean Square Error

(MSE) and Signal-to-Interference-and-Noise-Ratio (SINR) are largely ignored, which

are more important measures in STAP or other phased array applications [18,19,20].

In this paper, we first evaluate the NFLOM algorithm for STAP applications

where compound K clutters are present simultaneously with high-power, wideband

jammers. We measure the performances in terms of excess MSE, misalignment (of

weights), beampatterns, and output SINR. We also investigate the effect of the auto-

covariance function (ACF) of compound K clutters on these performances. Our results

show several new aspects of the NFLOM algorithm:

1. For the NFLOM with a smaller order p close to 1, the misalignment exhibits

faster initial convergence as well as lower steady-state error than that of a

larger-p NFLOM. This result is in agreement with the ones reported for system

identification applications in heavy-tailed interference [21].

2. The excess MSE of a small-p NFLOM converges much faster than that of a

larger order NFLOM, but the steady-state error is slightly higher too, resulting

in slightly lower average SINR in the converged STAP output. This result is

true for both Gaussian and non-Gaussian clutters.

3. The ACF of the compound K clutter has strong impact on the convergence

of the large-p NFLOM algorithms. For misalignment, an higher ACF leads to

faster initial convergence but quicker slowing down than a lower ACF, resulting

in a higher steady-state error. The high ACF result has not been reported

elsewhere, even for system identification applications. For the excess MSE, a

lower ACF slows the convergence speed significantly than a higher ACF, and
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the converged steady-state error is also higher, especially for large-p NFLOM

algorithms.

4. The ACF of the compound K clutter has less impact on the performances of

the NFLOM with p = 1 than on a larger-p NFLOM. With p = 1 (i.e. the

normalized sign algorithm (NSA) ), the steady-state error of the excess MSE

remains almost the same for different ACF and different impulsiveness (shape

parameters). This indicates strong robustness of the NSA algorithm against

changing, impulsive clutters.

5. The beampatterns of the NFLOM and NLMS algorithms differs significantly

only at time instants when very large, spiky clutter samples occur. The NLMS

algorithm uses more degrees of freedom to track the impulsive clutter samples

and leaks more power of jammers and noise to the output. The NFLOM (p < 2)

algorithm places less emphasis on the spiky clutter components and achieve

slightly better SINR. However, the spiky clutter components are suppressed

less severely and may require a nonlinear preprocessor before matched filter

detection [18].

Based on the observation that the NFLOM algorithm with a smaller order p

converges faster but to a lower steady-state MSE than that of a large-order p, we

propose a new variable-order (VO) FLOM algorithm to solve the conflicting goals of

fast convergence and low steady-state error. The new VO-FLOM algorithm uses a

small order p at the beginning of the adaptation and gradually increases the order to

a large p to achieve both fast convergence and low steady-state MSE. The proposed

algorithm is also evaluated in both complex Gaussian and compound K clutter sce-

narios. The results show that the new VO-FLOM algorithm outperforms the plain

NFLOM and NLMS algorithms in both MSE and misalignment.
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2 Conventional STAP and its NLMS algorithm

Consider an arbitrary radar array antenna consisting of M elements with the

m-th element located at Θm in a spherical coordinate system. Coherent bursts of

K pulses are transmitted at a constant pulse repetition frequency (PRF) fr = 1/Tr,

where Tr is the pulse repetition interval (PRI). Radar returns are collected over a

coherent processing interval (CPI) of length KTr. Within each PRI, there are L time

(range) samples collected to cover the range interval. This multidimensional data set

can be visualized as a M ×K ×L cube of complex samples [1]. For STAP performed

in the space-slow-time domain, denote the received samples at range bin l as uk,m(t)

with slow-time index k = 1, 2, · · · , K, and array element index m = 1, 2, · · · ,M , and

the sampling time index t. Let N = M ×K, then the N ×1 concatenated space-time

sample vector is

U(t) = [uT
1 (t), · · · ,uT

k (t), · · · ,uT
K(t)]

T , (2)

uk(t) = [uk,1(t), uk,2(t), · · · , uk,M(t)]T , (3)

where the superscript ()T denotes transpose.

The radar return vector U(t) is a mixture of the target echo (Us) with the

uncorrelated jammer (UJ), uncorrelated clutters (Uc), and background noise (Un):

U(t) = Us(t) +UJ(t) +Uc(t) +Un(t), (4)
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where

Us(t) = S(t)b(ωs)⊗ a(Θs),

UJ(t) =

NJ
∑

i=1

SJigJi ⊗ a(ΘJi)

Uc(t) =
Nc
∑

i=1

Scib(ωci)⊗ a(Θci).

where the point target S(t) is located at the spherical coordinate Θs = (rs, θs, φs)

with rs, θs, and φs denoting the radial distance, azimuth angle, and elevation angle,

respectively. The normalized angular Doppler frequency is ωs = 2πfs/fr. The op-

erator ⊗ denotes the Kronecker matrix product. The spatial and temporal steering

vectors are, respectively,

a(Θs) =
[

1, e−jΩ(τ2s−τ1s), · · · , e−jΩ(τ
Ms−τ1s)

]H
(5)

b(ωs) = [1, · · · , e−jkωs, · · · , e−j(K−1)ωs]H (6)

where , Ω the operating frequency of the phased array, and τms = |Θm−Θs|/c is the

propagation delay from the signal source to the m-th array element with c being the

wave propagation speed.

The NJ jammers SJi are at locations ΘJi with gains gJi =

[gJi(1), · · · , gJi(k), · · · , gJi(K)]T . The Nc independent clutter patches are uniformly

distributed in a circular ring/sphere around the radar platform [1] with the i-th patch

at Θci and having a Doppler frequency ωci proportional to its angular location. The

receiver noise Un appears as a uniform noise floor throughout the angle-Doppler

plane.

The STAP system consists of a tapped-delay-line attached to each array el-

ement. Let W be the concatenated weight vector of the STAP processor, then the
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output of the STAP y(t) can be expressed in a matrix form as y(t) = WHU(t), where

the superscript ()H denotes conjugate transpose (or Hermitian transpose).

For the Gaussian clutter environment, the Minimum Variance Distortionless

Response (MVDR) method is commonly used for adapting the weight vector W.

That is to minimize the second-order moment of the output signal subject to steering

constraints

min
W

E
{

|y(t)|2
}

, subject to CHW = h, (7)

where E{·} is the expectation operator, E {|y(t)|2} = WHRuuW, and Ruu is the

covariance matrix of the concatenated input vector U. The matrix C is a set of

linear constraints and h is the desired response vector. For example, a simple point

constraint [18] may be chosen as C = b(ωs)⊗a(Θs) and h = 1, which enforces a unit

gain response at the target location Θs and the Doppler frequency fs. The optimal

solution to the constrained minimization problem (7)is well-known assuming that the

covariance matrix Ruu has a full rank [3]:

Wopt = R−1
uu
C(CHR−1

uu
C)−1h (8)

Direct implementation of (8) requires the knowledge of the covariance matrix

of the array input vector and the Sample Matrix Inversion (SMI) method is often

employed in practice [2]. Alternatively, the weight vector Wopt can be decomposed

into two orthogonal components: a fixed beamformer Wq and an unconstrained

adaptive weight vector Wa. They are determined by

Wq = C(CHC)−1h, (9)

Wopt
a = (CH

a RuuCa)
−1CH

a RuuWq, (10)
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where Ca is termed the signal blocking matrix. It is orthogonal to C satisfying

CHCa = 0. This decomposition, as shown in Fig. 3, is known as the Generalized

Sidelobe Canceller (GSC) andWa can be iteratively adapted by the Normalized Least

Mean Square (NLMS) algorithm as

Wa(t+ 1) = Wa(t) + µa
x(t)e∗(t)

xH(t)x(t) + δ
, (11)

where x(t) = CH
a U(t), the error signal is defined by e(t) = y(t) = [Wq−CaWa]

HU(t).

The step size µa controls the rate of convergence and the regularization parameter δ

prevents the numerical instability when the inputs are small [3].

Σ 
Fixed

Beamformer +
−

Canceller

Adaptive
Sidelobe

Blocking
Matrix

Wq

Ca Wa

x(t)

u(t)

d(t) y(t)

e(t)

z(t)

Figure 3. The Generalized Sidelobe Canceller (GSC) implementation of STAP sys-
tems.

Equivalently, the NLMS algorithm in (11) is the same as

W(0) = Wq = C(CHC)−1h,

W(t+ 1) = B

[

W(t)−µ
y∗(t)U(t)

UH(t)BU(t) + δ

]

+Wq. (12)
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where µ is the step size and

B = I−C[CHC]−1CH . (13)

3 The Proposed NFLOM Algorithms for STAP

In the severe, impulsive clutter environment, the conventional STAP algorithm

suffers from performance loss due to two reasons: one is the high probability of

outliers in the received samples; another is the large eigenvalue spread of the sample

covariance matrix. An approach to combat these problems is the FLOM algorithm

which minimizes the p-th order moment rather than the variance of the STAP output

[10, 18]

min
W

E {|y(t)|p} , subject to CHW = h, (14)

There is no closed-form solution for the optimal coefficients that minimizes the cost

function, but a gradient descent method is available. Similar to the NLMS algorithm,

the NFLOM algorithm is iteratively adaptive as

Wa(0) = 0,

Wa(t+ 1) = Wa(t) + µa
|e(t)|p−2e∗(t)x(t)
∑

i |xi(t)|p + δ
. (15)

or equivalently

W(0) = Wq = C(CHC)−1h,

W(t+ 1)=B

[

W(t)− µ
|y(t)|p−2y∗(t)U(t)
∑

i |xi(t)|p + δ

]

+Wq (16)
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where xi(t) are the elements of the blocking matrix output x(t) = CH
a U(t). Other

parameters are the same as those in the NLMS algorithm (12).

The NFLOM algorithm reduces to the NLMS algorithm when p = 2 and to

the normalized sign algorithm (NSA) when p = 1 [11, 12]. Our numerical analysis

has found [18,20] that, when the order p is smaller, the NFLOM algorithm converges

faster but exhibits larger steady-state mean square errors (MSE). This phenomenon

is observed in both Gaussian and heavy-tailed clutters, as will be shown in Section 4.

The conflicting goals of fast convergence and low steady-state error of the

NFLOM algorithms motivates a new variable-order NFLOM algorithm to achieve

both fast convergence and low steady-state MSE by varying the order p. Intuitively,

the variable order NFLOM algorithm shall start with a small order, for example

p = 1, and then gradually increases to p = 2. A straightforward approach for order

switching is to estimate the excess MSE of the NFLOM algorithm in windows of size

D and then compare the MSE to the previous window. If the difference exceeds a

threshold, the order p is increased. The proposed variable-order NFLOM follows the

procedures:

1. Choose P = {Pl} = [Pmin : ∆P : Pmax]. Set l = 1 and the initial order as

p = Pl;

2. Select the estimation window size D and the threshold Th; Set the output energy

of the previous window E0 = DPU , where PU is the total power of the input

signal U(t);

3. Adapt the filter coefficients W(t) based on (16) using the current order p.

Estimate the output energy of the current window as E1 =
∑D

i=1 |y(i)|2;

4. Compare E0 to E1. If E1 − E0 > DT p
h , then increment l and update the order p

to Pl.



96

5. Set E0 = E1 and repeat Step 3 - 4 until p = Pmax.

The parameter selection of the algorithm determines the convergence rate and the

steady-state MSE. The threshold Th can be set at the 1% to 10% of the signal-to-

noise-ratio (SNR) or clutter-to-noise-ratio (CNR) level. The window size is normally

chosen at several hundred to several thousand samples. The selection of P = {Pl} =

[Pmin : ∆P : Pmax] is rather flexible with Pmin ≥ 1 and Pmax = 2 for complex Gaussian

clutters. For heavy-tailed clutters, slightly smaller Pmin and Pmax normally provide

better results.

4 Performances Analysis

A linear phased array example was used to demonstrate the performances

of the NFLOM and the VO-FLOM algorithms. The array consisted of M = 10

equally spaced elements at half wavelength of the operation frequency. The coherent

pulse interval (CPI) was K = 7 and a fixed range bin was used for the STAP. The

target signal had a power of 0 dB with respect to the background noise and its

angle of arrival (AoA) was 20◦ with respect to the axis of the array. The normalized

Doppler frequency of the target was fixed at 0.25. The noises were independent

among antenna elements and CPI taps with white Gaussian spectrum. Two wideband

jammers presented at AoA of −20◦ and +50◦, respectively. Both jammers had a full

Doppler spectrum and a total power of 30 dB. In addition, many clutters impinged on

the array from different AoAs which were uniformly distributed between −180◦ and

180◦. The Doppler frequencies of the clutters depended on their AoAs. The envelop

of the clutters was either Rayleigh (complex Gaussian clutter) or compound K with

a total average power of 30 dB.
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The compound K clutters were simulated using the nonlinear memoryless

transformation (NMLT) method [9, 22] and the auto-covariance function (ACF) of

the gamma texture was RG(t) = exp(−t/λ) with a large λ indicating high ACF. For

performance comparison, the fixed order NFLOM used a step size µ = 0.002 and the

regulation parameter δ = 20CNR.

The STAP algorithms can be evaluated by the output beampattern defined as

Ψ(Θ, fd) = |WH
optb(fd)⊗ a(Θ)|2 (17)

The convergence performance is commonly evaluated by the excess MSE Jex(t)

and misalignment M(t) defined as [3]

Jex(t) = E[|WH(t)U(t)|2]− Jmin (18)

M(t) = 20 log10
|W(t)−Wopt|

|Wopt|
(19)

and Jmin = E[|WH
optU(t)|2]. The MVDR optimal solutions were used as the common

base for comparison for all clutter scenarios, although the NFLOM algorithms are

designed to minimize the lower order moments. This means that, if measured in

terms of Lp norms or p-th error moments, the NFLOM performance would be better

than these second-order performance measures.

4.1 Performances of the NFLOM Algorithm

The beampatterns of the MVDR, NLMS, and NFLOM schemes are plotted in

Fig. 4, which were obtained in impulsive K clutters with shape parameter ν = 0.5 and

an ACF function RG(t) = exp(−t/λ) with λ = 100. The beampattern of the MVDR

scheme was computed by the weight vector optimized over all clutter samples thus

providing the best performance with deep nulls placed at at both jammer locations
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and at the clutter ridge. It passed the target signal with unit gain and achieved

high SINR. The beampatterns of the NLMS and NFLOM were computed by their

weights W(t) when a large spiky clutter component was present at t. The NLMS used

many degrees of freedom on suppressing the impulsive clutter components, but let

the jammers and other clutter components leak through. The NFLOM with p = 1.5

and p = 1.7 both maintained deep nulls at jammer locations by placing less emphasis

on the impulsive clutter components, thus achieving better output SINR than the

NLMS algorithm.

The convergence curves of the NFLOM algorithms in complex Gaussian clut-

ters and compound K clutters are plotted in Fig. 5, where the MSE and misalignment

curves are the ensemble average over 100 independent trials. In Gaussian clutters,

the MSE curves (Fig. 4.5(a)) show that a smaller order p NFLOM converges faster,

but to a larger steady-state error. The misalignment curves (Fig. 4.5(b)) show that a

smaller order p NFLOM converges faster and achieves lower error norm For compound

K clutters, the MSE curves (Fig. 4.5(c)) show that, when p is close to 1, the curves are

very similar to those in Gaussian clutters, exhibiting high robustness against impul-

sive clutters; when p is close to 2, the initial convergence speed is similar to those in

Gaussian clutters, but the steady-state errors are higher. The misdajustment curves

(Fig. 4.5(b)) behave similar to those in Gaussian clutters but with slightly higher

error norms.

It is found that the ACF of the texture component of compound K clutters

has significant impacts on the convergence of the NFLOM with p > 1. The MSE and

misalignment curves in K-clutters with three ACF parameters λ = 10, 100, and 300

are compared in Fig. 6 and Fig. 7, respectively. In terms of MSE, the NFLOM con-

verges faster and to a lower steady-state error in clutters with higher auto-covariance

(larger λ) for all orders, but the effects of ACF on p = 1 is the smallest. In terms

of misalignment, a larger λ leads to a very fast initial convergence but slows down
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significantly afterwards. A small λ leads to a smooth convergence and to a lower

steady-state error. A smaller p NFLOM has a lower steady-state error of misalign-

ment than a larger p. Effects of the ACF on the performance of the NFLOM with

p = 1.5 is between those of p = 1.25 and p = 1.75, and the curves are omitted here.

The output SINR was also evaluated for orders p = [0.9 : 2] in compound K

clutters with different shape parameters. If the SINR is computed on output samples

from t = 5 × 104 to t = 10 × 104, the best SINR was achieved by the NFLOM with

1.5 ≤ p ≤ 1.8 with a few dB better performance than the NLMS (p = 2) algorithm,

as shown in Figs. 4.8(a) and 4.8(b). In comparison, if the SINR was computed

after all algorithms have converged, the NFLOM with 1.5 ≤ p ≤ 1.8 still performed

well and the NLMS algorithm also improved significantly, as shown in Figs. 4.8(c)

and 4.8(d). This is consistent with the MSE performances in that the NFLOM with

p = 1.5 ∼ 1.8 provides the best compromise between fast convergence and low steady-

state error. All NFLOM algorithms achieved better SINR in clutters with a higher

auto-covariance (λ = 300) than that of a lower ACF (λ = 100).

4.2 Performances of the VO-FLOM Algorithm

The conflicting goals of fast convergence and low steady-state error with the

fixed order NFLOM can be met simultaneously by the variable-order FLOM algo-

rithm. The effectiveness of the VO-FLOM algorithm is illustrated in Fig. 9 for three

clutter scenarios: a complex Gaussian and two compound K scenarios with ν = 2 and

ν = 0.7 respectively. Both compound K scenarios had an ACF parameter λ = 100.

The MSE and misalignment curves are also the ensemble average of 100 trials for

three clutter scenarios: Gaussian and two compound K cases with ν = 0.7 and ν = 2,

respectively, both with λ = 100. The parameters for the VO-FLOM algorithm were:

Pmin = 1, Pmax = 2, ∆P = 0.1, D = 1000, and the threshold Th = 0.01SNR. For

the excess MSE, the VO-FLOM algorithm converges very fast at around t = 2× 104
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sample iterations; while the NLMS algorithm does not converge at 105 sample iter-

ations. The steady-state errors of the VO-FLOM algorithm were the same as those

achievable by the fixed-order NFLOM. For the misalignment, the VO-FLOM con-

verges even faster than the MSE, at t = 1× 104 sample iterations. The steady-state

errors of the misalignment were comparable with those achieved by the NLMS algo-

rithm. The change of the order p may vary from trial to trial and the results of a

representative trial are shown in Fig. 4.9(c), indicating the initial time indexes when

the corresponding order is adapted. It is observed that the change of the orders is

faster in more impulsive clutters than that in Gaussian clutters. This behavior very

well matches the convergence behavior of the excess MSE curves.

With the parameter Pmax = 2, the VO-FLOM algorithm exhibit much higher

excess MSE in impulsive clutter scenarios than that in Gaussian clutters. If this

parameter is selected slightly smaller than 2, the converged VO-FLOM can achieve

slightly higher performances in terms of higher output SINR, lower MSE, and better

robustness against impulsive clutters. This is illustrated in Fig. 10 with the example

of Pmax = 1.8. The MSE and beampattern of the VO-FLOM algorithm in compound

K clutters are plotted in Fig. 10. The proposed algorithm can effectively suppress the

clutters and jammers by placing deep nulls at jammer locations and the clutter ridge,

as shown in Fig. 4.10(b). The VO-FLOM also converges to a lower steady-state error

than the fixed-order NFLOM, as shown in Fig. 4.10(a).



101

5 Conclusion

We have evaluated the excess MSE, misalignment, and output SINR perfor-

mances of the NFLOM algorithms for STAP applications in compound K clutters.

The results show that the excess MSE is a better performance measure for phased

array applications than the misalignment which is used more often in system identi-

fication applications, because the MSE is tightly related with output SINR while the

deviation of the weight vector from the MVDR optimal weights plays a less impor-

tant role for STAP applications in heavy-tailed clutter environment. A variable-order

FLOM adaptive algorithm has also been proposed for phased array signal processing,

which starts with a small order for fast convergence and increases the order after the

excess MSE stops decreasing. The VO-FLOM algorithm improves upon the NFLOM

and NLMS algorithm in that the weight adaptation is proportional to a variable p-

order moment of the error rather than a fixed order moment or the mean square

error. The proposed algorithm achieves an excellent compromise between fast initial

convergence and low steady-state errors by taking the advantages of small and large

order NFLOM algorithms. The excess mean squared error (MSE) curves have been

evaluated for both Gaussian clutter and non-Gaussian, heavy-tailed clutter scenar-

ios. The results show that the proposed VO-FLOM converges much faster than the

plain NFLOM and NLMS algorithms and achieves the same steady-state error as the

NLMS algorithm.
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Figure 4. Beampatterns of the NLMS and NFLOM algorithms in compound K clut-
ters (ν = 0.5, λ = 100) when impulsive clutter samples were encountered. In com-
parison, the beampattern of the MVDR scheme was computed by the weight vector
optimized over all clutter samples. (a) MVDR: placed deep nulls at both jammer
locations and at the clutter ridge therefore passing the target signal with high SINR;
(b) NLMS: used many degrees of freedom on suppressing the impulsive clutter com-
ponents but let the jammers and other clutter components leak through; (c) and
(d) NFLOM with p = 1.5 and p = 1.7: maintained deep nulls at jammer locations
by placing less emphasis on the impulsive clutter components, thus achieving better
output SINR.
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(d) Misalignment, K Clutters

Figure 5. The convergence curves of the NFLOM algorithms in complex Gaussian
clutters and compound K clutters (ν = 0.7, λ = 100). Two wideband jammers and
background noises were also present. The total powers of clutters and jammers were
30 dB above the background noise, respectively. Ensemble average of 100 trials is
used in all curves. (a) MSE in Gaussian clutter: a smaller order NFLOM converges
faster, but to a larger steady-state error. (b) misalignment in Gaussian clutter: a
smaller p NFLOM converges faster and achieves lower error norm. (c) MSE in K
clutters: orders close to 1 have the similar convergence as those in Gaussian clutter,
exhibiting robustness against impulsive clutters; orders close to 2 have the similar
initial convergence speed as those in Gaussian clutters, but higher steady-state errors.
(d) misdajustment in K clutters: similar to those in Gaussian clutters but with slightly
higher error norms.
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Figure 6. Effects of ACF of K-clutter (ν = 0.7) on mean square error of the NFLOM
algorithm. The ACF of the gamma texture is RG(t) = exp(−t/λ) with λ = 10, 100,
and 300, respectively. The MSE of the NFLOM converges faster and to a lower
steady-state error in clutters with higher auto-covariance (larger λ) for all orders of
p. The effects of ACF on the convergence of the NFLOM with p = 1 is the smallest.
Note the change of x-axis scale in different sub-figures.



108

0 0.5 1 1.5 2 2.5

x 10
5

−20

−18

−16

−14

−12

−10

−8

−6

−4

Samples

M
is

a
lig

n
m

e
n

t 
(d

B
)

 

 

p=1, NSA

 λ=300

 λ=100

 λ=10

(a) Misalignment for p = 1

0 0.5 1 1.5 2 2.5

x 10
5

−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

Samples

 

 

M
is

a
lig

n
m

e
n

t 
(d

B
)

p=1.25, NFLOM

 λ=300

 λ=100
 λ=10

(b) Misalignment for p = 1.25

0 1 2 3 4 5

x 10
5

−20

−18

−16

−14

−12

−10

−8

−6

−4

Samples

M
is

al
ig

nm
en

t (
dB

)

 

 

p=1.75, NFLOM

λ=10λ=100

λ=300

(c) Misalignment for p = 1.75

0 1 2 3 4 5

x 10
5

−20

−18

−16

−14

−12

−10

−8

−6

−4

Samples

M
is

a
lig

n
m

e
n

t 
(d

B
)

 

 

p=2, NLMSλ=10

 λ=100

 λ=300

(d) Misalignment for p = 2

Figure 7. Effects of ACF of K-clutter (ν = 0.7) on misalignment of the NFLOM
algorithm. The ACF of the gamma texture is RG(t) = exp(−t/λ) with λ = 10, 100,
and 300, respectively. In terms of misalignment, a larger λ leads to a very fast initial
convergence but slows down significantly afterwards. A small λ leads to a smooth
convergence and to a lower steady-state error. A smaller p NFLOM has a lower
steady-state error of misalignment than a larger p. Note the change of x-axis scale in
different sub-figures.
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Figure 8. Output SINR as a function of fractional order p in compound K clutters
with different shape parameters and ACF parameters. (a) and (b) SINR computed
at iterations t = (5 : 10) × 104. The best SINR was achieved by the NFLOM with
1.5 ≤ p ≤ 1.8, a few dB better than the NLMS (p = 2) algorithm. (c) and (d)
SINR computed after all algorithms converged. The NFLOM with p > 1.5 performed
well. The NFLOM algorithms achieved better SINR in clutters that have higher auto-
covariance. The NLMS algorithm performed better than the lower-order NFLOM if
converged.



110

0 2 4 6 8 10

x 10
4

10
−2

10
−1

10
0

10
1

Samples

E
xc

es
s 

M
S

E

Gaussian Clutter

K−clutter, ν=0.7

K−clutter, ν=2

K−clutter, ν=0.7

K−clutter, ν=2

Gaussian Clutter

NLMS

var−order FLOM

(a) Mean Square Error

0 2 4 6 8 10

x 10
4

−16

−14

−12

−10

−8

−6

−4

Samples

M
is

a
lig

n
m

e
n

t 
(d

B
)

 

 

Gaussian Clutter

NLMS

K−clutter, ν=2

K−clutter, ν=0.7

var−order FLOM

var−order FLOM

NLMS

(b) Misalignment

0 2 4 6 8 10

x 10
4

0

1

2

p

K−Clutter, ν=2

0 2 4 6 8 10

x 10
4

0

1

2

p

K−Clutter, ν=0.7

0 2 4 6 8 10

x 10
4

0

1

2

Samples

p

Gaussian Clutter

(c) Varying orders

Figure 9. Convergence curves of the VO-FLOM algorithm in comparison to the NLMS
algorithm. Note that the x-axis is reduced to show significantly faster convergence of
the VO-FLOM than that of the NLMS. The VO-FLOM also achieves similar steady-
state error as that of the NLMS. Parameters of the VO-FLOM: p = [1 : 0.1 : 2], D =
1000, and Th = 0.01SNR. Ensemble average of 100 trials are used in (a) and (b),
while a single trial is used for (c).
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SECTION

2 CONCLUSIONS

This dissertation has applied the least mean pth norm estimation theory to

the design of adaptive filtering, by the motivation of breaking the limitations of the

least-mean-square estimation theory and improving the performance of traditional

adaptive filtering algorithms.

The L1 norm minimization is investigated particularly due to its simplicity and

robustness against the impulsive noise. The affine projection sign algorithm (APSA)

and variable step-size normalized sign algorithm (VSS-NSA)have been proposed ac-

cording to L1 minimization. The APSA updates its weight vector by multiple input

vectors and the sign of the a priori error vector, which combines the benefits of the

affine projection algorithm (APA) and normalized sign algorithm (NSA). The VSS-

NSA intelligently adjusts the step size by matching the L1 norm of the a posterior

error to that of the unwanted noise, which improves convergence rate while reduces

the steady-state error.

In the estimation theory, the optimum order statistics is determined by the tail-

heaviness of signal distribution, which motivate us to extend L1 norm minimization

to Lp norm minimization. Based on Lp norm (1 < p < 2), the variable step-size

normalized fractionally lower-order moment (VSS-NFLOM) algorithms have been

proposed, which automatically adjust the step size by approximating the pth norm

of the a posteriori error to that of the background noise. Furthermore, The variable

order fractionally lower-order moment (VO-FLOM) algorithm has been proposed,

which improves upon the fractionally lower-order moment (FLOM) and Normalized

least mean square (NLMS) algorithm in that the weight adaptation is proportional
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to a variable pth order moment of the error rather than a fixed order moment or the

mean square error.

The four proposed adaptive algorithms of this dissertation target at difficulties

of robustness against impulsive interference, convergence rate, stableness, steady-state

errors, computational complexity, and tracking ability. The three main applications

of this research is acoustic echo cancelation, system identification, and radar phased

array clutter suppression.

The contributions of my PhD research work are summarized in three jour-

nal papers and four conference papers, among which, three journal papers and two

conference paper are included in this dissertation.

Future work lies in the following aspects: 1) complement the study of con-

vergence analysis with resealable assumptions and apply them to all the proposed

algorithms. 2) Develop variable step size for affine-projection-type algorithms and

also extend real-value to complex-value adaptive filter. 3) Extend the variable step

size algorithm to a proportionate algorithm that employs a diagonal matrix rather

than a scaler, which ensures updating each element of the weight vector separately,

thus improving performance in terms of convergence and steady-state error.
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