482 research outputs found

    A variable structure control approach to active queue management for TCP with ECN

    Get PDF
    Cataloged from PDF version of article.It has been shown that the transmission control protocol (TCP) connections through the congested routers can be modeled as a feedback dynamic system. In this paper, we design a variable structure (VS) based control scheme in active queue management (AQM) supporting explicit congestion notification (ECN). By analyzing the robustness and performance of the control scheme for the nonlinear TCP/AQM model, we show that the proposed design has good performance and robustness with respect to the uncertainties of the round-trip time (RTT) and the number of active TCP sessions, which are central to the notion of AQM. Implementation issues are discussed and ns simulations are provided to validate the design and compare its performance to other peer schemes’ in different scenarios. The results show that the proposed design significantly outperforms the peer AQM schemes in terms of packet loss ratio, throughput and buffer fluctuation

    A variable structure control approach to active queue management for TCP with ECN

    Get PDF
    It has been shown that the transmission control protocol (TCP) connections through the congested routers can be modeled as a feedback dynamic system. In this paper we design a variable structure (VS) based control scheme in active queue management (AQM) supporting explicit congestion notification (ECN). By analyzing the robustness and performance of the control scheme for the nonlinear TCP/AQM model, we show that the proposed design has good performance and robustness with respect to the uncertainties of the round-trip time (RTT) and the number of active TCP sessions, which are central to the notion of AQM. Implementation issues are discussed and ns simulations are provided to validate the design and compare its performance to other peer schemes' in different scenarios. The results show that the proposed design significantly outperforms the peer AQM schemes in terms of packet loss ratio, throughput and buffer fluctuation. © 2005 IEEE

    Optimizing Service Differentiation Scheme with Sized-based Queue Management in DiffServ Networks

    Get PDF
    In this paper we introduced Modified Sized-based Queue Management as a dropping scheme that aims to fairly prioritize and allocate more service to VoIP traffic over bulk data like FTP as the former one usually has small packet size with less impact to the network congestion. In the same time, we want to guarantee that this prioritization is fair enough for both traffic types. On the other hand we study the total link delay over the congestive link with the attempt to alleviate this congestion as much as possible at the by function of early congestion notification. Our M-SQM scheme has been evaluated with NS2 experiments to measure the packets received from both and total link-delay for different traffic. The performance evaluation results of M-SQM have been validated and graphically compared with the performance of other three legacy AQMs (RED, RIO, and PI). It is depicted that our M-SQM outperformed these AQMs in providing QoS level of service differentiation.Comment: 10 pages, 9 figures, 1 table, Submitted to Journal of Telecommunication

    ABC: A Simple Explicit Congestion Controller for Wireless Networks

    Full text link
    We propose Accel-Brake Control (ABC), a simple and deployable explicit congestion control protocol for network paths with time-varying wireless links. ABC routers mark each packet with an "accelerate" or "brake", which causes senders to slightly increase or decrease their congestion windows. Routers use this feedback to quickly guide senders towards a desired target rate. ABC requires no changes to header formats or user devices, but achieves better performance than XCP. ABC is also incrementally deployable; it operates correctly when the bottleneck is a non-ABC router, and can coexist with non-ABC traffic sharing the same bottleneck link. We evaluate ABC using a Wi-Fi implementation and trace-driven emulation of cellular links. ABC achieves 30-40% higher throughput than Cubic+Codel for similar delays, and 2.2X lower delays than BBR on a Wi-Fi path. On cellular network paths, ABC achieves 50% higher throughput than Cubic+Codel

    An adaptive active queue management algorithm in Internet

    Get PDF
    Ce mémoire ne contient pas de résumé

    Active queue management with discrete sliding modes in TCP networks

    Get PDF
    In this paper, a new active queue management (AQM) algorithm for data traffic control in TCP/IP networks is developed. The algorithm design is based on the principles of discrete sliding-mode control. Unlike majority of earlier studies, the design procedure considers the effects of both non-negligible delay in transferring data and feedback information and unpredictable capacity variations. The switching function is selected to incorporate a delay compensation mechanism, which ensures efficient network operation even for large bandwidthdelay product connections. The proposed algorithm, implemented as a packet marking scheme, is tested in discrete event ns-2 simulator. The results show that the algorithm provides fast convergence to steady state after sudden, unanticipated capacity changes. By generating smaller overshoots, the proposed algorithm also allows for reducing buffer space requirements to avoid packet loss as compared to the benchmark AQM solutions
    corecore