1,985 research outputs found

    Networking Solutions for Integrated Heterogeneous Wireless Ecosystem

    Get PDF
    As wireless communications technology is steadily evolving to improve the offered connectivity levels, additional research on emerging network architectures is becoming timely to understand the applicability of both traditional and novel networking solutions. This chapter concentrates on the utilization of cloud computing techniques to construct feasible system prototypes and demonstrators within the rapidly maturing heterogeneous wireless ecosystem. Our first solution facilitates cooperative radio resource management in heterogeneous networks. The second solution enables assisted direct connectivity between proximate users. The contents of the chapter outline our corresponding research and development efforts as well as summarize the major experiences and lessons learned

    Exploration of Adoption of Service Innovations Through Technology Road-Mapping: Case of Location Based Services

    Get PDF
    Exploration of Adoption of Service Innovations through Technology Road-Mapping: Case of Location Based Services: 10.4018/jssmet.2010040105: This paper utilizes a technology road-mapping approach to demonstrate how a traditional technology management process can be applied to improve plannin

    Will Edge Computing Enable Location-based Extended/Mixed Reality Mobile Gaming? Demystifying Trade-off of Execution Time vs. Energy Consumption

    Get PDF
    The trailblazing development in mobile and wearable-based gaming dictates both the support of new technology enablers to allow for current demand and the development of modern computational offloading strategies to decrease the energy of handheld devices and maintain the energy emissions caused both by computation and transmission of data. Modern cellular networks already provide some support for proximity-based gaming, e.g., Ingress, PokemonGo, and The Witcher: Monster Slayer, among others. However, the demand of users is pushing the boundaries toward full-immersive Extended and Mixed Reality (XR/MR) experiences. Thus, computational offloading to the wireless network Edge becomes inevitable to keep the immersion high. This paper aims to analyze the impact of computational offloading (and, thus, execution time) on energy consumption. Computationally demanding games are analyzed for cases run locally, sent to a conventional remote server (cloud), offloaded to the user-owned more energy-independent device, or to the network edge. The results show that Edge computing operates the most efficiently regarding the trade-off between energy spent for execution vs. data transmission. It is also noted that distance to the edge node remains one of the critical factors affecting energy consumption.Peer reviewe

    An Android Generic Geo-Fencing Application: Proximity Triggered Notification Service Delivery

    Get PDF
    The widespread availability of smartphones, presents unprecedented opportunity to devise creative software solutions that leverage on the powerful hardware embedded in this devices to aid and improve interactions between the user and the environmen

    CAP: A ContAct based Proximity Service via Opportunistic Device-to-Device Relay

    Get PDF
    The research progress of 5G has brought a number of novel technologies to meet the multi-dimensional demands. Device-to-Device (D2D) communication is a way to no longer treat the User Equipments (UEs) as terminal, but rather as a part of network (known as helpers) for service provisioning. Such a way potentially increases the coverage and also expands the capacity of cellular network. In this paper, we propose a generic framework for Proximity as a Service (PaaS) with demands of service continuity, namely ContAct based Proximity (CAP) via opportunistic D2D communication. Mainly, fruitful contact information (e.g., contact duration, frequency and interval) is captured as a key metric, to handle an ubiquitous and PaaS through the optimal selection of helpers. The nature of CAP is evaluated under the Helsinki city scenario, with key factors influencing the service demands (e.g., success ratio, disruption duration and frequency). Simulation results show the advantage of CAP, in both success ratio and continuity of the service. This work is the first one to evaluate LTE-Direct and WiFi-Direct in opportunistic proximity services

    White Paper for Research Beyond 5G

    Get PDF
    The documents considers both research in the scope of evolutions of the 5G systems (for the period around 2025) and some alternative/longer term views (with later outcomes, or leading to substantial different design choices). This document reflects on four main system areas: fundamental theory and technology, radio and spectrum management; system design; and alternative concepts. The result of this exercise can be broken in two different strands: one focused in the evolution of technologies that are already ongoing development for 5G systems, but that will remain research areas in the future (with “more challenging” requirements and specifications); the other, highlighting technologies that are not really considered for deployment today, or that will be essential for addressing problems that are currently non-existing, but will become apparent when 5G systems begin their widespread deployment

    Vehicle as a Service (VaaS): Leverage Vehicles to Build Service Networks and Capabilities for Smart Cities

    Full text link
    Smart cities demand resources for rich immersive sensing, ubiquitous communications, powerful computing, large storage, and high intelligence (SCCSI) to support various kinds of applications, such as public safety, connected and autonomous driving, smart and connected health, and smart living. At the same time, it is widely recognized that vehicles such as autonomous cars, equipped with significantly powerful SCCSI capabilities, will become ubiquitous in future smart cities. By observing the convergence of these two trends, this article advocates the use of vehicles to build a cost-effective service network, called the Vehicle as a Service (VaaS) paradigm, where vehicles empowered with SCCSI capability form a web of mobile servers and communicators to provide SCCSI services in smart cities. Towards this direction, we first examine the potential use cases in smart cities and possible upgrades required for the transition from traditional vehicular ad hoc networks (VANETs) to VaaS. Then, we will introduce the system architecture of the VaaS paradigm and discuss how it can provide SCCSI services in future smart cities, respectively. At last, we identify the open problems of this paradigm and future research directions, including architectural design, service provisioning, incentive design, and security & privacy. We expect that this paper paves the way towards developing a cost-effective and sustainable approach for building smart cities.Comment: 32 pages, 11 figure
    • …
    corecore