7 research outputs found

    A GENERALIZED LEAST SQUARES APPROACH TO BLIND SEPARATION OF SOURCES WHICH HAVE VARIANCE DEPENDENCIES

    Get PDF
    ABSTRACT We discuss the blind source separation problem where the sources are not independent but are dependent only through their variances. Some estimation methods have been proposed on this line. However, most of them require some additional assumptions, a parametric model for their dependencies or a temporal structure of the sources, for example. In this article, we propose a generalized least squares approach to the blind source separation problem in the general case where those additional assumptions do not hold

    Multi-Component Machine Monitoring and Fault Diagnosis Using Bling Source Separation and Advanced Vibration Analysis

    Get PDF
    RÉSUMÉ Dans le diagnostic des machines rotatives, l'analyse des vibrations est largement connue pour ĂȘtre l'une des techniques les plus efficaces. Les vibrations sont une caractĂ©ristique inhĂ©rente des machines rotatives et les diffĂ©rentes composantes de ce type de machines telles que les arbres, les roulements et les engrenages produisent de l'Ă©nergie vibratoire avec diffĂ©rentes caractĂ©ristiques. N'importe quelle dĂ©tĂ©rioration de l'Ă©tat de telles composantes peut affecter leurs propriĂ©tĂ©s vibratoires et se manifester par consĂ©quent dans la signature de vibration. Ceci est valable pour le diagnostic des dĂ©fauts en analysant la signature des vibrations du systĂšme. Pour faire un excellent diagnostic des dĂ©fauts utilisant les techniques d'analyse de vibration, il faut que les signaux acquis atteignent un certain niveau de propretĂ©s de telle sorte que le plus petit changement des attributs du signal dĂ» Ă  un dĂ©faut imminent dans n'importe quelle composante peut ĂȘtre dĂ©tectĂ©. NĂ©anmoins, ce n’est pas le cas dans la pratique, car les signaux de vibration sont souvent encombrĂ©s par le bruit. Dans le cas des machines complexes Ă  plusieurs Ă©lĂ©ments ce problĂšme est aggravĂ© encore plus car les diffĂ©rentes composantes produisent de l'Ă©nergie vibratoire. En effet Ă  toutes les fois qu'il est nĂ©cessaire de surveiller n'importe quelle composante d'intĂ©rĂȘt, les vibrations produites par les autres affectent le signal. Parmi les moyens pour contourner ce problĂšme est de placer des capteurs aussi proches que possible des composantes donnĂ©es. Mais, certaines restrictions telles que la complexitĂ©, la politique de garantie du fabricant et l'inaccessibilitĂ© empĂȘchent de tel emplacement, de ce fait, dans la majoritĂ© des cas les capteurs sont placĂ©s sur la surface extĂ©rieure de la structure. Par consĂ©quent les capteurs collectent non seulement des signaux de vibrations d'une composante spĂ©cifique mais des autres composantes aussi, de ce fait, les signaux de chaque capteur est en effet, la combinaison de l'Ă©nergie vibratoire des diffĂ©rentes composantes, plus le bruit. La dissipation de l'Ă©nergie des vibrations complique la situation encore plus. Pour surpasser ce problĂšme, principalement deux approches peuvent ĂȘtre adoptĂ©es. La premiĂšre consiste Ă  considĂ©rer ces cas comme un problĂšme de sĂ©paration aveugle de sources et en tirer profit des mĂ©thodes statistiques et mathĂ©matiques dĂ©veloppĂ©es Ă  cet effet, surtout l'analyse en composantes indĂ©pendante (ACI), qui sĂ©pare les signaux provenant de sources diffĂ©rentes.----------ABSTRACT In diagnosis of rotating machinery, vibration analysis is widely known to be one of the most effective techniques. This stems from the fact that oscillation is an inherent characteristic of rotating machines and different components of these types of machinery such as shafts, bearings and gears produce vibration energy with different characteristics. Any deterioration in the condition of such components can affect their vibratory attributes and manifest itself in the vibration signature. This allows diagnosis of machine faults by analyzing the vibration signature of the system. For improved and authentic fault diagnosis using vibration analysis techniques it is necessary that the acquired vibration signals be ‘clean’ enough that small changes in signal attributes due to an impending fault in any component can be detected. unfortunately, this is not the case in common practice and vibration signals received from operating machinery are almost always cluttered with noise. In complex multi-component machines this problem is aggravated because vibration energy is generated by each individual component. Whenever it is necessary to monitor a specific component, vibration produced by other components affect the signal. One solution for this problem is to mount the vibration sensors as close as possible to the targeted components. Some restrictions such as complexity, manufacturer’s warranty policy and inaccessibility constrain this approach and in a majority of cases sensors are placed on the innermost surface possible (i.e.,casing) of the structure. As a consequence, the sensors collect vibration signals which are not uniquely generated from the targeted component, but also include contributions from many other components. The vibration signals collected by each sensor are in effect the combination of vibration energy produced by different components in addition to the noise. Dissipation of vibration energy through transmission path complicates the situation even further. To tackle this problem, one of two alternative approaches can be adopted. One approach is to regard this case as a blind source separation (cocktail party) problem and take advantage of statistical and mathematical methods developed for this purpose, primarily independent component analysis (ICA), to separate signals coming from different sources
    corecore