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RÉSUMÉ 

Dans le diagnostic des machines rotatives, l'analyse des vibrations est largement connue pour être 

l'une des techniques les plus efficaces. Les vibrations sont une caractéristique inhérente des 

machines rotatives et les différentes composantes de ce type de machines telles que les arbres, les 

roulements et les engrenages produisent de l'énergie vibratoire avec différentes caractéristiques. 

N'importe quelle détérioration de l'état de telles composantes peut affecter leurs propriétés 

vibratoires et se manifester par conséquent dans la signature de vibration. Ceci est valable pour le 

diagnostic des défauts en analysant la signature des vibrations du système.  

Pour faire un excellent diagnostic des défauts utilisant les techniques d'analyse de vibration, il 

faut que les signaux acquis atteignent un certain niveau de propretés de telle sorte que le plus 

petit changement des attributs du signal dû à un défaut imminent dans n'importe quelle 

composante peut être détecté. Néanmoins, ce n’est pas le cas dans la pratique, car les signaux de 

vibration sont souvent encombrés par le bruit. Dans le cas des machines complexes à plusieurs 

éléments ce problème est aggravé encore plus car les différentes composantes produisent de 

l'énergie vibratoire. En effet à toutes les fois qu'il est nécessaire de surveiller n'importe quelle 

composante d'intérêt, les vibrations produites par les autres affectent le signal. Parmi les moyens 

pour contourner ce problème est de placer des capteurs aussi proches que possible des 

composantes données. Mais, certaines restrictions telles que la complexité, la politique de 

garantie du fabricant et l'inaccessibilité empêchent de tel emplacement, de ce fait, dans la 

majorité des cas les capteurs sont placés sur la surface extérieure de la structure. Par conséquent 

les capteurs collectent non seulement des signaux de vibrations d'une composante spécifique mais 

des autres composantes aussi, de ce fait, les signaux de chaque capteur est en effet, la 

combinaison de l'énergie vibratoire des différentes composantes, plus le bruit. La dissipation de 

l'énergie des vibrations complique la situation encore plus. 

Pour surpasser ce problème, principalement deux approches peuvent être adoptées. La première 

consiste à considérer ces cas comme un problème de séparation aveugle de sources et en tirer 

profit des méthodes statistiques et mathématiques développées à cet effet, surtout l'analyse en 

composantes indépendante (ACI), qui sépare les signaux provenant de sources différentes. La 

deuxième approche, et sans passer par la "séparation" des signaux et de les relier aux différentes 

composantes (sources) consiste à utiliser comme base, les spécifications et les caractéristiques 
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des signaux produites par les différentes composantes dans des conditions normales et 

défectueuses. Dans cette étude, ces deux approches sont étudiées, pour le cas de détection des 

défauts dans les roulements. 

Dans la première approche, une complexité commune avec l'application soit des techniques de 

séparation aveugle de sources soit des méthodes mathématiques propres à la séparation des 

sources c'est qu’en général aucune mesure métrique ou standard n'existe pour évaluer la qualité 

de la séparation afin de valider les résultats. En effet pour une évaluation idéale, il faut que les 

vrais signaux originaux produits par chaque composante soient disponible et cela comme une 

condition fondamentale. Cela nécessite que les signaux de chaque composante soient collectés en 

strict isolement pendant leur fonctionnement dans un laboratoire. Une telle tâche est parfois très 

couteuse et difficile, sinon impossible. Afin de surpasser ces difficultés, une nouvelle méthode est 

développée, elle consiste à la distribution d'énergie de vibration à l'égard de l'emplacement des 

sources de vibration et de capteurs et est basée sur le comportement mécanique de la  structure. 

Cette méthode adopte certains concepts clés de l'analyse statistique d’énergie (ASE) pour 

soutenir le fait que chaque capteur recueille une version différente des vibrations produites dans 

le système par rapport à son emplacement dans la structure. Par la suite, en comparant le spectre 

de la signature vibratoire du signal et en utilisant une connaissance a priori de la distribution 

spatiale des capteurs et des composantes, une représentation graphique de la signature spectrale 

des sources de vibration est obtenues. Cette méthode proposée est vérifiée avec des données 

artificielles et expérimentales. Avec une évaluation métrique disponible, une analyse plus 

rigoureuse des techniques de séparation aveugle de source peut être atteinte. La première 

formulation mathématique existante pour la séparation aveugle de sources est l'analyse en 

composantes indépendantes (ACI). Dans l'analyse en composantes indépendantes, on suppose 

que les signaux sources sont statistiquement indépendants les uns des autres et peuvent être 

récupéré par la formulation de l'indépendance. Néanmoins, il existe toujours deux ambigüités et 

indéterminations dominantes liées à l'analyse en composantes indépendantes. Premièrement, 

l'index original des sources est inconnu. La seconde ambigüité est que l'échelle réelle des sources 

ne peut être déterminée. 

L’analyse en composantes indépendantes peut être appliquée soit dans le domaine temporel ou 

fréquentiel. Quel domaine choisir dépend principalement du mécanisme du signale mélangé. Si le 

mécanisme du mélange est instantané, (c'est à dire, les signaux sont mélangés de façon linéaire) 
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les méthodes dans le domaine temporel sont les plus efficaces. Si le mécanisme du mélange est 

convolutif, (c'est à dire, les signaux sont convoluée) alors les méthodes dans le domaine 

fréquentiel sont plus appropriées. Dans la plupart des cas réels, y compris les vibrations dans les 

systèmes mécaniques, le mécanisme du signal mélangé est souvent convolutif, alors dans ce cas-

ci, l'analyse en composantes indépendantes dans le domaine fréquentiel doit être utilisée. Dans un 

tel cas, la construction de signaux temporels à partir des résultats de séparation des bandes de 

fréquences pose problème. Cette difficulté est causée par l'indétermination de permutation locale 

par opposer aux ambiguïtés de l'indétermination globale confrontée lors de l'analyse des résultats 

globaux. Les contournements existants à ce problème sont soit des calculs numériquement 

couteux, soit des hypothèses qui ne sont prises en compte par les systèmes mécaniques. Dans 

cette thèse, une nouvelle techniques est proposée et est basée principalement sur les attributs 

mécaniques du système plutôt que sur des hypothèses mathématiques ou statistiques irréaliste. 

Cette technique repose sur la supposition que le mécanisme du mélange pour des bandes de 

fréquences voisines serait légèrement varié d'une bande à autre. Ainsi, en liant et en attachant 

numériquement les matrices mélangées des bandes de fréquences contiguës, les problèmes de 

permutation locale et l'indétermination de l'échelle seront résolus. Cette méthode est vérifiée en 

utilisant une série de tests expérimentaux sur des signaux synthétiques et des signaux de 

laboratoires et les résultats sont comparés avec l'évaluation métrique présentée précédemment. 

L’excellente concordance entre les résultats confirme l'efficacité de la méthode. 

Quant à la deuxième approche, l'efficacité de l'analyse spectrale cyclique est évaluée pour 

détecter les défauts de roulements dans les machines complexes. Ces défauts sont connus pour 

produire des vibrations avec impulsivité périodique dans l'énergie, connus en termes techniques 

pour être cyclostationnaire. L’analyse spectrale cyclique est un outil qui permet de mesurer la 

cyclo-stationnarité du signal à différentes gammes de fréquence. A cet effet, pour que l'analyse 

spectrale cyclique soit efficace dans des applications liées aux machines complexes, deux 

exigences sont jugées indispensables. La première est qu'elle soit capable de détecter les défauts 

d'un signal faible, la deuxième exigence est qu’il est essentiel que cette méthode permette une 

tendance robuste, réalisable et cohérente. En plus, ces caractéristiques étant repérés doivent être 

cohérentes dans le sens que leurs valeurs portent une certaine correspondance à la sévérité des 

défauts.  
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Dans cette thèse, la cyclostationnarité est examinée selon ces exigences est cela à travers deux 

séries de tests expérimentaux. Les résultats expérimentaux ont démontré que l'analyse spectrale 

cyclique est en effet capable de détecter des défauts de roulement à partir des signaux faible. En 

plus, cette méthode peut être utilisée comme un outil très fiable de surveillances et de diagnostic, 

même si, la correspondance entre les valeurs de propriétés et la sévérité des défauts de 

roulements ne peut être établie. 
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ABSTRACT 

In diagnosis of rotating machinery, vibration analysis is widely known to be one of the most 

effective techniques. This stems from the fact that oscillation is an inherent characteristic of 

rotating machines and different components of these types of machinery such as shafts, bearings 

and gears produce vibration energy with different characteristics. Any deterioration in the 

condition of such components can affect their vibratory attributes and manifest itself in the 

vibration signature. This allows diagnosis of machine faults by analyzing the vibration signature 

of the system.  

For improved and authentic fault diagnosis using vibration analysis techniques it is necessary that 

the acquired vibration signals be ‘clean’ enough that small changes in signal attributes due to an 

impending fault in any component can be detected. Unfortunately, this is not the case in common 

practice and vibration signals received from operating machinery are almost always cluttered 

with noise. In complex multi-component machines this problem is aggravated because vibration 

energy is generated by each individual component. Whenever it is necessary to monitor a specific 

component, vibration produced by other components affect the signal. One solution for this 

problem is to mount the vibration sensors as close as possible to the targeted components. Some 

restrictions such as complexity, manufacturer’s warranty policy and inaccessibility constrain this 

approach and in a majority of cases sensors are placed on the innermost surface possible (i.e., 

casing) of the structure. As a consequence, the sensors collect vibration signals which are not 

uniquely generated from the targeted component, but also include contributions from many other 

components. The vibration signals collected by each sensor are in effect the combination of 

vibration energy produced by different components in addition to the noise. Dissipation of 

vibration energy through transmission path complicates the situation even further.  

To tackle this problem, one of two alternative approaches can be adopted. One approach is to 

regard this case as a blind source separation (cocktail party) problem and take advantage of 

statistical and mathematical methods developed for this purpose, primarily independent 

component analysis (ICA), to separate signals coming from different sources. The other approach 

is to avoid making the effort to ‘separate’ the signals and relate them to different components 

(sources) and instead make use of the specification and characteristics of vibration signals 
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produced by the different components in normal and faulty conditions. In this dissertation, these 

two approaches are studied for the case of bearing anomaly detection. 

In the first approach, a common difficulty with applying blind source separation techniques (or, 

in general any mathematical methods) to separation of vibration sources is that no standard 

measure exists to assess the quality of separation and validate the results. In fact, for an ideal 

assessment the true original signals produced by each component must be available as a 

prerequisite. This requires gathering signals from each component in strict isolation during 

operation in a lab environment which, if not impossible, is very costly and difficult. To alleviate 

this difficulty, a novel method is developed that presents the distribution of vibration energy with 

regard to the respective locations of vibration sources and sensors, and takes into consideration 

the mechanical attributes of the structure. This method uses some key concepts from statistical 

energy analysis (SEA) to support the fact that each sensor collects a different version of the 

oscillations produced in the system with respect to its location in the system. Therefore, by 

comparing the spectral signature of the vibration signals and making use of a priori knowledge of 

the spatial distribution of sensors and components, a schematic representation of the spectral 

signature of the vibration sources are obtained. This method is verified using a series of 

experiments with synthetic and real data.  

If a standard evaluation metric is available, more rigorous evaluation of blind source separation 

techniques can be achieved. The foremost existing solution to blind source separation is 

Independent Component Analysis (ICA). In ICA it is assumed that the source signals are 

statistically independent from one another and can therefore be recovered by formulating the 

independence. There are, however, two dominant ambiguities and indeterminacies associated 

with ICA results. One ambiguity is that the original index or permutation of the recovered source 

signals is unknown. The other ambiguity is that the actual scale of the source signals cannot be 

determined. ICA can be applied in both time and frequency domains. The choice between these 

two domains depends mainly on the mixing mechanism. If the mixing mechanism is 

instantaneous, (i.e., the signals are linearly mixed) time-domain methods are the most effective 

and efficient. If the mixing mechanism is convolutive, (i.e., the signals are convolved) then 

frequency methods are more appropriate whilst time-domain methods are limited. In most real 

cases including vibration in mechanical systems, the mixing mechanism is known to be 

convolutive and frequency-based ICA should be used. In such cases reconstruction of time 
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signals from separation results of individual frequency bins poses a difficulty. This problem has 

been referred to as local permutation indeterminacy as opposed to global ambiguities 

indeterminacy and is confronted while analyzing the overall results. Existing solutions to this 

problem are either computationally demanding or based on assumptions that normally do not 

hold in mechanical systems. In this dissertation, a new technique is proposed based mainly on the 

mechanical attributes of the system rather than unrealistic mathematical or statistical 

assumptions. This technique is developed based on the presumption that the mixing mechanism 

for neighboring frequency bins varies only slightly from one bin to another. Therefore, by 

numerically tying and relating the mixing matrices of contiguous frequency bins, local 

permutation and scale indeterminacy problems are resolved. This method is studied 

experimentally using laboratory data and the results are also compared with the evaluation metric 

presented in the previous study. Accordance between the results confirmed the efficacy of the 

proposed method.  

In the second approach, the effectiveness of cyclic spectral analysis is assessed for detecting 

bearing faults in complex machinery. Bearing faults are known to produce vibration with 

recurring impulsiveness in the energy which is referred to as cyclostationarity. Cyclic spectral 

analysis is a powerful tool to measure the cyclostationarity of a signal in different frequency 

ranges. For this tool to be effective in applications related to complex machinery, two 

requirements are identified. One requirement is that the tool must be capable of detecting defects 

from a weak signal as it passes and attenuates through its transmission path. The other 

requirement is that it must allow robust, attainable and consistent trending. Also the feature being 

tracked must be consistent in the sense that its value bears some correspondence to the severity of 

the faults. In this thesis, cyclostationarity is examined for these requirements through two sets of 

experimental tests. The experimental results show that cyclic spectral analysis is indeed capable 

of detecting bearing faults from faint signals. Also, it can be utilized as a reliable monitoring tool, 

even though the correspondence between the feature value and the severity of the bearing faults 

may not be robustly established.  
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CONDENSÉ EN FRANÇAIS 

Introduction 

Lors du diagnostic des machines tournantes, l'analyse des vibrations est l'un des moyens le plus 

important pour l'acquisition des données. En effet, les vibrations sont une caractéristique 

inévitable des machines tournantes. Différentes composantes de ce type de machines telles que 

les arbres, les roulements et les engrenages produisent de l'énergie vibratoire avec différentes 

propriétés. Toutefois la détérioration de l'état de ces composantes peut affecter le comportement 

vibratoire de ces machines et par la suite se manifester dans les signaux vibratoires acquis. De ce 

fait, cela permet le diagnostic des défauts par le traitement de signature vibratoire de tout le 

système. Ce type d'analyse a gagné de  popularité ces dernières années et est devenu 

indispensable pour la détection des défauts dans les machines tournantes. 

Pour avoir un diagnostic précis des défauts à l'aide d'une analyse de vibrations, il faut que les 

signaux acquis aillent un certains niveaux de «pureté» de telle sorte que la plus petite variation 

dans le signal en raison d'un défaut imminent dans n'importe quel composante peut être 

détecté. Malheureusement, dans la pratique ce n'est pas le cas et les signaux de vibration sont 

toujours encombrés de bruit. Le problème s’aggrave encore lorsqu'il s'agit de machines 

complexes à plusieurs composantes où ces dernières produisent de l'énergie vibratoire, et qu’à 

chaque fois qu'il est nécessaire de surveiller une de ces composantes, les vibrations produites par 

les autres brouillent le signal. Une façon d'atténuer ces effets est de placer des capteurs aussi près 

que possible des composantes d'intérêt. Toutefois, ce n’est  pas toujours possible en raison de 

certaines restrictions et délimitations telles que la complexité, la politique de garantie du 

fabricant, l'inaccessibilité, etc. Le seul choix sera de placer des capteurs sur la surface extérieure 

de la structure (par exemple, le revêtement). Dans ce cas, les capteurs recueillent des signaux non 

pas d'une composante spécifique, mais un mélange avec les signatures des autres 

composantes. De cette façon, les signaux de chaque capteur sont en effet la combinaison de 

l'énergie des vibrations produites par les différentes composantes, plus le bruit. La dissipation de 

l'énergie des vibrations complique la situation encore plus. Suite à ces difficultés majeures, dans 

la pratique il est difficile d'obtenir la signature vibratoire réelle de chaque composante. 
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Pour surpasser ce problème, principalement deux approches peuvent être adoptées. La première 

consiste à considérer ces cas comme un problème de séparation aveugle de sources et en tirer 

profit des méthodes statistiques et mathématiques développées à cet effet, surtout l'analyse en 

composantes indépendante (ACI), qui sépare les signaux provenant de sources différentes. Cette 

approche et les sujets connexes sont expliqués dans les paragraphes suivant est développés dans 

les chapitres 2 et 3.  

La deuxième approche, et sans passer par la "séparation" des signaux et de les relier aux 

différentes composantes (sources) consiste à utiliser comme base, les spécifications et les 

caractéristiques des signaux produites par les différentes composantes dans des conditions 

normales et défectueuses. Cette approche est développée dans le chapitre 4 et est présenté en ce 

qui suit comme une troisième étude de cas. 

Première étude de cas 

Avant-propos 

Une complexité commune avec l'application soit des techniques de séparation aveugle de sources 

soit des méthodes mathématiques propres à la séparation des sources c'est qu’en général aucune 

mesure métrique ou standard n'existe pour évaluer la qualité de la séparation afin de valider les 

résultats. Pour une évaluation idéale, il faut que les vrais signaux originaux produits par chaque 

composante soient disponible et cela comme une condition fondamentale. Cela nécessite que les 

signaux de chaque composante soient collectés en strict isolement pendant leur fonctionnement 

dans un laboratoire. Une telle tâche est parfois très couteuse et difficile, sinon impossible. 

Dans cette étude, une nouvelle méthode est développée, elle consiste à la distribution d'énergie de 

vibration à l'égard de l'emplacement des sources de vibration et de capteurs et est basée sur le 

comportement mécanique de la structure. Cette méthode adopte certains concepts clés de 

l'analyse statistique d’énergie (ASE) pour soutenir le fait que chaque capteur recueille une 

version différente des vibrations produites dans le système par rapport à son emplacement dans la 

structure. En appliquant la transformée de Fourier sur les signaux et en utilisant une connaissance 

a priori de la distribution spatiale des capteurs et des composantes, les signaux de vibration 

d'origine peuvent être récupéré grâce à la comparaison entre les représentations de fréquence 
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(transformée de Fourier) des signaux reçus par chaque capteur. Cette méthode proposée est 

vérifiée avec des données artificielles et expérimentales. 

Concept 

Lors de la collecte des signaux d'un système complexe à l'aide de multiples capteurs, chaque 

capteur, en fonction de son emplacement par rapport aux sources de vibrations va enregistrer une 

version différente d'énergie de vibration. En comparant ces différentes versions 

d'enregistrements, on peut identifier la source de la composante correspondante des signaux 

vibratoires. Pour ce faire, la compréhension de la façon dont l'énergie des vibrations se propage 

de la source aux capteurs est inévitablement nécessaire. Afin de cerner l'effet de propagation sur 

l'énergie de vibration, l’ASE a été utilisé pour qu’elle ne nécessite aucune charge élevée de 

calculs afin de donner une estimation de la distribution spatiale de l'énergie des vibrations et des 

niveaux de réponse dans le système. La première étape pour effectuer une analyse basée sur le 

concept ASE est de déterminer les sous-systèmes. Une façon raisonnable pour déterminer les 

sous-systèmes et d’identifier les couplages entre eux. Un couplage peut s’étendre d'un joint 

boulonné à une discontinuité, tel qu'un changement  d'épaisseur d’une paroi. 

Procédure 

La procédure pour la méthode proposée est la suivante: N donné comme le nombre de 

capteurs;!!(!)la transformée de Fourier des signaux !! !  (où i = 1, ..., N) est obtenu pour une 

période donnée. Pour chaque bande de fréquence notée f, les intensités sont mis à zéro, sauf pour 

l'intensité maximale (c.-à-d.!"#$!!!!!(!)) parmi tous les signaux provenant des différents 

capteurs. En utilisant cette approche, à chaque fréquence, les intensités des N spectres sont soient 

nulles soient au maximum. Finalement, en utilisant la diversité spatiale de l’endroit du capteur 

par rapport aux sous-systèmes et aux composantes, chaque capteur avec sa représentation en 

fréquence modifiée est associé à une composante. Afin de diminuer l'effet des fluctuations 

aléatoires et transitoires la transformée de Fourier à fenêtre réduite (Short Time Fourier 

Transforms (STFT)) peut être utilisée de telle sorte que la procédure précitée est appliquée à 

chaque fenêtre et ensuite la moyenne des résultats de toutes les fenêtres est établie. Utilisant cette 

approche l'effet des perturbations aléatoires (et dans une certaine mesure du bruit) disparait. 
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Expérimentation 

Afin de vérifier la faisabilité de la méthode proposée, deux études de cas utilisant des signaux de 

vibration cueillis à partir de deux différents bancs d'essai ont été effectuées.  

Dans le premier cas, les signaux de vibration ont été recueillis à partir d'un banc d'essai à l'École 

Polytechnique de Montréal qui est constitué d'un moteur de 2 CV couplé à un arbre supporté par 

deux roulements différents. Un des roulements est un roulement à rouleaux de Pratt & Whitney 

(PWC15) avec un défaut de la bague externe et l'autre est un nouveau roulement à billes SKF 

(1217 K). Quatre accéléromètres ont été utilisés, l'un monté sur chaque boîtier et deux posés sur 

la base principale. En utilisant cette méthode, le défaut de la bague extérieure du palier PWC15 a 

été détecté avec succès. Dans le second cas, un ensemble de données fourni par le « Center for 

Intelligent Maintenance Systems » (IMS) de l'Université de Cincinnatià traversla « NASA Ames 

Prognostics Data Repository » a été utilisé, où, quatre roulements à doubles rangées« Rexnord 

ZA-2115 » ont été montés sur un arbre entrainé par un moteur AC. Les données ont été recueillies 

en utilisant quatre accéléromètres, un sur chaque palier, à un taux d'échantillonnage de 20 

KHz. Un mécanisme à ressort exerce une charge radiale de 6000 livres sur l'arbre tournant et le 

roulement. Des extraits de données d'environ 1 seconde en durée ont été recueillis à des 

intervalles de 10 minutes à travers un test dit « exploitation jusqu'à défaillance ». Dans cette 

étude, l'un des extraits a été sélectionné pour lequel un défaut de la bague externe sur le troisième 

palier est clairement distingué. Afin de démontrer comment cette méthode va être appliquée, les 

résultats ont été comparés avec les résultats d'une méthode statistique. Dans ce cas, la méthode de 

l'analyse en composantes indépendantes « ACI »a été utilisée pour séparer les signaux de 

vibration et une très bonne concordance entre les résultats des deux méthodes a été établie. Dans 

l'ensemble, les résultats expérimentaux ont confirmé l'efficacité de la méthode. Certaines lacunes 

associées à cette méthode sont brièvement discutées: cette méthode ne peut pas être très efficace 

et précises dans les systèmes avec un comportement transitoire. En plus, dans les systèmes avec 

des composantes très densément montés, la détermination des sous-systèmes et donc le meilleur 

emplacement pour les capteurs peuvent être très difficiles. En guise de recommandation pour les 

travaux futurs, l'efficacité de cette méthode peut être encore étudiée avec des signaux obtenus à 

partir d’autres cas expérimentaux ou industriels. 
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Deuxième étude de cas 

Avant-propos 

La première formulation mathématique existante pour la séparation aveugle de sources est 

l'analyse en composantes indépendantes (ACI). Dans l'analyse en composantes indépendantes, on 

suppose que les signaux sources sont statistiquement indépendants les uns des autres et peuvent 

être récupéré par la formulation de l'indépendance. Néanmoins, il existe toujours deux ambigüités 

et indéterminations dominantes liées à l'analyse en composantes indépendantes. Premièrement, 

l'index original des sources est inconnu. C'est-à-dire, la méthode ACI ne fournit pas d'étiquetage 

ou de permutation des signaux récupérés à l'égard de leurs sources réelles. Il vient du fait que 

l'indépendance mathématique est insensible à la permutation des sources. La seconde ambigüité 

est que l'échelle réelle des sources ne peut être déterminée. Cela signifie que les signaux 

récupérés peuvent être une version amplifiée ou atténuée des signaux originaux. Ceci est 

également dû à l'insensibilité de l'indépendance mathématique du facteur de l’échelle. Il ya un 

certain nombre d'algorithmes et de méthodes pour effectuer la séparation de signaux basée sur le 

concept de l'ACI. Ces méthodes peuvent être appliquées soit dans le domaine temporel ou 

fréquentiel. Quel domaine choisir dépend principalement du mécanisme du signale mélangé. Si le 

mécanisme du mélange est instantané, (c'est à dire, les signaux sont mélangés de façon linéaire) 

les méthodes dans le domaine temporel sont les plus efficaces. Si le mécanisme du mélange est 

convolutif, (c'est à dire, les signaux sont convoluée) alors les méthodes dans le domaine 

fréquentiel sont plus appropriées. Dans la plupart des cas réels, y compris les vibrations dans les 

systèmes mécaniques, le mécanisme du signal mélangé est souvent convolutif. 

Le problème avec le choix de la méthode de fréquence basée sur l’ACI est que, la séparation 

résultante de l'ensemble des bandes de fréquence n’est pas nécessairement englober par la même 

échelle et permutation. D'une bande de fréquence à l'autre, il est probable que la permutation des 

sources soit différente. Ainsi, lors de la transformation des résultats de la séparation du domaine 

de fréquence au domaine temporel des signaux qui en résulte ne peuvent pas être composé de 

fréquence d'une source unique. Dans cette étude, nous avons cherché à employer l'analyse en 

composantes indépendante (ACI) dans le domaine fréquentiel pour récupérer les signaux produits 

par les composantes d’un système complexe. Une nouvelle approche est proposée et testée pour 

surmonter le problème de la permutation «locale» indéterminée. Afin de démontrer l'applicabilité 
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de la nouvelle approche, des expériences ont été effectuées sur un banc d'essai avec un arbre 

entrainé par un moteur électrique et supporté par deux paliers différents. 

Concept 

L’indétermination locale est initialement due à l'indétermination inhérente de la méthode d'ACI. 

Plus précisément, elle provient du fait que l'ACI est généralement mise en œuvre sur chaque 

bande de fréquence de façon indépendante, et par conséquent les résultats de séparation à 

différentes bandes peuvent avoir une permutation et une échelle différentes. Une façon de régler 

ce problème est de relier l’exécution de l’ACI à différentes bandes de fréquences. Dans ce cas-ci 

une compréhension du mécanisme des signaux mélangés ainsi que le comportement du système à 

différentes fréquences est indispensable. Une analyse approfondie du mécanisme du mélange 

permet de définir la fonction de transformation entre les sources et les capteurs. Cette analyse est 

toutefois assez difficile en raison de la complexité et la diversité des systèmes 

mécaniques. Néanmoins, si le chemin de la transmission d'énergie des vibrations entre un capteur 

et une source est simplement considéré comme un système de 1 degré de liberté (DDL), un 

changement lisse et progressif dans la transmissibilité entre différentes valeurs de l'amortissement 

à fréquences différentes est présent, c'est à dire, aucune brusquerie n’est visible. Cet évènement 

reste plus ou moins similaire dans les systèmes complexes avec plus de degrés de liberté, à 

l'exception des fréquences naturelles des systèmes non amorties. On peut donc supposer qu'il ya 

une légère différence dans le mécanisme du signal mélangé pour les bandes de fréquences 

voisines. Cela se reflète aussi sur la matrice du mélange tel que les matrices de deux bandes de 

fréquences adjacentes contenant des valeurs très proches. Pour utiliser ce concept, au cours des 

calculs, une fois la convergence des itérations et la matrice de mélange pour une bande de 

fréquence est calculé, la matrice obtenue du mélange sera définie comme une valeur initiale pour 

le calcul de la bande de fréquence suivante. De cette façon, puisque les valeurs des matrices du 

mélange de deux bandes de fréquences adjacentes sont proches les uns des autres, la convergence 

est atteinte très rapidement. De plus, la permutation de la matrice du mélange est maintenue 

équivalente d'une bande de fréquence à autre. En restreignant les conditions de convergence, la 

sur-itération est donc évitée et les matrices du mélange ne serait pas  distante les unes des autres. 
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Expérimentation 

Afin de vérifier la faisabilité de la technique proposée, les signaux de vibration ont été recueillis 

du banc d’essai de l'École Polytechnique de Montréal tel que décrit dans l'étude précédente. Les 

résultats ont été également comparés à la méthode présentée avant (i.e., la proximité 

spatiale). L'intéressante concordance entre les résultats de l'ACI, la méthode de proximité spatiale 

et la méthode d'analyse du pic a confirmé l'efficacité et le potentiel de l'ACI dans le domaine 

fréquentiel ainsi que dans l'approche introduite pour résoudre le problème de permutation locale. 

Troisième étude de cas 

Avant-propos 

Dans la troisième étude, une approche alternative sur l'utilisation de la technique de séparation 

aveugle de source est présentée. Cette approche consiste à mettre l'accent sur chaque composante, 

sur ses défauts et les variations spécifiques qu'ils induisent sur les caractéristiques des signaux 

acquis loin de la composante réelle. Étant donné qu'un outil puissant pour détecter de telles 

caractéristiques est disponible ainsi que des caractéristiques obtenues le long du chemin de la 

transmission, cette approche pourrait être très efficace dans le diagnostic des défauts dans les 

machines complexes. Comme pour d'autres cas tout au long de cette thèse, les défauts dans les 

roulements ont été choisis pour cette étude. De tels défauts sont connus pour produire des 

vibrations avec impulsivité périodique dans l'énergie. Des signaux avec un tel comportement sont 

connus en termes techniques pour être cyclostationnaire. L’analyse spectrale Cyclique est un outil 

qui permet de mesurer la cyclo-stationnarité du signal à différentes gammes de fréquence. Par 

conséquent, on peut affirmer que dans ce cas-ci, le diagnostic consisterait à utiliser cet outil afin 

de détecter la cyclo-stationnarité des signaux de vibration et vérifier toute liaison avec les défauts 

du roulement. Dans cette étude, l'application de cette technique est évaluée pour la détection des 

défauts des roulements dans les machines complexes. 

Concept et expérimentation 

Pour que l'analyse spectrale cyclique soit efficace dans des applications liées aux machines 

complexes, deux exigences sont jugées indispensables. La première est qu'elle soit capable de 

détecter les défauts d'un signal faible, car en principe, le chemin de transmission dissipe 
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généralement l'énergie du signal, mais il ne devrait pas affecter certaines caractéristiques du 

signal telles que son cyclo-stationnarité. Par conséquent, il est raisonnable de s'attendre à ce que 

le comportement du signal cyclo-stationnarité soit préservé. Ceci est expérimenté à partir d’un 

essai similaire sur le banc d’essai de l'École Polytechnique, où les signaux ont été recueillis à 

partir d'un roulement défectueux à l'aide d'un accéléromètre placé loin de ce roulement. L'analyse 

spectrale cyclique a été comparée aux méthodes traditionnelles d'analyse spectrale et les résultats 

ont démontré sa supériorité par rapport aux autres techniques. La deuxième exigence est que, 

dans la surveillance automatique de l’état d’une composante ainsi que le diagnostic des défauts, il 

est essentiel pour une méthode de permettre une tendance robuste, réalisable et 

cohérente. Également ces caractéristiques étant repérés doivent être cohérentes dans le sens que 

leurs valeurs portent une certaine correspondance à la sévérité des défauts. Dans la deuxième 

étude de cas, la cyclo-stationnarité est examiné selon ces exigences grâce à l'expérience 

« exploitation jusqu'à défaillance » décrite dans la première étude. Les résultats expérimentaux 

ont démontré que l'analyse spectrale cyclique qui permet la détection précoce des défauts de 

roulement ne peut être utilisée comme un outil de mesure de la gravité de ces défauts d'une part, 

mais d'autre part, utilisée comme un outil de surveillance fiable et cela tant que sa valeur est 

toujours plus élevée pour un roulement défectueux que pour un normal. En conclusion, les 

résultats expérimentaux ont été satisfaisants. En guise de recommandation pour les travaux 

futurs, l'efficacité de cette méthode peut encore être étudiée avec des signaux obtenus à partir 

d'autres cas industriels. 

Conclusion 

Dans cette thèse, trois études concernant le diagnostic des défauts mécanique dans les machines 

complexes en utilisant l'analyse des vibrations sont présentés. 

Dans la première étude, une nouvelle méthode de séparation basée sur les signatures de fréquence 

obtenue à partir des signaux recueillis auprès de plusieurs capteurs placés à différents endroits du 

système est présentée. Cette méthode à une base théorique simple et solide adopté par l'analyse 

statistique énergétique. Une série de tests expérimentaux sur des signaux synthétiques et des 

signaux de laboratoires recueillis auprès de différents roulements sont fournis pour la 

vérification. Les résultats confirment l'efficacité de la méthode. Certaines lacunes associées à 

cette méthode sont également discutées telles que l'inexactitude et l'inefficacité dans les systèmes 
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avec comportement transitoire et les systèmes avec des composantes complexement montée où la 

détermination des sous-systèmes peut être très difficile. 

Dans la seconde étude une méthode basée sur la fréquence d'analyse en composantes 

indépendantes est appliquée dans le cas de séparation de sources de vibrations. Une nouvelle 

technique est présentée pour la construction de signaux dans le domaine temporel à partir des 

résultats de séparation des bandes de fréquences individuelles. En conséquence, des 

modifications sont apportées à l'algorithme de séparation adapté pour le cas de la séparation de 

sources de vibrations. La performance de la méthode est vérifiée à l'aide d'une série de tests 

expérimentaux sur des signaux réels recueillis auprès de différents bancs d'essais. Les résultats 

sont comparés et vérifiés à l'aide de la méthode de séparation métrique présentée dans la première 

étude. La concordance entre les résultats de la technique présentée, la méthode de la proximité 

spatiale et la méthode d'analyse de pic confirme sa grande efficacité. 

Dans la troisième étude, l'application de la densité spectrale cyclique dans la détection des faibles 

signaux de roulements est considérée. Il a été démontré que, pour que cette technique soit 

efficace dans la détection de défauts dans les systèmes complexes deux conditions préalables 

doivent être remplies. De telles  Conditions sont identifiés d’avoir la capacité de détecter des 

défauts de roulements à partir d'un signal faible. À cet effet, les insuffisances des traditionnelles 

approches sont discutées. Deux séries d'expériences sont présentées afin d'évaluer et soutenir les 

résultats expérimentaux des idées proposées. 

  



xxi 

 

TABLE OF CONTENTS 

DEDICATION .............................................................................................................................. III	  

ACKNOWLEDGMENT ............................................................................................................... IV	  

RÉSUMÉ ........................................................................................................................................ V	  

ABSTRACT .................................................................................................................................. IX	  

CONDENSÉ EN FRANÇAIS .................................................................................................... XII	  

TABLE OF CONTENTS ........................................................................................................... XXI	  

LIST OF TABLES .................................................................................................................. XXIV	  

LIST OF FIGURES .................................................................................................................. XXV	  

LISTE OF ACRONYMS AND ABREVIATIONS ............................................................... XXVII	  

INTRODUCTION ........................................................................................................................... 1	  

1.1	   Preamble .............................................................................................................................. 1	  

1.2	   Blind Source Separation (BSS) ........................................................................................... 3	  

1.2.1	   General model .............................................................................................................. 4	  

1.2.2	   Independent component analysis ................................................................................. 4	  

1.2.3	   Convolutive mixtures and frequency domain analysis ................................................ 7	  

1.2.4	   A review on the application of BSS in fault diagnosis ................................................ 7	  

1.3	   References ......................................................................................................................... 11	  

CHAPTER 2	   A NOVEL APPROACH TO EVALUATION OF VIBRATION SOURCE 

SEPARATION BASED ON SPATIAL DISTRIBUTION OF SENSORS AND FOURIER 

TRANSFORMS ............................................................................................................................ 13	  

2.1	   Abstract ............................................................................................................................. 13	  

2.2	   Introduction ....................................................................................................................... 14	  

2.3	   Concept .............................................................................................................................. 15	  

2.4	   Development ..................................................................................................................... 18	  



xxii 

 

2.4.1	   Multi-sensor data acquisition ..................................................................................... 18	  

2.4.2	   Methodology .............................................................................................................. 18	  

2.5	   Experiments using artificial signals .................................................................................. 19	  

2.5.1	   Signal generation ........................................................................................................ 19	  

2.5.2	   Separation results ....................................................................................................... 21	  

2.6	   Experiments using real signals .......................................................................................... 22	  

2.6.1	   First case study ........................................................................................................... 22	  

2.6.2	   Second case study ....................................................................................................... 26	  

2.7	   Conclusion ......................................................................................................................... 29	  

2.8	   Acknowledgement ............................................................................................................. 29	  

2.9	   References ......................................................................................................................... 30	  

CHAPTER 3	   INDEPENDENT COMPONENT ANALYSIS AS APPLIED TO VIBRATION 

SOURCE SEPARATION AND FAULT DIAGNOSIS ............................................................... 32	  

3.1	   Abstract ............................................................................................................................. 32	  

3.2	   Introduction ....................................................................................................................... 33	  

3.3	   Blind source separation ..................................................................................................... 34	  

3.3.1	   Preamble ..................................................................................................................... 34	  

3.3.2	   Independent component analysis ............................................................................... 36	  

3.3.3	   Convolutive mixtures and frequency domain analysis .............................................. 37	  

3.4	   Blind source separation versus vibration source separation .............................................. 38	  

3.5	   Permutation and scale indeterminacies ............................................................................. 39	  

3.5.1	   Local indeterminacies ................................................................................................ 39	  

3.5.2	   Global indeterminacies ............................................................................................... 41	  

3.6	   Experiments ....................................................................................................................... 42	  

3.6.1	   Data acquisition .......................................................................................................... 42	  



xxiii 

 

3.6.2	   Separation results and discussion ............................................................................... 43	  

3.7	   Conclusion ......................................................................................................................... 47	  

3.8	   Acknowledgement ............................................................................................................. 48	  

3.9	   References ......................................................................................................................... 48	  

CHAPTER 4	   APPLICATION OF CYCLIC SPECTRAL ANALYSIS IN DIAGNOSIS OF 

BEARING FAULTS IN COMPLEX MACHINERY .................................................................. 52	  

4.1	   Abstract ............................................................................................................................. 52	  

4.2	   Introduction ....................................................................................................................... 53	  

4.3	   Bearing faults and cyclostationarity .................................................................................. 55	  

4.3.1	   Bearing faults ............................................................................................................. 55	  

4.3.2	   Cyclic spectral analysis .............................................................................................. 57	  

4.4	   Experiments ....................................................................................................................... 59	  

4.4.1	   First case study ........................................................................................................... 60	  

4.4.2	   Second case study ....................................................................................................... 63	  

4.5	   Conclusion ......................................................................................................................... 66	  

4.6	   Acknowledgement ............................................................................................................. 66	  

4.7	   References ......................................................................................................................... 66	  

CHAPTER 5	   GENERAL DISCUSSION .................................................................................. 70	  

CONCLUSION ............................................................................................................................. 72	  

BIBLIOGRAPHY ......................................................................................................................... 74	  

 

 



xxiv 

 

LIST OF TABLES 

Table 2.1: Characteristic frequencies of the bearings used in the experiments ............................. 24	  

Table 3.1: Characteristic frequencies of the bearings used in the experiments ............................. 44	  

Table 4.1: Characteristic frequencies of bearing faults [16] .......................................................... 55	  

Table 4.2: Characteristic frequencies of the bearings used in the experiments ............................. 61	  

  



xxv 

 

LIST OF FIGURES 

Figure 2.1: A schematic depiction of a system with three subsystems .......................................... 17	  

Figure 2.2: Generated signals: Sine (50 Hz), Sawtooth (60 Hz), Chirp (10-40 Hz) and Uniform 

Noise ....................................................................................................................................... 20	  

Figure 2.3: Signal mixtures obtained by multiplying the signals by a mixing matrix ................... 20	  

Figure 2.4: Separation results in the frequency domain ................................................................. 21	  

Figure 2.5: STFTs of the source signals ......................................................................................... 21	  

Figure 2.6: Test setup with a PWC15 bearing mounted on the left end of the shaft ..................... 22	  

Figure 2.7: Frequency representations of signals collected by four accelerometers ...................... 23	  

Figure 2.8: Separation results for case of PWC15 and 1217K SKF bearings ................................ 24	  

Figure 2.9: Separation results for case of 1216K SKF and 1217K SKF bearings ......................... 26	  

Figure 2.10: Schema of the test rig at IMS, of University of Cincinnati (by courtesy of [18]) ..... 27	  

Figure 2.11: Separation results for case of Rexnord bearings ........................................................ 28	  

Figure 2.12: Separation results for the case of Rexnord bearings using an ICA technique ........... 28	  

Figure 3.1: General data model for blind source separation .......................................................... 35	  

Figure 3.2: Transmissibility in a 1 DOF system ............................................................................ 40	  

Figure 3.3: Test setup with PWC15 bearing mounted on the left end of the shaft ........................ 42	  

Figure 3.4: Separation results using ICA for the case of PWC15 and 1217K SKF bearings ........ 43	  

Figure 3.5: Separation results using the spatial proximity method ................................................ 44	  

Figure 3.6: Results using spatial proximity for the test with two SKF bearings ............................ 46	  

Figure 3.7: Separation results using the ICA method for the case of two SKF bearings ............... 47	  

Figure 4.1: Test setup at École Polytechnique de Montreal ........................................................... 60	  

Figure 4.2: Cyclic spectral density of the faulty PWC15 bearing .................................................. 61	  

Figure 4.3: Low frequency range spectrogram and spectrum of the faulty PWC15 bearing ......... 62	  



xxvi 

 

Figure 4.4: Wide range frequency spectrogram and spectrum of the faulty PWC15 bearing ....... 63	  

Figure 4.5: Schema of the test rig at IMS, of University of Cincinnati (by courtesy of [18]) ....... 64	  

Figure 4.6: Cyclic spectral density of faulty Rexnord bearing ...................................................... 65	  

Figure 4.7: Progress of banded cyclic spectral density .................................................................. 65	  

 



xxvii 

 

LISTE OF ACRONYMS AND ABREVIATIONS 

AC  Alternative current 

ACI  Analyse en composantes indépendantes 

Amcor  Amplitude modulation correlation 

ASE  Analyse statistique d’énergie 

BCS  Blind component separation 

BSS  Blind source separation 

CBM   Condition-based maintenance 

CV  Cheval-vapeur  

DC  Direct current 

DDL  Degré de liberté 

DOF  Degree of freedom 

EVT  Extreme value theory 

FEM  Finite element method 

FFT  Fast Fourier transforms 

FT  Fourier transforms 

HP  Horse power 

Hz  Hertz 

ICA  Independent component analysis 

IMS  Intelligent maintenance systems 

JADE  Joint approximate diagonalization of eigenmatrices 

LLH  Log-likelihood 

MA  Moving average 

MSE  Mean square error 



xxviii 

 

NASA  National aeronautics and space administration 

NRC  Natural research council of Canada 

NSERC Natural sciences and engineering research council of Canada 

PCA  Principal component analysis 

PWC  Pratt & Whitney Canada 

RCTE  Residual cross-talking error 

SEA  Statistical energy analysis 

STFT  Short time Fourier transforms 

VQM  Vestigial quadratic mismatch 
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INTRODUCTION 

1.1 Preamble 

Failure of machinery and relevant components has always been a major concern in industry due 

to costliness of reparation and other costs associated with interruption of the production line or 

the required functions. Maintenance of machinery has consequently been an important field of 

research and development in both industry and academia. Different approaches for performing 

maintenance have evolved. They can be listed under three categories; breakdown or run-to-failure 

maintenance, preventive or time-based maintenance and predictive or condition-based 

maintenance (CBM) [1].  

Breakdown or run-to-failure maintenance consists in reparation of the problematic parts of the 

system as they fail. This intrinsic reaction to failure is the simplest approach. One obvious 

disadvantage is that an unexpected breakdown is usually very costly and frustrating. It can also 

be very time consuming, as the necessary arrangements for reparation must be made at the time 

of failure.  

Preventive or time-based maintenance, which is the most common approach, consists in 

performing maintenance based on a predetermined schedule. For different sections of the system 

a service schedule is elaborated based on experience and life cycle analysis. This schedule is 

determined such that cost and halt time are minimized. This approach in comparison with the 

run-to-failure approach is a mature way of preventing catastrophic failures. Yet, its major 

drawback is that it often leads to redundant and unnecessary servicing and hence a waste of 

resources.  

A resolution to the shortcomings of the previous approach is to perform maintenance whenever 

and wherever needed; based on the condition of the system rather than on a strict or prescheduled 

agenda. A component, machine, etc. is repaired when a failure is likely to occur. This approach is 

known as predictive or condition-based maintenance. In this approach, it is necessary to 

constantly monitor the condition of the system by acquiring some appropriate parameters. Then, 

based on such parameters, the condition or even the remaining lifetime of the system is 

estimated. In a more state-of-the-art scenario, the process of estimating the condition of the 

system is carried out in an automated way with minimal human interference. This is usually 
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where artificial intelligence methods come into play. These artificial intelligence methods aim at 

predicting an impending fault or failure in a system’s part by extracting ‘information’ from 

acquired data. Many methods have been used in this case; some of the best known are the neural 

networks method, fuzzy logic and hidden Markov models.  

In diagnosis of rotating machinery, vibration acquisition is one of the most prevalent ways of 

acquiring data. In fact, oscillation is an inherent characteristic of rotating machines. Different 

components of these types of machinery such as shafts, bearings and gears produce vibration 

energy with different characteristics. Any deterioration in the condition of such components can 

affect their vibratory behaviour and manifest itself in the vibration signals acquired. This allows 

for diagnosis of faults by analyzing the vibration signature of the system. As a result, vibration 

analysis has gained popularity in recent years and vibration sensors have become indispensible 

for rotating machinery of critical importance. 

A prerequisite to accurate fault diagnosis using vibration analysis is that the acquired vibration 

signals be ‘clean’ enough that very small changes in the signal due to an impending fault in any 

component can be detected. Unfortunately, this is not the case in common practice and vibration 

signals are almost always cluttered with noise. This problem is aggravated in the case of complex 

multi-component machines. The different components all contribute to produce vibration energy 

and it is difficult to monitor a specific component because vibration produced by other 

components jumble the signal. One way to alleviate this effect is to mount the vibration sensors 

as close as possible to the components of interest. However, this is often not possible due to 

restrictions such as complexity, manufacturer’s warranty policy and inaccessibility. The only 

alternative is to place the sensors on the innermost surface possible of the structure (i.e., the 

casing). As a consequence, the signal collected by the sensors is not only from the specific 

targeted component, but from many components. The signals collected by each sensor are in 

effect the combination of vibration energy produced by different components in addition to noise. 

Dissipation of vibration energy through transmission path complicates the situation even further. 

The above factors make it difficult to obtain the actual vibration signature for each component.  

To tackle this problem, one of two alternative approaches can be adopted. One approach is to 

regard this case as a blind source separation (cocktail party) problem and take advantage of 

statistical and mathematical methods developed for this purpose, primarily independent 
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component analysis (ICA), to separate signals coming from different sources. The blind source 

separation together with its mathematical definition and description are further detailed in the 

following sections of this introduction. Some limitations and difficulties of this approach are 

mentioned. Proposed solutions to such limitations and difficulties are then spelled out in Chapters 

2 and 3. 

The other alternative is to avoid the effort to ‘separate’ the signals and relate them to different 

components (sources) and instead make use of the specification and characteristics of the signals 

produced by different components in normal and faulty conditions. This approach is elaborated in 

Chapter 4.  

The experimental results presented in this thesis are all related to the case of bearing fault 

detection.   

1.2 Blind Source Separation (BSS) 

In the context of acquiring information from a multi-component system, it is generally desired to 

have information about each component in isolation. However, this is not always possible and 

normally the acquired data is at best a mixture of signals produced by different components or 

sources in the system. Therefore, in order to consider the components individually mixed signals 

must be decomposed into elements pertaining to the system components. This is the subject of a 

subfield in signal processing entitled ‘source separation’. Cases abound where either there is not 

enough available a priori information about the system or the mechanism of mixing is very 

complex. In such cases, the system can be considered a black box and the problem of separating 

sources is called blind source separation. BSS has been usefully applied in many fields and areas 

such as radio-communication, speech and audio processing and biomedical applications [2]. It 

has also been used to separate vibration signals in mechanical systems for the purpose of fault 

diagnosis.  

In the following sections the general model and a brief mathematical background of BSS are 

introduced followed by a concise review of the literature in the field of BSS as applied to 

mechanical systems fault diagnosis. 
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1.2.1 General model 

Blind source separation is a method to recover the signals produced by different individual 

sources from a number of observations of mixed source signals. In mathematical terms the 

general model for blind source separation can be described as follows: 

If there are p zero-mean source signals at time t,  ! ! = !! ! , . . . , !! !  that are assumed to be 

statistically independent, and ! ! = !! ! ,… , !! !  denote the mixed signals received by m 

sensors, the data model for an instantaneous mixture can be written as: 

! ! = !" ! + ! = !!" ! !! ! + !!
!!!   Eq. 1.1 

where A is the !×! mixing matrix consisting of unknown mixture coefficients. It is always 

assumed that the sources are independent and the number of sensors is at least equal to the 

number of sources (i.e., ! ≤ !).  

The primary technique for finding the unknown mixture coefficients (A) is ICA. A prerequisite 

for ICA to be applicable is that no more than one source can have a Gaussian distribution. This 

stems from the fact that it is impossible to separate several Gaussian sources using ICA technique 

[3].  

1.2.2 Independent component analysis 

Independent component analysis consists in finding an estimation of the sources: 

! ! = !" ! = !(!)  Eq. 1.2 

by determining matrix B such that a given objective function defined for components of Y 

becomes minimum. Several objective functions based on different estimation criteria exist for 

ICA. Some of the most important criteria include: maximization of non-Gaussianity[3], 

minimization of mutual information [3] and maximum likelihood estimation [4]. A brief 

description of these criteria is provided later. 

Regardless of what criterion is used, there are always two dominant ambiguities and 

indeterminacies associated with independent component analysis. First, the original labeling of 

the sources is unknown. This means that, because both S and A are unknown, the order of the 

terms can be freely permutated. It is a result of the fact that the mathematical independency is 
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insensitive to permutation of the sources. The second ambiguity is that the actual scale of the 

sources cannot be determined. The reason for this is that any scalar multiplier in one of the 

sources !! can always be canceled by dividing the corresponding column !! of A by the same 

scalar. This is also due to insensitivity of mathematical independency to the scaling factor.  

1.2.2.1 Maximization of non-Gaussianity and minimization of mutual information[3] 

Random variables are known to be Gaussian or normally distributed. There is a general 

consensus that a mixture of two or more independent variables tends towards randomness or 

Gaussianity. Consequently, by distancing from Gaussianity or by maximizing ‘non-Gaussianity’, 

one may approach independency. One of the main measures of non-Gaussianity is ‘negentropy’. 

Negentropy is derived from ‘entropy’ and serves as its converse. In the same manner, it is known 

that the more variables are unstructured and mixed, the higher is the entropy or the ‘mutual 

information’. Therefore, it can be stated that negentropy ties the two criteria of maximization of 

non-Gaussianity and minimization of mutual information together and provides a measure for 

evaluating independency. The formulation for deriving negentropy is described below.  

If the probability density function of a random variable s is denoted by !!(!), then, according to 

probability theorems, in order for vector S with N elements to have mutually independent 

components the following equation holds: 

!! ! = !!!(!!)
!
!!!    Eq. 1.3 

In this case a standard approach for verifying the independency between the components of 

vector S is to measure the distance between both sides of the above equation. There are several 

different measures to evaluate such a distance; one of these  is Kullback divergence [5]. Based on 

Kullback divergence, the average mutual information of S can be written as: 

!(!!) = !! ! log !! !
!!!(!)

!" Eq. 1.4 

The average mutual information of S vanishes if and only if the variables !! are mutually 

independent; otherwise it is a positive value. Therefore, this feature makes the average mutual 

information an appropriate measure for independency.  

Moreover, if the differential entropy of S is defined as: 

!" !! = −∫ ! log !! ! !"   Eq. 1.5 
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and the negentropy as: 

! !! = !" !! − !"(!!) Eq. 1.6 

where !! is the Gaussian density with the same mean and variance as !! , then the average mutual 

information defined beforehand with respect to negentropy can be written as (proof is given in 

[3]): 

! !! = ! !! − ! !!! + !
!
log !"!!! !

|!"# ! |
   Eq. 1.7 

The above equation is an approximation of the mutual information while taking the non-

Guassianity into account.  

1.2.2.2 Maximum likelihood estimation[4] 

In this method, it is first assumed that the sources are independent and identically distributed at 

different times. This is not an essential assumption and is referred to as a working assumption. In 

order to derive a likelihood function, the probability density functions of the sources are needed 

while they are unknown. In this case, they are assumed to be known up to a scaling factor. Then 

the density of the sources with respect to independency can be written as: 

! ! ! = !!
!! !
!!

/!!!
!!!   Eq. 1.8 

where f denotes the probability density function, S and !! are the source vector and an individual 

source respectively and !! is the scaling factor. Then, given that ! ! = !"(!) and assuming that 

A is invertible, the log-likelihood function (LLH) which is the logarithm of the density of the data 

can be written as: 

!!" = ! ! ln !
!!
! !!

!!!!!
!!

− ln det!!
!!!  Eq. 1.9 

where E denotes the average operator over time, !! is the ith column of the unit matrix of order p 

and T denotes the transpose operator. In order to have the maximum likelihood, the differential of 

the above equation with respect to unknown matrix A must be zero. This enables calculation of 

the estimators ! and ! as follows: 

!! = ! !!
!!
!!!!!
!!

!!!!!!! = 0 for ! ≠ ! = 1,… ,! Eq. 1.10 
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where !! = − (ln !!)!  and prime( ) denotes derivative. Pham and Garat introduced this method 

and presented a way of finding an optimal choice for !! based on linear space of functions. 

1.2.3 Convolutive mixtures and frequency domain analysis 

The data model presented above pertains to the case where the mixing mechanism is assumed to 

be linear and instantaneous. This assumption is too simplistic for the majority of real 

applications. The mixing model in most cases is more consistent with a convolutive mixture.  In 

the case of convolutive mixtures the data model can be rewritten as follows: 

! ! = ! ∗ ! ! + ! = !!" ! ∗ !! ! + !!
!!!   Eq. 1.11 

where A is the !×! mixing matrix consisting of unknown mixture coefficients. In this case, 

solving the inverse problem is not as straightforward as it was for the instantaneous data model. 

Certain methods have been suggested to solve the convolutive mixture model in its general form. 

However, such methods are very limited [1].  

Fortunately, a convolutive mixing model in the time domain becomes an instantaneous model 

when brought into the frequency domain. To be more precise, when data is represented using the 

joint time-frequency domain, at each frequency bin the mixing model is instantaneous and 

existing methods for instantaneous mixtures can be employed with minor modifications. Since 

data in the frequency domain are complex valued, instantaneous ICA methods must be modified 

for consistency with complex data. This can be simply done by taking a conjugate transpose 

wherever matrix transposition is needed throughout computations. After performing separation at 

each frequency bin, the resulting separated signals are transformed back from frequency domain 

to time domain and the source signals are recovered.  

1.2.4 A review on the application of BSS in fault diagnosis  

A comprehensive review of the literature on the subject of BSS and ICA is well beyond the scope 

of this thesis. Here, the focus is on previous studies on the application of BSS in separation of 

vibration signals as applied to fault diagnosis in rotating machinery. A short description is given 

for each study where its relevancy to works presented in this thesis is given in the corresponding 

chapters.  

'
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Capdevielle et al (1996) [6] seem to be the first to apply BSS to separate “rotating machine 

signals”. However, it is not clear from their paper if the signals were vibration or other types of 

signals. Also, no information was provided about their test setup. In any case, they used a 

Kurtosis-based non-Gaussianity method to separate “rotating machine noise”, which they argue 

to be convolutive mixtures of wide-band sources in the frequency domain. In order to reconstruct 

the source spectra from signals identified at each frequency bin they proposed a method based on 

relating the moving average (MA) filtering of the estimated sources.   

Gelle et al (2000) [7] used the assumption that the propagation medium is linear (even though 

they argue that this is not the case) and applied BSS to rotating machine monitoring. They 

employed a method based on the Nguyen-Jutten algorithm on the time-domain signals collected 

by accelerometers and microphones from a test bench consisting of two low-powered DC motors 

independently running at two different rotation speeds. In their setup, an accelerometer was 

mounted on each motor and two microphones were placed in front of each motor and the entire 

setup was isolated from surroundings. They performed their analysis on vibration signals and 

acoustic signals using three sets of; artificial signals, artificial mixtures of real signals and real 

signals. For the case of artificial signals and artificially mixed real signals, in order to check the 

performance of their method, they used two performance criteria. One criterion was vestigial 

quadratic mismatch (VQM) between the original source signals and estimated ones. The other 

was the mean square error (MSE) between transformation matrix parameters. In the case of real 

vibration signals, they used spectral analysis of the estimated signals to evaluate their method and 

the results were satisfactory to some extent, but only up to a certain frequency.  

Gelle et al (2001) [8] considered the mixing mechanism for vibration in mechanical structures to 

be convolutive and made a comparison between temporal and frequency based methods for 

separation. This study can be considered as an extension to the abovementioned study. A similar 

approach was used to evaluate these methods using synthetic signals and real signals. To assess 

the quality of separation for the case of synthetic signals, residual cross-talking error (RCTE) 

and MSE were used. For acquiring real signals, a test bed with two DC motors running 

independently at different speeds was used. Each motor was coupled to a shaft lying on two roller 

bearings. Their main focus was to simulate a case of two rotating machines operating 

simultaneously in a factory and to separate the signals gathered by two accelerometers into 

signals produced by each machine. To assess real signals, characteristic frequencies of the system 
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were utilized. Overall, they argued that the frequency-based method performed better even 

though it is more costly due to the required computations. 

Ympa et al (2001) [9] discussed the mixing mechanism in acoustical and vibratory structures. 

They introduced bilinear form functions for several types of signal characteristics for the case of 

instantaneous mixing. They applied time-based instantaneous (bilinear form) and convolutive 

methods to separate vibration signals obtained from two water pumps running simultaneously. To 

assess the quality of separation they used as reference the signals gathered from each pump while 

the other one was stopped. Finally, they concluded that bilinear forms would be a more robust 

method for separation of acoustical signals. For the case of vibration signals a convolutive 

mixture model would be better.  

Servière and Fabry (2004) [10] developed a new preprocessing technique to apply to signals 

before feeding them into ICA. They made the assumption that, unlike noise, the source signals 

are periodic and the autocorrelation length of the source signals is greater than that of noise. Their 

preprocessing technique was based on principal component analysis (PCA) adapted to use 

spectral matrices of delayed observations to remove noise from periodic source signals. For 

separation, they used (in the frequency domain) the JADE algorithm that seeks to maximize non-

Gaussianity using spectral Kurtosis. They applied their method to artificial signals where they 

used 2-norm distance to assess the quality. Their test structure comprised two independent test 

beds, each consisting of a synchronous alternator, a motor and a pump. A total of six 

accelerometers were used for recording vibration signals. The separation results for only a few 

specific frequency bands were presented and they were satisfactory. The fact that the two test 

beds were running at different speeds made it possible for them to validate their results by 

comparing with the characteristic frequencies of the two systems. They finally concluded that 

their method was efficient for low signal-to-noise ratios. Later, as an extension to their previous 

work, Servière and Fabry (2005) [11] improved their method to be applicable to the cases of 

modulated sources where no assumption is made on the statistical properties of the noise. 

Antoni (2005) [12] listed a number of difficulties in applying blind source separation for 

separating vibration sources. He discussed that, in vibration source separation, separating 

vibration signals into signal components that share the same characteristic is more realistic than 

separating signals with respect to the sources. He called his concept blind component separation 
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(BCS). His technique decomposes the vibration signals into their constituting periodic, non-

stationary random and stationary random components using short time Fourier transforms and 

spectral Kurtosis. He applied his method to fault diagnosis of rolling bearings in a few real cases. 

In all of the experiments, the faults were evident in the non-stationary random signals as the 

masking effect of periodic and stationary random signals were removed. The author presented 

only the diagrams of the resultant time signals showing the fault-related impulses in non-

stationary random components. No further detail was given on the results.  

The above studies are more or less the fundamental works done in this field. Other studies are to 

a great extent in line with the above studies. One common point among these studies is that no 

real metric or measure is presented for evaluating and validating real case experiments. Another 

issue is that, in the frequency-based approach, in order to solve the permutation ambiguity as one 

tries to reconstruct the time signals from resulting frequency signals, methods based on the 

statistical relation between different frequency bins have been used. Such methods, as declared 

by many authors are very voluminous and involve high computation load. These two drawbacks 

are revisited in this thesis. 

The rest of this thesis is structured as follows: 

In Chapter 2 a method is presented based on system mechanics and by adopting some key 

concepts from statistical energy analysis (SEA) to provide a measure or metric for validating 

other separation methods. This method seeks to extract the energy distribution of vibration 

signals produced by different components with respect to spatial distribution of the vibration 

sensors. 

In Chapter 3 the application of ICA for the case of vibration source separation is discussed. A 

new method is presented to overcome permutation indeterminacy between different frequency 

bins to allow faster and computationally lighter reconstruction of estimated time signals from 

resulting frequency signals. 

Chapter 4 presents an alternative approach to applying BSS and ICA to the problem of fault 

detection in complex machinery. Such an approach focuses on processing signals in such a way 

that specific characteristics imposed on the vibration signals due to specific faults in components 

are accentuated.  
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As mentioned earlier, experimental results related to the case of bearing fault detection are given 

in each chapter to support and validate the proposed concepts.  
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2.1 Abstract 

An obstacle in diagnosis of multi-component machinery using multiple sensors to acquire 

vibration data is firstly found in the data acquisition itself. This is due to the fact that vibration 

signals collected by each sensor are a mixture of vibration produced by different components and 

noise; it is not evident what signals are produced by each component. A number of research 

studies have been carried out in which this problem was considered a Blind Source Separation 

(BSS) problem and different mathematical methods were used to separate the signals. One 

complexity with applying such mathematical methods to separate vibration sources is that no 

metric or standard measure exists to evaluate the quality of the separation. In this study a method 

based on Statistical Energy Analysis (SEA) is proposed using Fourier transforms and the spatial 

distance between sensors and components. The principle of this method is based on the fact that 

each sensor, with respect to its location in the system, collects a different version of the vibration 

produced in the system. By applying a Short Time Fourier transform to the signals collected by 

multiple sensors and making use of a priori knowledge of the spatial distribution of sensor 

locations with respect to the components, the source of the peaks on the frequency spectra of the 

signals can be identified and attributed to the components. The performance of the method was 

verified using a series of experimental tests on synthetic signals and real laboratory signals 

collected from different bearings and the results confirmed the efficacy of the method. 

Keywords: Source separation quality measure, Statistical Energy Analysis, Fourier transform, 

Multi-sensor vibration acquisition. 
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2.2 Introduction 

A difficulty in diagnosis of faults in components of rotating machinery using vibration signals is 

that these signals are always a cluttered mixture of ambient noise and vibration produced by 

different parts. This problem is encountered in its most severe form when diagnosis of certain 

components in a compact complex system such as an engine is desired. In this case, in order to 

lessen the effect of vibration from neighbour components, it is necessary to place the sensors as 

close as possible to the components of interest. However, due to restrictions such as the 

manufacturer’s warranty policy and inaccessibility, it is not always practical to place the sensors 

as such. The only choice is therefore to place the sensors on the innermost possible surface of the 

structure. As a result, even if the sensors are positioned very close to the components, they collect 

signals not just from one specific component but from other components as well. That is to say, 

signals collected by each sensor are a combination of the vibration produced by different 

components in addition to ambient noise. This makes it difficult to determine which component 

dominates the collected signals.  

The first challenge in diagnosis of faults in a complex system is therefore to decompose the 

signals into components corresponding to the system’s individual components. In other words, 

determining what signals come from which components. This concept is referred to in the 

literature as ‘source separation’ and in the case where components of the system are not well 

identified it is called ‘blind source separation’. A number of mathematical methods exist to solve 

this blind source separation problem, among which the Independent Component Analysis (ICA) 

[1] method is the most dominant. The performance of blind source separation methods in 

mechanical systems and fault diagnosis has already been trialled by a number of researchers [2-

9]. A common complexity with applying blind source separation techniques or any mathematical 

methods, in general, to separation of vibration sources is that no metric or standard measure 

exists to assess the quality of separation and validate the results. For an ideal assessment, the true 

original signals produced by each component must be available as a prerequisite. This requires 

gathering signals from each component in strict isolation during operation in a lab environment. 

Such a task, if not impossible, is very costly and difficult. In previous works, a number of authors 

[3-6] performed experiments on systems consisting of two separate sub-systems running on a 

structure where reference signals from each sub-system could be recorded by halting the other 
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sub-system. Others [7,8] considered the signals recorded from sensors located very close to the 

components as a reference. Using a priori knowledge about the component’s signature was also 

one of the metrics. 

In this study, we sought to develop a method that presents the distribution of vibration energy 

with regard to location of vibration sources and sensors and based on the mechanical behaviour 

of the structure. This method adopts some key concepts from statistical energy analysis (SEA) to 

support the fact that each sensor collects a different version of the oscillations produced in the 

system with respect to its location in the system. Applying a Fourier transform to the signals and 

making use of a priori knowledge of the spatial distribution of sensors and components, the 

original vibration signals can be recovered through comparison between the frequency 

representations (Fourier transform) of signals received by each sensor. The proposed method was 

verified with synthetic and experimental data.  

2.3 Concept 

The vibration recorded by a sensor is never exactly similar to the actual fluctuating motion 

produced. This is due to the fact that between the sensor and the vibration source there is always 

a propagation medium that dissipates the energy of vibration. This dissipation of energy is the 

effect of a combination of different factors; the most significant of these is damping. For this 

reason, in order to reduce such effects during measurements it is always considered necessary to 

mount the sensors as close as possible to the sources of interest. This is also the case when more 

than one sensor is used to record the data. Each sensor, depending on its location with respect to 

vibration sources, will record a different version in terms of vibration energy. By comparing 

these different versions of recordings one may be able to identify the source of harmonic 

components of the vibration signals. This is the purpose of this study. To do so, an understanding 

of how the propagation medium influences the vibration energy as it propagates from a source to 

the sensors is deemed necessary.  

In order to pin down the effect of propagation medium on the energy of vibration, mainly three 

approaches can be adopted: modal analysis, finite element methods (FEM) and SEA. In this 

study, a concept similar to SEA was used for it does not require a high load of detailed 

calculations to provide an estimate of the spatial distribution of vibration energy and response 
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levels in the system. SEA originated in the early 1960s by Lyon [10] who later in the mid-1970s 

wrote an entire book [11] on the subject. Its main use has been in the field of structural 

engineering and in areas related to aerospace industries.  

A good way of understanding the concept of SEA is through a thermal analogy. In its simplest 

case we can consider a system wherein two subsystems are connected to each other through a 

conductive link. One subsystem is given thermal energy (heat) and as a result thermal energy 

flows from the heated subsystem to the colder subsystem. Because of energy losses through heat 

radiation and in the conductive link, the heated subsystem retains a higher temperature. Vibration 

energy flow quite interestingly abides by a similar behaviour. For the same simple case, vibration 

energy is analogous to heat energy, vibration levels to heat levels, damping losses to radiation 

losses and coupling loss factors to conductive link losses [12].  

The main intention for developing SEA was to create a method for analysis of the vibratory 

behaviour of complex structures and to estimate their dynamic characteristics including vibration 

response levels and noise radiation. For SEA to hold true there are some assumptions whose 

discussions are beyond the scope of this article. Notwithstanding that SEA has been considered to 

be valid for any range of frequency [13], there are some considerations regarding its accuracy in 

different frequency ranges. Care must be taken when using SEA at low frequencies where the 

accuracy of estimations is low. Also, at high frequencies response of the system at any single 

frequency comprises contributions from a high number of excited modes so that some frequency 

averaging may be needed.  

On the other hand, in this study SEA was not employed to obtain any “quantities”.  SEA was 

rather brought in only to support the hypothesis that sensors located in subsystems farther from a 

subsystem containing a vibration source would pick up attenuated versions of the vibration 

signals compared to the ones located on nearer subsystems. Also it served to establish a “feel” 

[13] of how different subsystems in a structure interact with each other to attain a rough 

estimation of the distribution of vibration energy throughout the structure. This will allow 

determination of the right subsystems where the sensors should be placed.  

The initial step to perform an analysis based on the above concept is to determine subsystems. 

The rational way to determine subsystems is by identifying the couplings between them. A 
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coupling may range from a bolted joint to a discontinuity such as a step change in wall thickness 

[14]. 

For illustration, consider a system composed of three subsystems (Figure 2.1). Subsystems 1 and 

3 both contain a vibration source. Vibration signals are measured using three accelerometers 

located in each subsystem. Assume that each source produces vibration signals with different 

signatures; i.e., frequency bands of any two sources do not overlap or at least this is not the case 

for frequency ranges of interest.  In such case the vibrations produced, for example, by source 1 

manifest themselves in the signals collected by sensor 1 with higher amplitudes compared to the 

signals of the other two sensors. This is due to internal losses and losses in the couplings. If the 

frequency representations of the signals collected by sensors 1 and 2 are compared, the frequency 

bins at which the amplitude is higher for signals of sensor 1 can be concluded to be produced by 

a source in subsystem 1. This stems from the fact that vibration energy in subsystem 2 has 

respectively lower amplitude and therefore sensor 2 collects an attenuated version of the energy 

collected by sensors 1 and 3. This is the basis for the proposed separation method in which 

emphasis is put on identifying vibration peaks in the frequency representation as is the case when 

diagnosing faults using vibration [15].  

 

Figure 2.1: A schematic depiction of a system with three subsystems 

Further, for disambiguation, a counter example is considered here. One might think of a case in 

which a clamped-free beam is excited by a force near the clamped end. It is then obvious that a 

sensor near the excitation point will record lower vibration energy than a remote sensor located 

near the free end in spite of energy dissipation. On the surface, this appears to be inconsistent 

with what is presented in this study. However, by bearing in mind the concept of subsystems in 

	  Subsystem	  1	   	  Subsystem	  2	   Subsystem	  3	  

Vibration	  
Sources	  

Sensors	  
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SEA, a clamped-free beam will be recognized as a single subsystem. SEA can only be applied to 

the case when interactions between subsystems are in question. It loses its applicability when the 

distribution of the energy inside a single subsystem is at issue.  Therefore this case is irrelevant.  

2.4 Development 

2.4.1 Multi-sensor data acquisition 

Using multiple sensors to collect signals is a requirement for almost any separation method. In 

blind source separation it is usually necessary to have at least as many sensors as the number of 

components in the system. In some applications, determining the number of components is 

obscure due to the definition of a component [9]. For example, a ball bearing can be considered a 

single component, which is usually the case, or as a number of parts (i.e., balls, outer race and 

inner race). Which concept to adopt depends on the motivation behind performing source 

separation. For fault diagnosis the following definition may be implemented based on a practical 

point of view: a component is a part of a structure, machine, etc. that is either repairable or 

replaceable during maintenance. Although the number of components may be approximated 

based on the above definition, it does not necessarily follow that a ‘component’ will act as though 

it is a single source. A replaceable part can consist of different elements, each of which can 

produce statistically independent vibration signals. Fortunately, this problem is less likely to arise 

in the proposed method. In fact, this method is based on the concept of subsystems where 

recordings from different subsystems are compared to one another. Therefore, as long as a 

component and its element are considered to be in a subsystem and the sensors used for 

comparison are mounted in other subsystems the abovementioned problem will not affect the 

results. In other words, all the elements of the component will have the same characteristics as far 

as the proposed method is concerned. To determine the number of sensors for this method, the 

same criterion applies i.e., the number of sensors must be at least equal to the number of 

‘components’.  

2.4.2 Methodology 

The procedure for the proposed method is as follows: given N as the number of sensors;   !!(!), 

the Fourier transform of the signals !!(!) (where ! = 1,… ,!), is obtained for a given period. For 
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each frequency bin denoted by f, the intensities are set to zero except for the maximum intensity 

(i.e., !"#$!!!   !!(!)) among all the signals from different sensors. Using this approach, at each 

frequency the intensities of N spectra are either zero or the maximum. Finally, using the spatial 

diversity of sensor locations with respect to the subsystems and the components, each sensor 

together with its modified frequency representation is associated with a component.  

One problem with the above approach is that spectral density does not contain any temporal 

information about the signal. Therefore certain random and transient fluctuations can cause 

misinterpretation. One way to get around this problem is to utilize Short Time Fourier 

Transforms (STFT), apply the aforementioned procedure to each short window and then average 

the results of all windows. Using this approach the effect of random disturbances (and to some 

extent noise) subsides. On the other hand, averaging the results of all windows can jeopardize the 

effectiveness of this method in the event of transient behaviours. 

2.5 Experiments using artificial signals 

2.5.1 Signal generation 

In an attempt to test the proposed method, four different types of signals (Figure 2.2) with a 

sampling frequency of 1000 Hz for a duration of 2 seconds were generated and multiplied by the 

mixing matrix: 

1 0.4 0.8 0.4
0.5 1 0.7 0.6
0.6 0.3 1 0.28
0.4 0.5 0.7 1

 

This enables construction of four signal mixtures (Figure 2.3) using LabVIEW software. The 

elements of the mixing matrix are chosen such that in each row the diagonal elements hold the 

maximum since they simulate the case in which each sensor is in the same subsystem as a given 

vibration source.  
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Figure 2.2: Generated signals: Sine (50 Hz), Saw-tooth (60 Hz), Chirp (10-40 Hz) and Uniform 

Noise 

 

Figure 2.3: Signal mixtures obtained by multiplying the signals by a mixing matrix 
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2.5.2 Separation results 

Separation was performed on the mixture signals by taking short time Fourier transforms of the 

signals with window length and time steps of respectively 512 and 32 points. The separation 

results for four generated signals are given in Figure 2.4. For comparison the STFT of the 

generated signals are given in Figure 2.5.  

 

Figure 2.4: Separation results in the frequency domain 

 

Figure 2.5: STFTs of the source signals 

As shown, peaks pertaining to sine (50 Hz) and rectangular (60 Hz and its harmonics) signals are 

easily distinguishable. Uniform noise is attenuated to a great extent i.e. there are not any 

noticeable random peaks. The chirp signal appears as a signal covering a range of frequencies 
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from 10 to 40 Hz. In fact, due to the transient nature of the chirp signal the instantaneous figures 

of the signal were lost during averaging. This however, does not reduce the effectiveness of the 

proposed method since chirp-like signals are very rare in rotating machinery and seldom exist 

unless non-stationary states of the machines are considered. 

2.6 Experiments using real signals 

In order to verify the practicability of the proposed method, two case studies using vibration 

signals from two different test facilities were carried out. The description of each test facility and 

the discussion of the results for each case are represented in the following sections. 

2.6.1 First case study  

2.6.1.1 Experimental setup and data acquisition 

In the first case, vibration signals were collected from a test setup at École Polytechnique de 

Montréal consisting of a 2 HP motor coupled to a shaft supported by two different bearings. One 

bearing was an overhauled roller bearing (PWC15) provided by Pratt & Whitney Canada from 

one of their engines. The other bearing was an SKF ball bearing (1217K). Each bearing was 

encompassed by a housing that was bolted to an adjustment base. The adjustment base was also 

bolted to the main base. This way each housing together with the bearing inside can be 

considered a subsystem that is connected through another subsystem (adjustment base) to the 

main base. Four accelerometers were used, one mounted on each bearing housing and two on the 

  

 

Figure 2.6: Test setup with a PWC15 bearing mounted on the left end of the shaft 
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 main base (Figure 2.6). Signals were gathered at a sampling frequency of 2 kHz for a period of 

10 seconds while the shaft was running at a speed of 900 RPM (15 Hz). 

2.6.1.2 Separation results and discussion 

Similar to the case using synthetic signals, short time Fourier transforms of the signals with 

window length and time steps of respectively 512 and 32 points were obtained. The Fourier 

transforms of signals gathered by each accelerometer are shown in Figure 2.7. The four 

frequency representations show certain distinguishable peaks at different frequencies. However, 

it is not clear if the peaks are noise or actual oscillations caused by a component. Also, it is not 

possible to determine the source of each peak. The separation results up to 150 Hz are shown in 

Figure 2.8. The results are plotted in different styles. Each style represents the signals pertaining 

to an accelerometer. For the profile pertaining to accelerometer 1 (located on the PWC15 roller 

bearing housing) two dominant peaks, one at around 69 Hz and another at around 138 Hz can be 

singled out. Further, for accelerometer 2 (located on the 1217K SKF bearing) except for one peak 

at 30 Hz there is another dominant peak at 59 Hz. For other accelerometers on the base there are 

a number of peaks, mostly occurring in the range from 100 to 150 Hz. 

 

 

Figure 2.7: Frequency representations of signals collected by four accelerometers 
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Figure 2.8: Separation results for case of PWC15 and 1217K SKF bearings 

As discussed in the introduction, verifying the performance of separation methods used for 

vibration sources is very complicated and is the main purpose of this study. The question arises; 

how to verify the separation quality of the results obtained using the proposed method? 

Fortunately in this case there are not many components and also the bearings are of different 

types. Under these conditions the characteristic frequencies of the bearings can be used to verify 

the results. It must be noted that this method of evaluation loses its effectiveness in complex 

systems wherein different components may produce vibration in near frequency bands. 

 

Table 2.1: Characteristic frequencies of the bearings used in the experiments 

Bearing  PWC SKF 
1217K 

SKF 
1216K 

Rexnord 

Rotational frequency of rolling 
element assembly [Hz] fc 5.77 6.6 6.65 14.8 

Rotational frequency of a rolling 
element [Hz] fr 30.7 61.2 65 140 

Over-rolling frequency of one point 
on inner ring [Hz] fip 111 176 184 297 

Over-rolling frequency of one point 
on outer ring [Hz] fep 69.2 139 146 236 

Over-rolling frequency of one point 
on rolling element [Hz] frp 61.5 122 130 280 
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The characteristic frequencies of the bearings (Table 2.1) were calculated using following 

equations [16]:  

Rotation frequency of rolling element assembly: 

!!=
!!
2
1− !!

!!
cos!     Eq. 2.1 

Rotational frequency of a rolling element: 

!!=
!!
2
!!
!!

1− !!
!

!!
! cos! !  Eq. 2.2 

Over-rolling frequency of one point on the inner ring 

!!"=
!!
2
!! 1+ !!

!!
cos!  Eq. 2.3 

Over-rolling frequency of one point on the outer ring 

!!"=
!!
2
!! 1− !!

!!
cos!  Eq. 2.4 

Over-rolling frequency of one point on a rolling element 

!!"=
!!!!
!!

1− !!
!

!!
! cos! !  Eq. 2.5 

where !! is the shaft rotation speed in Hz, !!   is the diameter of the ball, !! is the distance 

between the center of two opposing balls (pitch), !!is the number of balls and ! is the contact 

angle of the ball. In comparison with the separation results it can be noticed that the peak at 69 

Hz relating to the closest component to accelerometer 1 (i.e., PWC15 bearing) equals the over-

rolling frequency of one point on the outer ring of the PWC15 bearing. The existence of such a 

fault on the outer ring of the PWC15 bearing was confirmed by visually analysing the bearing 

after the tests. Further, at around 60 Hz, which is very close to the rotational frequency of a 

rolling element of the SKF bearing, there is a peak related to a component in the vicinity of 

accelerometer 2. Contrary to the abovementioned concurrences, there is a peak at around 139 Hz 

related to accelerometer 1 and supposedly to the PWC15 bearing that matches with the 1217K 

SKF bearing’s frequency of one point on the outer ring. This might be considered as a 

misconstrue but, as mentioned before, the SKF 1217K bearing was a new bearing and an outer 

race fault is very unlikely. Moreover, this peak occurs at 139 Hz which is, not accidentally, twice 

the frequency of the outer ring fault of PWC15. In order to further investigate from which 
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bearing this peak emanated, a separate test session was carried out in which the PWC15 bearing 

was replaced with a 1216K SKF bearing. The separation results are demonstrated in Figure 2.9. 

The two peaks at 69 Hz and 139 Hz no longer exist, showing that they most probably emanated 

from PWC15 in the previous test. Another significant difference with the previous test is that the 

high amplitude peaks ranging from 100 to 150 Hz disappeared. Instead there are peaks at 

frequencies equal to the rotation frequency and its harmonics. These frequencies are mostly 

related to wellness of the shaft mount and bearings, the imbalance disk, etc. Even with further 

adjustments in the shaft mount it is possible that the frequency peak at 59 Hz might have been 

provoked in the bearing by shaft misalignment.  

It must be pointed out here that the probable sources of the peaks that are dominant for 

accelerometers 3 and 4 are neither evident nor of main concern for the authors. Nevertheless, 

motor, resonance frequencies of the base or other external sources can be blamed for such 

occurrences. 

 

Figure 2.9: Separation results for case of 1216K SKF and 1217K SKF bearings 

2.6.2 Second case study 

In order to further validate the proposed method, a bearing data set provided by the Center for 

Intelligent Maintenance Systems (IMS) of University of Cincinnati through NASA Ames 

Prognostics Data Repository [17] was used. 
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2.6.2.1 Experimental setup and data acquisition 

In this test four double row Rexnord ZA-2115 bearings were mounted on a shaft driven by an AC 

motor (Figure 2.10). Vibration data was gathered using four accelerometers, one on each bearing 

housing, at a sampling rate of 20 kHz. A spring mechanism exerted a radial load of 6000 lbs on 

the rotating shaft and the bearing. Data snippets of approximately 1 second in duration were 

gathered at 10 minute intervals throughout a run-to-failure test. In this study, one of the snippets 

was selected in which an outer race fault on the third bearing was clearly discernible.  

 

 

Figure 2.10: Schema of the test rig at IMS, of University of Cincinnati (by courtesy of [18]) 

 

2.6.2.2 Separation results and discussion 

Separation results for this case are shown in Figure 2.11. The same window length and time steps 

were used with a higher number of frequency bins to attain better frequency resolution. 

According to Table 2.1, due to a fault on the outer race of the third bearing, a peak at 236 Hz is 

expected in the resulting profile corresponding to accelerometer 3. In Figure 2.11 this peak 

occurs on the right profile but with a slightly lower frequency. This error has also been reported 

in [18]. To briefly summarize; results are consistent with the proposed method for this case as 

well. 
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Figure 2.11: Separation results for case of Rexnord bearings 

 

Figure 2.12: Separation results for the case of Rexnord bearings using an ICA technique 
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For the purposes of demonstrating how this method would be applied, the results are compared 

with the outputs of a statistical method. In this case, an ICA technique developed by Cichocki 

and Unbehaunen [19] was used to separate the vibration signals and the results are presented in 

Figure 2.12. Unfortunately, due to permutation ambiguity inherent to ICA [1], the results may not 

be in the same order as the other method. Nonetheless, a very good correspondence between the 

results of the two methods can be established. That is, the four recovered sources (i.e., 1, 2, 3 and 

4) using the ICA technique of Figure 2.12 closely resemble the profiles obtained for 

accelerometers 1, 4, 3 and 2 respectively. It can be concluded that the results from different 

methods are in very good complimentary agreement.   

Overall, the experimental results support the proposed method very well. One shortcoming of this 

method however, is that the vibration produced or provoked by shaft itself might be 

misinterpreted as signals from the bearings as in the first case. The cause for this lies in the fact 

that the bearings are usually the only connection between the shaft and the base, casing or 

whichever surface can be used to attach a sensor.  

2.7 Conclusion 

A separation method based on frequency signatures obtained from signals gathered from multiple 

sensors positioned in different locations of the system was presented. This method has a simple 

yet solid theoretical basis driven by the concept of statistical energy analysis. The performance of 

the method was verified using a series of experimental tests on synthetic signals and real 

laboratory signals collected from different bearings. Despite its simplicity, the results confirmed 

the efficacy of the method. Some shortcomings associated with this method were also discussed. 

To summarize: this method may not be very effective or accurate in systems with transitory 

behaviour. Also, in systems with very densely mounted components, determining the subsystems 

and therefore the best location for the sensors can be very challenging. As a recommendation for 

future work, the effectiveness of this method can be further investigated with signals obtained 

from other test cases as well as a real industrial case.  
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3.1 Abstract 

In health monitoring of complex mechanical systems such as aircraft engines there are many 

components the diagnosis of which is of great interest for the industry. A conventional way to 

monitor these components is to collect vibration signals using accelerometers placed in their 

closest vicinity. However, due to some restrictions such as inaccessibility, it is not always 

practical to place the accelerometers as such. In many cases, the pre-installed instrumentations 

are used which are usually inadequate and placed on the carcass of the structure. Nevertheless, 

even if the accelerometers are positioned very close to the components, they would collect signals 

not just from one specific component but from other components as well. In this study, we sought 

to employ frequency-based Independent Component Analysis (ICA) to recover the signals 

produced by components within a single complex system. In such a case, differences between 

‘blind source separation’ and vibration source separation are discussed. A new workaround for 

the permutation ambiguity encountered in the implementation of ICA is proposed. Finally, in 

order to demonstrate the applicability of the new proposed approach, experimental results carried 

out on a test bed are presented.  

Keywords: Vibration Source Separation, Independent Component Analysis, Blind Source 

Separation, Multi-sensor vibration acquisition. 



33 

 

3.2 Introduction 

Complex mechanical systems such as aircraft engines are composed of many components that 

must be included in a health monitoring system. Diagnosis of the condition of these components 

is of great interest for the industry. A conventional way to monitor these components is to collect 

vibration signals using accelerometers placed in their closest vicinity. However, due to some 

restrictions such as the manufacturer’s warranty policy and inaccessibility, it is not always 

practical to place the accelerometers in these locations. In many cases, the only options are to use 

pre-installed instrumentation (usually inadequate) or to place a number of accelerometers on the 

innermost possible surface of the structure. In either case, even if the accelerometers are 

positioned very close to the components, they collect signals from not just one specific 

component but from other components as well. Hence, signals collected by a sensor are a 

complex combination of the vibration energy produced by different components entangled with 

ambient noise. This makes it difficult to determine which component dominates the collected 

signals.  

The first attempt in diagnosis of faults in a complex system is therefore to decompose the signals 

into components corresponding to the system’s components or, simply put; determining what 

signals come from which component. This concept in the literature is referred to as ‘source 

separation’ and if the components of the system are not well identified it is called ‘blind source 

separation’. The foremost existing mathematical solution to blind source separation is 

Independent Component Analysis (ICA).  

In Independent Component Analysis it is assumed that the source signals are statistically 

independent from one another and can be recovered by formulating the independence [1,2]. 

However, as will be further discussed, there are always two dominant ambiguities and 

indeterminacies associated with independent component analysis. First, the original index of the 

sources is unknown. That is to say, ICA does not provide labeling or permutation of the 

recovered signals with respect to their actual sources. It comes from the fact that the 

mathematical independency is insensitive to the permutation of the sources. The second 

ambiguity is that the actual scale of the sources cannot be determined. This means that the 

recovered signals might be an amplified or otherwise attenuated version of the original signals. 

This is also due to insensitivity of the mathematical independency to the scaling factor.  
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There are a number of algorithms and approaches to carry out signal separation based on the 

concept of ICA [2]. These methods can be applied in both time- and frequency-domains. Which 

domain to choose depends mostly on the mixing mechanism. If the mixing mechanism is 

instantaneous, (i.e., the signals are linearly mixed) time-domain methods are the most effective 

and efficient. If the mixing mechanism is convolutive, (i.e., the signals are nonlinearly and 

convolutedly mixed) then frequency methods are more appropriate whilst time-domain methods 

are limited. In most real cases including vibration in mechanical systems the mixing mechanism 

is known to be convolutive [3].  

A number of researchers [3-11] have assessed the practicability of ICA in mechanical systems 

and fault diagnosis. Most previous works have focused on separating environmental noise from 

relevant signals produced by components or setups [4-7]. They perform their experiments on 

systems consisting of two separate sub-systems running on a structure and use both frequency- 

and time-domain methods to recover the signals emanating from each sub-system. Some authors 

employed only time-domain ICA methods to either reduce the noise [8] or extract relevant 

features [9] from signals. There does not seem to be any study with the direct focus of recovering 

source signals in a complex compact system [10,11]. 

In this study, we sought to employ frequency-based ICA to recover the signals produced by 

components within a single complex system. A new approach is proposed and tested to tackle 

“local” permutation indeterminacy. In order to demonstrate the applicability of the new approach, 

experiments were carried out on a test bed with a shaft driven by an electric motor and supported 

by two different bearings. This paper is structured as follows: first a concise description of blind 

source separation prepares the way to the basic theory of ICA. Then some considerations 

regarding source separation as applied to vibration source recovery are discussed followed by a 

presentation of a proposed approach of treating the convolutive signals in the frequency domain. 

This paper is finally concluded with a discussion and presentation of experimental results. 

3.3 Blind source separation 

3.3.1 Preamble 

In the context of diagnosis of faults in a multi-component mechanical system, it is desired to have 

isolated data from every individual component in the system. This however cannot be attained 
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using conventional measurement methods including vibration acquisition. Due to the mechanics 

of vibration propagation, signals gathered from one point on the system are at best a combination 

of the vibration energy produced by different components and sources. Treatment of this situation 

is the subject of a sub-domain in signal processing known as blind source separation. In blind 

source separation, it is assumed that adequate a priori information about the system components 

(i.e., sources) and mixing mechanism is not available and hence the system is considered a black 

box. The only requirement is that it be fitted with at least as many sensors as the number of 

components in the system. As will be discussed, considering a mechanical system as a black box 

is not realistic or necessary when dealing with fault diagnosis. This however, does not diminish 

the potential use of blind source separation techniques for this application. 

Blind source separation consists in recovering the signals produced by different sources from a 

number of observations of mixed source signals. In mathematical terms the general model for 

blind source separation can be described as follows: 

If there are p zero-mean source signals at time t, ! ! = !! ! , . . . , !! ! , that are assumed to be 

statistically independent, and ! ! = !! ! ,… , !! !  denote the mixture signals received by m 

sensors, the data model for an instantaneous mixture can be written as: 

! ! = !" ! + ! = !!" ! !! ! + !!
!!!   Eq. 3.1 

where A is the !×! mixing matrix consisting of unknown mixture coefficients. Figure 3.1 shows 

the block diagram of the above equation. It is always assumed that the sources are independent 

and the number of sensors is at least equal to the number of sources (i.e., ! ≤ !).  

 

Figure 3.1: General data model for blind source separation 

The most significant technique for finding the unknown mixture coefficients (A) that can be used 

in the model to recover the original sources (S) is Independent Component Analysis (ICA). A 

prerequisite for ICA to be applicable is that at most one source retains a Gaussian distribution. 
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This stems from the fact that ICA, if built on high-order statistics cannot separate Gaussian 

sources [1,2,12]. This is a downside of ICA as the vibration energy produced by different 

components can usually be distributed as though it were a Gaussian distribution. On the other 

hand, real events rarely, if ever, represent a perfect Gaussian distribution and therefore ICA can 

still be considered effective. In the following section the principle of ICA is presented. 

3.3.2 Independent component analysis 

Independent component analysis consists in finding an estimation of the sources: 

! = ! ! = !" !  Eq. 3.2 

by determining matrix B such that the elements of Y become statistically independent. In other 

words, the value of one element does not provide any information on the value of the other 

elements of Y [13]. The procedure of applying independent component analysis is as follows: An 

independency measure is constructed to rank the independency between the elements of Y. The 

values of the elements of matrix B are iteratively estimated until the extremum independency for 

Y is reached. Among the most popular independency measures are maximization of non-

Gaussianity [1], minimization of mutual information [1], maximum likelihood estimation [14] 

and (in earlier studies) nonlinear decorrelation [15]. Although these measures are different in 

principle, in some cases their algorithms are quite similar.  

Regardless of the independency measure adopted, there are always two indeterminacies 

associated with independent component analysis. First, the original labeling of the sources is 

unknown. Since both S and A are unknown, the order of the terms can be freely changed. This is 

due to the fact that mathematical independency is insensitive to permutation of the sources. The 

second ambiguity is that the actual scale of the sources cannot be determined. Since both S and A 

are unknown, any scalar multiplier in one of the sources !!   can always be canceled by dividing 

the corresponding column !! of A by the same scalar. This is also due to the insensitivity of 

mathematical independency to the scaling factor.  

There are many algorithms to choose from, and for this study an algorithm presented by Cichoki 

and Unbehaunen [16] was used in the separation procedure due to its simplicity. This algorithm 

was driven using the nonlinear decorrelation measure. It is to be noted that the relationship 

between correlation and independence is that independent random variables are always 
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uncorrelated while the contrary is not necessarily true. Nevertheless, independence can be to a 

great extent approached if some nonlinear functions of the random variables are uncorrelated. 

This is the basis for application of nonlinear decorrelation algorithms. The learning algorithm 

proposed by Cichocki and Unbehaunen is as follows: 

!" = ! ! − ! ! ! !! ! Eq. 3.3 

where ! is a learning rate, B is the mixing matrix,  I is the identity matrix, f and g are some 

nonlinear functions and T denotes transpose and in case of complex values conjugate transpose. 

This algorithm can be considered as a special case of the Amari et al. [17] method which is based 

on maximum likelihood estimation.  

3.3.3 Convolutive mixtures and frequency domain analysis 

The data model presented above pertains to the case where the mixing mechanism is assumed to 

be linear and instantaneous. This assumption is too simplistic for the majority of real 

applications. The mixing model in such cases is more consistent with a convolutive mixture.  In 

the case of convolutive mixtures the data model can be rewritten as follows: 

! ! = ! ∗ ! ! + ! = !!" ! ∗ !! ! + !!
!!!   Eq. 3.4 

where A is the !×! mixing matrix consisting of unknown mixture coefficients. In this case, 

solving the inverse problem is not as straightforward as it was for the instantaneous data model. 

Certain methods have been suggested to solve the convolutive mixture model in its general form. 

However, such methods are very limited [13].  

Fortunately, a convolutive mixing model in time domain becomes an instantaneous model when 

brought into the frequency domain. To be more precise, when data is represented using the joint 

time-frequency domain, at each frequency bin the mixing model is instantaneous and existing 

methods for instantaneous mixtures can be employed with minor modifications. Since data in the 

frequency domain are complex valued, instantaneous ICA methods must be modified for 

consistency with complex data. This can be simply done by taking a conjugate transpose 

wherever a matrix transposition is needed throughout computations. After performing separation 

at each frequency bin, the resulting separated signals are transformed back from frequency 

domain to time domain and the source signals are recovered. A problem with adopting this 

approach is indeterminacies associated with ICA. Due to this problem, separation results for all 
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of the frequency bins may not necessarily encompass the same scale and permutation. From one 

frequency bin to another it is likely that the permutation of the sources is different. Thus, when 

transforming the separation results from frequency domain back to time domain the resulting 

time signals may not be comprised of the frequency components of a single source. This problem 

is sometimes referred to local permutation and scale determinacy compared to global ambiguities 

discussed earlier. A number of authors have suggested techniques to overcome this problem. For 

example, Anemuller and Kollmeier [18] introduced a method called AMCor based on the 

principle of amplitude modulation correlation. They argue that their method is applicable in cases 

where “the signal amplitude in different frequency bands undergoes interrelated changes” (i.e., 

speech signals). Capdevielle et al. [19] derived a criterion using second order moments based on 

the fact that from one frequency bin to another the moving average (MA) filtering of signals 

pertaining to the same source are equal. Servière and Fabri [7,11] used maximal cross correlation 

to relate the separation results of different frequency bins. 

In this study a new approach is presented to overcome this difficulty. This approach is very fast 

and more computationally efficient than other existing methods. The approach will be detailed 

later on in this paper. First, the problems of scale and permutation indeterminacies for the case of 

vibration sources are discussed in more detail. 

3.4 Blind source separation versus vibration source separation 

As previously mentioned, in blind source separation the mixing medium is considered a black 

box. That is, no information is available about the components or the mixing mechanism. The 

only requirements are that the sources be statistically independent and the number of sensors be 

no less than the number of components. In this section these two requirements are discussed. 

Concerning the number of the components or vibration sources, obscurity in the definition of 

component makes it difficult to come to a determination of the exact number of components [3]. 

For example, a ball bearing can be at the same time considered as a single component (which is 

usually the case) or as a number of parts (i.e., balls, outer race and inner race) each of which 

produce independent signals. In fault diagnosis, based on a practical point of view, a component 

can be considered as a part of a structure, machine, etc. that is either repairable or replaceable 

during maintenance. This way, the number of components can be approximated. However, it does 
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not necessarily follow that a ‘component’ will act as though it is a single source. A replaceable 

part can consist of different elements, each of which produces statistically independent vibration 

signals. Hence, this remains an open question. In this study we apply ICA to vibration source 

separation by considering a component as a replaceable or a repairable part based on common 

sense.  

Our first step in facilitating interpretation of the results of our analysis (i.e., use the separation 

results for fault diagnosis purposes) is to reconsider the definition of the system as a black box. 

This definition is not reasonable because the actual source of each signal component and its 

characteristics must be known as a prerequisite to any analysis. If, for example, the basic peak 

based spectrum analysis [20] is used for specifying possible faults in a bearing, one must have the 

characteristic frequencies of that bearing. In such cases, limiting our knowledge to consider only 

that an unknown source inside system is producing such a signal (the black box approach), is not 

necessary or efficient. In our approach, the components (sources) in the system are required to be 

known and also the global permutation indeterminacy must be resolved. Otherwise applying ICA 

is not effective for fault diagnosis in mechanical systems.   

3.5 Permutation and scale indeterminacies 

As mentioned earlier, there are two indeterminacies associated with ICA. These two 

indeterminacies are present in two stages while solving the convolutive mixtures problem using 

frequency methods. The first stage is when we link the separation results of all the frequency bins 

to construct time domain signals (local ambiguities). The second stage is when we associate the 

overall results to the sources (Global ambiguities). In this section, solutions for resolving these 

problems are proposed. 

3.5.1 Local indeterminacies 

Local indeterminacy is initially due to the inherent indeterminacy in ICA. To be more precise, it 

can be stated that it stems from the fact that ICA is usually implemented on each frequency bin 

independently. Thus the separation results at different bins may have different permutation and 

scaling. One way to tackle this problem is to tie or relate the implementation of ICA for different 

frequency bins. In this case, an insight of the mixing mechanism and system behaviour at 

different frequencies in the mechanical structure is helpful. A thorough analysis of the mixing 
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mechanism allows one to define the transform function between the sources and the sensors. This 

analysis is, however, rather challenging due to the complexity and diversity of the mechanical 

systems. Yet, if the transmission route of the vibration energy between a sensor and a source is 

simplistically considered as a 1 degree of freedom (DOF) system, the in-between transmissibility 

for different values of damping and at different frequencies is as shown in Figure 3.2. As seen, 

there is a smooth and gradual change in the transmissibility as the frequency increases or 

decreases, i.e., no abruptness is present. This occurrence remains more or less similar in complex 

systems with more degrees of freedom, with the exception of natural frequencies of undamped 

systems. It can be therefore assumed that there is only a slight difference in the mixing 

mechanism for neighbouring frequency bins. This reflects also on the mixing matrix such that the 

mixing matrices of two adjacent frequency bins contain very close values.  

	  

Figure 3.2: Transmissibility in a 1 DOF system 

In the current algorithm (Eq. 3), matrix B is initialized as iterations are carried out at each 

frequency bin. The common initial value is identity matrix. To employ the abovementioned 

concept, once the iterations converge and the mixing matrix for one frequency bin is calculated, 

the obtained mixing matrix is set as an initial value for the next frequency bin calculation. This 

way, since the values of the mixing matrices for two adjacent frequency bins are close to one 

another, convergence is reached very fast leading to a fast overall convergence. Moreover, 

permutation of the mixing matrix is kept equivalent from one frequency bin to another. The only 

problem that may arise is that the new mixing matrix becomes too distant from the initial mixing 
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matrix due to over-iteration. This problem can be corrected to some extent by restricting the 

convergence conditions such that over-iteration is avoided.  

3.5.2 Global indeterminacies 

Once the separation results are obtained and the original source signals are recovered, the next 

challenge is to relate these separation results to the system components. One possible approach to 

do this is by analyzing the spectrum of the signals based on the characteristic frequencies of each 

component. Although this method is beneficial, it is limited in the sense that the characteristic 

frequencies of all the components are not always available. Further, the characteristic frequencies 

of a component may or may not be present based on the component’s health condition.  

Another approach is to utilize the information about spatial distribution of the sensors and the 

components. That is, due to the difference between the propagation medium between any source 

and sensor, each sensor will record a different version of vibration produced in terms of vibration 

energy. This difference comes from the fact that dissipation of the energy of the vibration is not 

the same for different media. By comparing these different versions of recordings, one may be 

able to identify the source of harmonic components of the vibration signals. In fact, if the system 

is considered as a number of proper subsystems that are coupled to one another, according to the 

concept of Statistical Energy Analysis [21] sensors located in the subsystems farther from a 

subsystem enclosing a vibration source should pick up attenuated versions of the vibration 

signals compared to the ones located in the nearer subsystems due to internal and coupling losses. 

The only prerequisite is to correctly determine the subsystems and place the sensors in the right 

subsystems. A subsystem can be distinguished by first identifying the couplings. These take 

many forms, and may range from a bolted joint to a discontinuity such as a step change in wall 

thickness [22]. This approach is used in this study to solve the global permutation indeterminacy.  

The procedure to employ this approach, hereinafter referred to as the spatial proximity approach 

is as follows:  

The total number of sensors is (N).  !!(!, !) the Short Time Fourier Transform of the signals 

!!(!) (where ! = 1,… ,!) is obtained for a given period. For each short window and at each 

frequency bin f the intensities are set to zero except for the maximum signal intensity from each 

sensor (i.e. !"#$!!!   !!(!, !)). This way at each frequency the intensities of N spectra are either 
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zero or maximum. Then, using the spatial diversity of sensors’ location with respect to the 

components, each sensor together with its modified frequency representations is associated with a 

component. Finally, the results for all windows are averaged. This process leads to a sketch-like 

frequency representation of how the separation results may look in the frequency domain. By 

correlating this representation to the separation results obtained using ICA, it is possible to not 

only estimate the true source for each independent component, but also examine the quality of the 

separation.  

3.6 Experiments  

3.6.1 Data acquisition 

In order to verify the practicability of the proposed method, vibration signals were collected from 

a test setup at École Polytechnique de Montréal consisting of a 2 HP motor coupled to a shaft 

supported by two different bearings. One bearing was an overhauled roller bearing (PWC15) 

provided by Pratt & Whitney Canada from one of their aircraft engines. The other bearing was an 

SKF ball bearing (1217K). Four accelerometers were used, one mounted on each bearing housing 

and two on the test base (Figure 3.3). Signals were gathered at a sampling frequency of 2 kHz for 

a period of 10 seconds while the shaft ran at a speed of 900 RPM (15 Hz). 

 

 

Figure 3.3: Test setup with PWC15 bearing mounted on the left end of the shaft 
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3.6.2 Separation results and discussion 

Original time-domain vibration signals measured over a 10-second time interval were 

transformed into the time-frequency domain using short time Fourier transforms (STFT) with a 

window length and time step of respectively 512 and 32 points. The Cichocki and Unbehaunen 

algorithm [16] was used by setting !(!) = tanh  (!) and ! ! = 1− tanh! !   . These functions 

were applied to real and imaginary parts of the random variable y separately so that the complex 

data could be handled more efficiently, as suggested by Smaragdis [23]. The outputs were 

brought together to shape complex data in order to retain consistency.  

 

 

Figure 3.4: Separation results using ICA for the case of PWC15 and 1217K SKF bearings 

The separation results up to 150 Hz (which is 10 times the rotation speed) are shown in Figure 

3.4. For comparison and to estimate the correct permutation of recovered signals, the results 

obtained using the sensor spatial diversity method with STFTs of signals with the same window 

length and time step as above are shown in Figure 3.5. In this figure separation results are plotted 

in different styles where each style represents the signals pertaining to a given accelerometer.  
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Figure 3.5: Separation results using the spatial proximity method 

As shown in Figure 3.4, apart from vibration peaks occurring at 30 Hz (that is, twice as high as 

the shaft’s rotation speed and present in all the plots) recovered signals 1 and 2 both contain high 

peak vibration ranging from around 95 Hz to 105 Hz. According to the spatial proximity plot 

(Figure 3.4), these signals are coming from a source close to the setup base. By further 

comparing the two figures it can be seen that a vibration peak at around 59 Hz appears in both 

recovered signal 3 (Figure 3.4) and the signals thought to be coming from a source closer to 

accelerometer 2 (Figure 3.4). For recovered signal 4 there are two vibration peaks; one at around 

69 Hz and another at around 138 Hz that are interestingly also distinguishable on the other plot 

for accelerometer 1.  It can be concluded that recovered signals 1 and 2 pertain to sources close to 

accelerometers 3 and 4 and recovered signals 3 and 4 to accelerometers 2 and 1. Therefore, 

recovered signals 1 and 2 are assumed to be from unknown sources on the setup base or perhaps 

the base itself. This is not a main concern for this study. We are more concerned about recovered 

signals 3 and 4, which emanate from the 1217K SKF bearing and PWC15 roller bearing 

respectively. 

 

Table 3.1: Characteristic frequencies of the bearings used in the experiments 

Bearing PWC15 SKF 
1217K 

fc 5.77 6.6 
fr 30.7 61.2 
fip 111 176 
fep 69.2 139 
frp 61.5 122 
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Verifying the performance of the separation methods used for vibration sources is quite 

complicated. So far, the results obtained using two different methods; the ICA and spatial 

proximity method, are shown to be in close agreement. In order to further investigate the 

wellness of the obtained results they were analyzed and compared to the characteristic 

frequencies of the bearings. The characteristic frequencies of the bearings (Table 3.1) were 

calculated using following equations [24]:  

Rotation frequency of a rolling element assembly: 

!!=
!!
2
1− !!

!!
cos!     Eq. 3.5 

Rotational frequency of a rolling element: 

!!=
!!
2
!!
!!

1− !!
!

!!
! cos! !   Eq. 3.6 

Over-rolling frequency of one point on the inner ring 

!!"=
!!
2
!! 1+ !!

!!
cos!   Eq. 3.7 

Over-rolling frequency of one point on the outer ring 

!!"=
!!
2
!! 1− !!

!!
cos!  Eq. 3.8 

Over-rolling frequency of one point on a rolling element 

!!=
!!!!
!!

1− !!
!

!!
! cos! !  Eq. 3.9 

where !! is the shaft rotation speed in Hz, !!   is the diameter of the ball, !! is the distance 

between the center of two opposing balls (pitch), !!is the number of balls and ! is the contact 

angle of the ball.  

By comparing the separation results, it can be observed that the vibration peak at 69 Hz in 

the resultant PWC15 bearing signature equals the over-rolling frequency of one point on the outer 

ring of that bearing. The existence of this fault was confirmed by visually analyzing the bearing 

after the tests. Further, at around 60 Hz, which is very close to the rotational frequency of a 

rolling element of the 1217K SKF bearing, there is a peak related to a component in the vicinity 

of accelerometer 2. Contrary to the abovementioned concurrences, there is a peak at around 139 
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Hz related to accelerometer 1 and supposedly to the PWC15 bearing that matches the 1217K 

SKF bearing’s frequency of one point on the outer ring. This might be considered as a 

misconstrue but, as mentioned before, the 1217K SKF bearing was a new bearing and an outer 

race fault is very unlikely. Moreover, this peak occurs at 139 Hz which is, not accidentally, twice 

as big as the frequency of the outer ring fault of PWC15.  

 

Figure 3.6: Results using spatial proximity for the test with two SKF bearings 

In order to further verify the accuracy of the method, a separate test session was carried out in 

which the PWC15 bearing was replaced with a 1216K SKF bearing. Figure 3.6 shows the results 

obtained using the spatial proximity method over a range of 1 to 200 Hz. As seen, by replacing 

the PWC15 bearing, the two peaks at 69 Hz and 139 Hz disappeared, showing that they most 

probably emanated from PWC15 in the previous test. Another significant difference with the 

previous test is that the high amplitude peaks ranging from 100 to 150 Hz disappeared. Instead 

there are peaks at frequencies equal to the rotation frequency and its harmonics. These 

frequencies are mostly related to wellness of the shaft mount and bearings, the imbalance disk 

and such. It is also possible that the vibration peak at 59 Hz might have been provoked by shaft 

misalignment in the shaft mount. Moreover, except for some vibration peaks occurring between 

180 and 200 Hz, there are no signals produced by the 1216K SKF bearing at lower frequencies 

with high enough amplitude to stand out in the results of proximity method.  
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Figure 3.7: Separation results using the ICA method for the case of two SKF bearings 

The separation results using ICA method for the case of two SKF bearings are given in Figure 

3.7. These results are in good agreement with the results of the spatial proximity method. 

However, since the bearings were both in new condition and hence no bearing-related vibration 

peaks appeared in the results, it is very hard to draw conclusions from the observations. Most of 

the vibration peaks are harmonics of the rotational speed produced by shaft itself. In this case, the 

proximity method is unreliable since no distinction can be made in terms of shaft’s distance to the 

accelerometers.  

3.7 Conclusion 

Independent Component Analysis was applied to the case of vibration source separation with 

modifications to the learning algorithm to adapt it for the case of vibration separation. The 

performance of the method was verified using a series of experimental tests on real laboratory 

signals collected from different bearings. Results were compared with another method based on 

frequency signatures obtained from signals gathered from multiple sensors positioned in different 
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locations in the system. The interesting accordance between results from ICA, the spatial 

proximity method and the peak analysis method confirmed the efficacy and potential of the ICA 

frequency-domain method and approach introduced for tackling the local permutation problem. 

As a recommendation for future work, the effectiveness of this method can be further 

investigated with signals obtained from a real industrial case. Additionally, the separated signals 

can be fed into an automatic fault diagnosis method to verify its competence in such cases. 

Moreover, this method can be tried on a system with limited instrumentation. 
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4.1 Abstract 

Bearing failure can lead to major damage to rotating components and its diagnosis and prognosis 

are therefore of paramount importance. Techniques and approaches for detecting bearing faults 

abound. However, application of these methods is limited for complex systems such as aircraft 

engines. This stems from the fact that the complex configuration of the system and inaccessibility 

make it difficult to place the vibration transducers close to the bearings. In most cases, available 

instrumentation is limited to a few vibration transducers on the casing of the machine. In such 

cases, the vibration due to bearing faults are barely detectable using traditional methods, as they 

normally make only a small contribution to the overall energy and this is to some extent 

dissipated by the transmission path. For bearing fault detection to be effective in such 

applications, the methodology must be capable of detecting faint bearing signals and also allow 

consistent trending and tracking. This study examines these requirements in detail and presents 

an experimental assessment of newly emerging cyclic spectral analysis in this field for such 

requirements.  

Keywords: cyclic spectral analysis, cyclostationary, bearing fault detection, complex machinery, 

condition monitoring. 
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4.2 Introduction 

Bearings are one of the key components found in almost any rotating machinery and have 

notably drawn attention from the health monitoring research community. As bearing failure can 

lead to catastrophic damage to other rotating components, its diagnosis and prognosis are of 

paramount importance. Fortunately the mechanics of bearing deterioration are well-known. The 

development of the very familiar bearing characteristic frequencies (tones) dates back to a few 

decades ago [1]. These characteristic patterns have enabled monitoring of bearings through 

vibration data acquired using pertinent transducers. For any fault on the bearing, its 

corresponding tone is expected to appear on the frequency domain (spectral) representation of 

vibration signals. Fourier transforms (FT) and their derivatives, namely, Fast Fourier transforms 

(FFT) and Short Time Fourier Transforms (STFT) are extensively used to obtain such spectral 

representations. One difficulty with this approach is that the vibration transducers are usually 

required to be mounted close to the bearings. This is due to the fact that the energy of vibration 

signals attenuates as one goes farther away from the bearings and the likelihood of detecting 

bearing tones decreases. Also, in complex systems, interfering noise from other components can 

further complicate the situation. 

In highly sophisticated and complex systems such as gas turbine engines, complexity of the 

system and inaccessibility make it difficult to place the vibration transducers close to bearings. In 

most cases, available instrumentation is very limited and only a few accelerometers are available 

that collect the vibration signal from the casing of the engine. With many components producing 

vibration, the bearing tones are very hard to distinguish in the spectral representation of the 

vibration signals. Moreover, they normally generate minimal energy in the early stages of failure 

and this energy is further dissipated by the complex transmission path.  

To tackle the problem of making the faint bearing signal more distinctive among the signals from 

other components, different signal processing approaches can be adopted. One approach is to 

regard this case as a blind source separation (cocktail party) problem and turn to developed 

statistical and mathematical methods for this purpose, mainly Independent Component Analysis 

(ICA) [2], to separate bearing tones from interfering signals. Apart from statistical independence, 

no other specific assumption is made on the type of signal produced by the bearings. The main 

focus usually is put on the mixing mechanisms which may be considered either instantaneous 
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(linear) or convolutive. This approach has been experimentally tested by a number of researchers 

[2-9] and despite promising preliminary results, it seems to be far from the level of robustness 

and reliability required for use in common practice. One reason is due to strict ICA requirements 

such as equality or superiority of the number of sensors to the number of sources. Another reason 

is the inherent ambiguity in the scale and permutation of the results obtained from ICA. 

Furthermore, inconsistency between ICA assumptions and the true characteristics of vibration 

sources can be listed as one of the pitfalls (see [10]). 

An alternative approach is to avoid the effort of “separating” the actual bearing signals from the 

background noise. In this approach, a threshold for the noise level in different regions of the 

spectral representation of the vibration signal is established and the signal is monitored for any 

levels which exceed this threshold.  Recently, Clifton et al. [11] introduced a probabilistic 

method called the probabilistic novel tracked order. In this method, the spectrogram of the 

vibration signal gathered from an accelerometer on the casing of a jet engine (gas turbine engine) 

is divided into speed and frequency bins. Then for each bin, by adopting Extreme Value Theory 

(EVT) concepts, a dynamic threshold is established for the noise floor. It is demonstrated using 

real engine data that this technique is actually capable of detecting bearing tones as they protrude 

above the established noise floor. A drawback with this technique, though, is that no distinction 

between the characteristics of the noise and the actual bearing tone is made. As long as a bearing 

tone does not exceed the noise threshold, it is considered noise and therefore ignored. Bearing 

tones must be strong enough to be detected by this technique. Further, should the overall noise 

level increase for any reason it can mask a bearing tone which could be otherwise detected.  

An alternative to above approaches is to use the specifications and characteristics of signals 

produced due to bearing faults as a basis for distinction. A monitoring scheme can be established 

that probes the signals acquired to recognize such specifications. Bearing defects are now known 

to produce vibration with recurring impulsiveness in the energy. Signals with such a behaviour 

are known in technical terms to be cyclostationary. Briefly, this approach consists in detecting 

any cyclostationary behaviour in the vibration signals and checking for any association with 

bearing defects. Very recently, Jérôme Antoni published a number of articles ([12-14] and 

references therein) on this subject. Also, for a more detailed review on bearing fault diagnosis in 

general, interested readers may consult [15]. 
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In this study, different aspects of applying cyclostationarity-based methods to the case of bearing 

fault detection in complex machinery are investigated. For a bearing fault detection technique to 

be effective in such applications, it must retain two features. One is the ability to detect faint 

bearing tones as they pass through the transmission path. The other is to allow consistent 

trending. This paper is structured as follows: first a short description of the mechanics of bearing 

failures is given. Then, concepts and formulations for cyclostationarity are briefly introduced. 

Finally, two sets of relevant experiments are provided, followed by a discussion on the results. 

4.3 Bearing faults and cyclostationarity 

4.3.1 Bearing faults 

As mentioned earlier the mechanics of bearing faults are to a great extent known and 

characteristic frequencies have been formulated. These frequencies for the common case where 

only the inner race of the bearing is rotating are listed in Table 4.1. 

Table 4.1: Characteristic frequencies of bearing faults [16] 

Rotation frequency of a rolling element assembly !!=
!!
2
1−

!!
!!

cos!    

Rotational frequency of a rolling element 
!!=

!!
2
!!
!!

1−
!!!

!!!
cos! !  

Over-rolling frequency of one point on the inner ring !!"=
!!
2
!! 1+

!!
!!

cos!  

Over-rolling frequency of one point on the outer ring !!"=
!!
2
!! 1−

!!
!!

cos!  

Over-rolling frequency of one point on a rolling element 
!!=

!!!!
!!

1−
!!!

!!!
cos! !  

 !!: rotation speed, !!:   roller diameter, !!: pitch diameter, !!: the number of balls and 
!: the contact angle of the ball.  

One misconception regarding the above formulas is that they are often misinterpreted to represent 

the bearing’s natural frequencies. A closer look at the procedure of obtaining these formulas can 

provide a better understanding of the concept. The procedure for obtaining each one of these 

formulas is briefly: if any defective point is considered on any of the main bearing components 

(i.e., rolling element, outer and inner races), then based on the geometry of the bearing 
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components and kinematic concepts the frequency of any possible contact between that point and 

other components is calculated. For example, if there is a defective point on the inner race of 

bearing, the rate at which such point comes into contact with the rolling element determines the 

over-rolling frequency of one point on the inner ring (!!").  Depending on the case, the 

introduction into and out of the bearing load zone can be of importance, which necessitates 

calculation of the rolling assembly frequency. Overall, the basis for calculating these formulas is 

solely kinematics; the bearing’s natural frequencies are dependent on the design, geometry and 

material among many other factors and it is not possible to establish a general formulation for all 

bearings. 

Another misconception related to bearing characteristic frequencies is that bearings are 

sometimes thought to produce harmonic sinusoidal components at such rates. This may stem 

from the fact that conventional bearing diagnosis systems are largely based on spectral analysis 

and consequently Fourier Transforms (FT) which represent signals with harmonic sinusoidal 

components. It should be clear from the previous paragraph that bearing frequencies are produced 

by striking of a defective point of a bearing component on other component. Such striking results 

in excitation (ringing) of the bearing assembly at its natural frequencies. The striking itself occurs 

at rates equal to the characteristic frequencies (easily computable) and creates impulses in the 

signal and not harmonic sinusoidals. The ringing effect, on the other hand, occurs at natural 

frequencies of the bearing components in the shape of a random stationary signal at normally 

higher frequencies (usually unknown). The combination of these two phenomena creates 

vibration with repetitive bursts of energy. To be more accurate, vibration signals produced by a 

bearing defect are modulated signals; vibration energy at natural frequencies of the bearing 

(carrier frequency) is modulated with characteristic frequencies of the bearing (modulation 

frequency). Such signals in signal processing terminology are entitled cyclostationary. 

According to above discussion, typical spectral (FFT) analysis is not a strong tool for detecting 

bearing anomalies as it gives the averaged spectral representation (spectrum) based on 

stationarity assumptions. In fact, spectral analysis is only capable of detecting bearing defects 

when they are greatly developed and in presence of little noise. In such cases the modulation 

frequency and its harmonics are visible on the spectrum. An alternative for typical spectral 

analysis is to use spectrogram (STFT) or any other joint time-frequency representation. In this 

case, the repetitive bursts of energy occurring at higher frequencies (ringing frequencies of the 
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bearing component) are observable throughout the spectrogram. The duration between successive 

bursts is equal to the inverse of any one of the characteristic frequencies depending on the case. 

These methods are very representative and appropriate for analysis purposes. On the other hand, 

they are not suitable for an automated diagnosis system since it is difficult to establish a robust 

trending and alarming scheme.  

Envelope analysis [16] is also one of the methods widely used for bearing fault detection. It 

consists in spectral analysis of the envelope of the time-domain signal. For envelope analysis to 

be effective it is usually necessary that sensors be located very close to the bearing so that the 

repetitive bursts of energy due to bearing faults are discernible in the time-domain signal. This 

limits its use for applications where the sensors are not mounted as such or where the vibration 

produced by other components mask the recurring pulses in the signals. One solution to this 

limitation is to band-pass filter the signal around some appropriate frequency band and then 

perform envelope analysis on the filtered signal. Again, selecting the appropriate band entails 

knowing the natural frequency of the bearing assembly a priori.  

One might think of performing envelope analysis on the signal narrow-band filtered around all 

frequencies of interest. This bears a similarity to taking STFT of the signal and then performing 

envelope analysis on each frequency bin over the range of interest. This concept sets the stage for 

what is covered in the following section under cyclic spectral analysis.    

4.3.2 Cyclic spectral analysis 

Given !(!) the signal in time, cyclic spectral analysis uses FT to scrutinize the alternation of the 

spectral contents of the signal at each frequency ! throughout signal duration !. More accurately, 

if the narrow-band filtered constituent of the signal !(!) around frequency ! is denoted as !!(!) 

then the FT of the square of this signal reads: 

lim!→!
!
!

!! !
!!!!!!"#!"    

!   Eq. 4.1 

where ! is cyclic frequency (carrier frequency) as opposed to ! the spectral frequency 

(modulation frequency). Since the representation obtained using this equation will actually reveal 

the modulation of the signal in terms of cyclic frequency, it is also called the cyclic modulation 

spectrum. The above formulation is straightforward and apt for understanding the concept. 

Nonetheless, deriving the discrete version of this formulation suitable for implementation is not 
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as straightforward. An alternative approach to formulate the same concept is to use correlation 

approach, which leads to a more straightforward discrete formulation, yet harder to grasp. This 

approach is described as follows [17]: 

According to the definition of cyclostationarity, the mean and the autocorrelation for a 

cyclostationary signal (or process in general) !(!) are periodic and the following equations hold: 

!! ! + ! = !!(!)  Eq. 4.2 

!!! !! + !, !! + ! = !!!(!!, !!)  Eq. 4.3 

for any possible !, !! and !! and where ! denotes the period. For notational simplicity Eq. 1 can 

be reformulated as: 

!!! ! + ! + !
!
, ! + ! − !

!
= !!! ! + !

!
, ! − !

!
  Eq. 4.4 

Now if the Fourier coefficients of the autocorrelation function for a range of frequencies (!) 

equal to integer multiples of the fundamental frequency (!
!
) are written as: 

!!!! ! = !
!

!!! ! + !
!
, ! − !

!
!!!!!"#!"

!
!
!!!

  Eq. 4.5 

then the Fourier expansion of the autocorrelation function reads: 

!!! ! + !
!
, ! − !

!
= !!!! ! !!!!"#!   Eq. 4.6 

To generalize this notation, Eq. 5 must be revised so that it covers the whole range of possible 

frequencies. By letting ! be any possible periodicity in the signal, an extension to Eq. 5 can be 

expressed as: 

!!!! ! = lim!→!
!
!

!!! ! + !
!
, ! − !

!
!!!!!"#!"

!
!
!!!

  Eq. 4.7 

According to above notation, the cyclostationarity of a signal !(!) will manifest itself as a non-

zero Fourier coefficient. Similarly, a non-zero coefficient at any frequency ! conveys that the 

signal exhibits cyclostationarity at that frequency. In its standard terminology frequency ! is 

referred to as cyclic (or cycle) frequency and R!!! (τ)  as a cyclic autocorrelation function. The set 

of cyclic frequencies for which the cyclic autocorrelation function is non-zero is called the cyclic 

spectrum. 
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In an analogy to spectral analysis where the spectral density is defined as the Fourier transform of 

the autocorrelation function, the cyclic spectral density is defined as: 

!!!! = !!!! ! !!!!!"#!"!
!!   Eq. 4.8 

Finally, from Eq. 8 the discrete cyclic spectrum for a discrete signal !(!∆!) (for ! = 0, 1, 2,…) is 

adapted as:  

!!!! ! = !!!! !∆! !!!!!"∆!"!
!!!   Eq. 4.9 

where ∆! and ! denote the sampling interval and number of samples respectively and the discrete 

autocorrelation function is obtained as: 

!!!! !∆! = lim!→!
!

!!!!
!!! !∆! + !∆!, !∆! !!!!!" !!!! ∆!!

!!!   Eq. 4.10 

 

4.4 Experiments 

As mentioned earlier, for a bearing detection method to be effective in applications related to 

complex machinery it must allow consistent trending and be able to detect defects from a weak 

signal. In this section cyclic spectral analysis is examined for these features using two sets of 

experiments. 

In principle, the transmission path mainly dissipates the energy of the signal but generally should 

not affect certain characteristics of the signal such as its cyclostationarity. For the transmission 

path to diminish the signal’s cyclostationarity it must operate as a rather complicated filter that 

evens out the repetitive bursts of energy that occur in a specific frequency range. Therefore, it is 

reasonable to expect that the cyclostationarity behaviour of the signal is preserved through the 

transmission path. In our first case study, this premise is tested experimentally by collecting the 

signals from a faulty bearing using an accelerometer positioned far from the bearing.  

In automated health monitoring and fault diagnosis, it is essential for a method to allow robust, 

attainable and consistent trending. As an example, cyclostationarity due to bearing anomalies can 

be detected with most time-frequency methods as long as the ringing frequencies or the natural 

frequencies of the bearing assembly are known to some extent. However, in the majority of cases 

the natural frequencies of the bearing assembly are not readily available. This limits the 

application of such methods in automated health monitoring. Another important point is that the 
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feature being tracked must be consistent in the sense that its value bears some correspondence to 

severity of faults. In our second case study, cyclostationarity is examined for these requirements 

through a run-to-failure experiment.  

The description of these two case studies followed by discussion and the results for each case are 

represented in the following sections. 

4.4.1 First case study  

4.4.1.1 Experimental setup and data acquisition 

In the first case, vibration signals were collected from a test setup at École Polytechnique de 

Montréal consisting of a 2 HP motor driving a shaft supported by two different bearings. One 

bearing was an overhauled roller bearing (PWC15) from an aircraft engine provided by Pratt & 

Whitney Canada. The other bearing was a new SKF ball bearing. Each bearing was contained in 

a housing and bolted to an adjustment base. The adjustment base was also bolted to a main stiff 

base which was fixed to the concrete floor. An accelerometer was mounted on each bearing 

housing along with two more on the main base (Figure 4.1). Signals were gathered at a sampling 

frequency of 50 kHz during operation of a shaft running at 1200 RPM (20 Hz). One of the 

accelerometers on the base was positioned about 4 ft. away from the shaft assembly. Signals from 

this accelerometer were used for analyzing the effect of the transmission path on the 

cyclostationarity of the signals.  

 

 

Figure 4.1: Test setup at École Polytechnique de Montreal 

Accelerometer 3 
PWC bearing 
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4.4.1.2 Results and discussion 

Visual inspection of PWC15 bearing indicated an outer race fault. The SKF bearing, on the other 

hand, was a new bearing. Figure 4.2 shows the cyclic spectrum or cyclic spectral density of the 

signals gathered by accelerometer no.3. This was obtained from a 1 sec portion of the signal. 

Two dominant peaks are clearly discernible at cyclic frequencies of 90 Hz and 180 Hz and for a 

range of spectral frequencies centred around 4 kHz. This indicates that the vibration energy 

around 4 kHz (the natural frequencies of the bearing assembly) is modulated with a modulation 

frequency of 90 Hz. This modulation frequency coincides well with the over-rolling frequency of 

one point of the outer race of the PWC15 bearing given in Table 4.2.  

 

Table 4.2: Characteristic frequencies of the bearings used in the experiments 

Description  PWC15 Rexnord 
Rotational frequency of rolling element assembly [Hz] fc 7.73 14.8 
Rotational frequency of a rolling element [Hz] fr 41.7 140 
Over-rolling frequency of one point on inner ring [Hz] fip 147 297 
Over-rolling frequency of one point on outer ring [Hz] fep 92.7 236 
Over-rolling frequency of one point on rolling element [Hz] frp 83.5 280 

 

 

Figure 4.2: Cyclic spectral density of the faulty PWC15 bearing 
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Figure 4.3: Low frequency range spectrogram and spectrum of the faulty PWC15 bearing 

To compare this method over typical methods, the spectrum and spectrogram of the signals up to 

250 Hz are shown in Figure 4.3 along with the corresponding time-domain signal. As is typical 

with spectral analysis for the purpose of bearing fault detection, it is expected to have a peak at 

around 92 Hz on both diagrams. The spectrum in this case shows a minuscule peak around 95 

Hz. Slightly higher spectral energy can also be observed from the spectrogram around the same 

frequency. Such low amplitude indications would be completely masked in presence of noise. 

Moreover, as mentioned earlier the bearing used in this experiment was an overhauled bearing 

with a predominantly developed outer race fault. 

According to the discussion in Section 4.2, in order for the vibration produced by faulty bearings 

to be clearly discernible on the spectrogram one needs to look at a broader frequency range. 

Figure 4.4 shows the spectrogram and spectrum of signal up to 12.5 kHz. On the spectrogram, the 

outer race fault manifests itself as a series of bursts taking place at around 3.5 kHz (the natural 

frequencies of bearing assembly or carrier frequencies) with an interval equal to the inverse of the 

outer race fault characteristic frequency (modulation frequency). These results suggest that for 

this approach to be effective in automated monitoring, prior knowledge of the natural frequencies 
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of bearing assembly is required. Moreover, it is necessary that other machine components do not 

produce vibration within the same frequency band and jumble the signal. This is definitely not 

the case for complex systems with many components producing vibration. 

 

Figure 4.4: Wide range frequency spectrogram and spectrum of the faulty PWC15 bearing 

4.4.2 Second case study 

In order to investigate if the cyclic spectral density enables consistent trending, a bearing data set 

from a run-to-failure test provided by the Center for Intelligent Maintenance Systems (IMS) of 

University of Cincinnati through NASA Ames Prognostics Data Repository [18] was used. 

4.4.2.1 Experimental setup and data acquisition 

In this test four double row Rexnord ZA-2115 bearings were mounted on a shaft driven by an AC 

motor (Figure 4.5). Vibration data was gathered using four accelerometers, one on each bearing 

housing, at a sampling rate of 20 KHz. A spring mechanism exerted a radial load of 6000 lbs on 

the rotating shaft and the bearing. Data snippets of approximately 1 second in duration were 

gathered at 10-minute intervals throughout a run-to-failure test. In this study, around 50 snippets 
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were selected over a 190 min interval covering the progress of bearing from healthy to faulty. At 

the end of this test, an outer race fault on the third bearing was observed. 

 

Figure 4.5: Schema of the test rig at IMS, of University of Cincinnati (by courtesy of [18]) 

4.4.2.2 Results and discussion 

According to Table 2.1, due to a fault on the outer race of the third bearing, it is expected that the 

signal exhibit degrees of cyclostationarity at a cyclic frequency of 236 Hz as the fault progresses. 

Figure 4.6 shows the cyclic spectrum of the signals gathered by accelerometer 3 on the third 

bearing when the outer race fault is developed. As shown, the vibration energy distributed around 

4.5 kHz is modulated with a frequency of about 230 Hz which slightly deviates from the 

calculated characteristic frequency for an outer race. This deviation has been reported in [19] as 

well. 

In order to analyse the correspondence between the cyclic spectral energy and the progress of the 

bearing defect, the overall narrow-band (5 Hz) cyclic spectral energy around the bearing’s outer 

race frequency (231 Hz) is studied. Figure 4.7 shows the variation of the magnitude of vibration 

energy values with respect to operation time. According to this graph, first indications of bearing 

fault appear after 92 hours of operation. Comparing this to the bearing’s total service life in 

number of hours (i.e., 165 hours) this can indeed be considered an early indication. After this 

early indication, the value of the cyclic energy goes through a number of significant fluctuations, 

which can be due to healing phenomenon [20]. This indicates that strict connections cannot be 
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established between cyclic energy and the severity of fault. Nevertheless, it remains a significant 

distance from the initial value observed for normal conditions during early hours of operation. 

 

Figure 4.6: Cyclic spectral density of faulty Rexnord bearing 

  

 

Figure 4.7: Progress of banded cyclic spectral density 
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This experiment demonstrates that cyclic spectral analysis should not be used as a tool to 

measure the severity of bearing faults. On the other hand, it can be utilized as a reliable 

monitoring tool because its value always reads higher for a faulty bearing than for a normal one; 

and also it enables early detection of bearing faults.  

4.5 Conclusion 

In this study the problem of bearing fault detection in complex machinery was revisited. Two 

prerequisites for a method to be effective in detecting bearing faults in complex systems were 

identified to be the capability of detecting bearing faults from a faint signal; and a consistent 

trending feature. Relevant shortcomings of traditional approaches were discussed. Cyclic spectral 

density was then argued to be an appropriate candidate that could overcome difficulties with 

traditional approaches and meet the prerequisites. This was examined through two sets of 

experiments. In conclusion, the experimental results were satisfactory. As a recommendation for 

future work, the effectiveness of this method can be further investigated with signals obtained 

from other test cases as well as a real industrial case.  
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CHAPTER 5 GENERAL DISCUSSION 

The concept of vibration analysis for the purpose of fault diagnosis in complex multi-component 

machinery such as gas turbine engines was revisited. The principal difficulty in this case was 

identified to be the fact that many components functioning at the same time produce a very 

complicated overall vibration signature. A blind source separation concept was introduced to 

address this difficulty and separate signals with respect to components. Due to the non-existence 

of a practical way to obtain vibration signatures of the individual components of machinery in 

isolation, verification and validation of results obtained using blind source separation techniques 

were itself an obstacle. To tackle this obstacle a new method was developed. This method is 

based on the spatial distribution of sensors with respect to the components. By adopting key 

concepts from statistical energy analysis, schematic vibration signatures for different components 

are obtained. The major advantage of this method is that it is based on the system’s mechanical 

attributes rather than any mathematical assumptions. 

With an evaluation metric at hand, more rigorous evaluation of blind source separation 

techniques could be achieved. Among such techniques, frequency-based independent component 

analysis was chosen to be appropriate. However, it turned out that the reconstruction of time 

signals from separation results of individual frequency bins associated with the frequency-based 

technique posed a difficulty as existing solutions were either computationally demanding or 

based on assumptions that normally do not hold in mechanical systems. Again, as one of the main 

intentions of this thesis, a new technique was proposed based mainly on the mechanical attributes 

of the system rather than any unrealistic mathematical or statistical assumption. This technique 

was developed based on the presumption that the mixing mechanism for neighbouring frequency 

bins would vary only slightly from one bin to another. Experimental results for this case were, to 

a great extent, satisfactory.  

Despite encouraging preliminary results, independent component analysis techniques at this 

current stage seem to be far below the level of robustness and reliability required for use in 

practice. One reason is due to strict requirements such as equality or superiority of the number of 

sensors to the number of sources. Another reason is the inherent ambiguity in the scale and 

permutation of the results obtained using this technique. In addition, the inconsistency between 
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independent component analysis assumptions and the true characteristics of vibration sources is a 

further drawback.  

An alternative to above approaches was discussed and consists of putting the focus for each 

component on its faults and the specific variation they induce on the characteristics of the signals 

acquired far from the actual component. Given that a powerful tool for detecting such specific 

signal characteristics was available and these characteristics get through the transmission path, 

this approach could be very effective in diagnosis of faults in complex machinery. As was the 

case for other studies throughout this thesis, faults in bearings were chosen for this study. Such 

faults are known to produce vibration with recurring impulsiveness in the energy. Signals with 

such behaviour are known in technical terms to be cyclostationary. Cyclic spectral analysis is a 

tool to measure the cyclostationarity of a signal at different ranges of frequency. Therefore, it can 

be stated that, in this case diagnosis would consist in using cyclic spectral analysis to detect 

cyclostationary effects in the vibration signals and checking for any association with bearing 

defects. It is uncertain whether cyclostationary properties would be retained through the 

transmission path; and if cyclic spectral analysis would be a powerful tool allowing consistent 

trending. These two questions were addressed using two sets of relevant experiments. In general, 

our experimental results corroborated the effectiveness of this approach. 
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CONCLUSION 

In this dissertation, three studies concerning mechanical fault diagnosis in complex machinery 

using vibration analysis were presented.  

In the first study, a novel separation method based on frequency signatures obtained from signals 

gathered from multiple sensors positioned at different locations on the system was presented. 

This method had a simple and solid theoretical basis adopted from statistical energy analysis. A 

series of experimental tests on synthetic signals and real laboratory signals collected from 

different bearings were provided for verification. The results confirmed the efficacy of the 

method. Some shortcomings associated with this method were also discussed including 

inaccuracy and degraded effectiveness in systems with transitory behaviour and in systems with 

very densely mounted components where determining the subsystems could be very challenging.  

In the second study, frequency-based independent component analysis was applied to the case of 

vibration source separation. A new technique was presented for constructing time-domain signals 

from separation results of the individual frequency bins. Accordingly, modifications were made 

to the separation algorithm to adapt it for the case of vibration source separation. The 

performance of the method was verified using a series of experimental tests on real laboratory 

signals collected from different bearings. Results were compared and verified using the 

separation metric presented in the first study. The accordance between results from the presented 

technique, the spatial proximity method and the peak analysis method confirmed its 

effectiveness.  

In the third study, the application of cyclic spectral density in detection of faint bearing signals 

was considered. It was argued that for this technique to be effective in detecting bearing faults in 

complex systems two prerequisites must be met. Such prerequisites were identified to be the 

capability of detecting bearing faults from a faint signal and aptness for consistent trending 

feature. In this regard, the shortcomings of traditional approaches were discussed. Two sets of 

experiments were presented for evaluation and the experimental results supported the proposed 

ideas. 

As recommendations for future work, the following research works may be conducted: 
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• In the abovementioned studies, verification of the methods and the techniques were all 

performed using data acquired from test setups. The effectiveness of these methods can be 

further investigated with data obtained from other test cases as well as a real industrial 

case.  

• In the second study, among blind source separation techniques, independent component 

analysis was used. As blind source separation is an ongoing area of research, new 

techniques may emerge that perform better than independent component analysis. At the 

time of writing methods such as factor analysis and empirical mode decomposition exist 

in which some of the restricting requirements of independent component analysis are 

relaxed. These methods may also be experimentally tested. 

• In this study, the experiments and analyses were performed only for the case of bearing 

faults. Similar analyses may be carried out using data from other machine components 

such as gears.  

• The separation results obtained using methods presented in this study may be fed into an 

automatic fault diagnosis scheme to verify their competence in such cases.  
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