7 research outputs found

    Effects of Imperfect Reference Signal Recovery on Performance of SC and SSC Receivers over Generalized Fading Channels

    Get PDF
    This paper presents the study of the effects of imperfect reference signal recovery on the bit error rate (BER) performance of dual-branch switch-and-stay combining (SSC) and multibranch selection combining (SC) receivers in a generalized - fading channel. The average BER of binary and quaternary phase shift keying (BPSK and QPSK) is derived under the assumption that the reference carrier signal is extracted from the received modulated signal. For SSC receiver the optimal switching threshold (in a minimum BER sense) is numerically evaluated. Hereby we determine and discuss the simultaneous influence of the average signal-to-noise ratio (SNR) per bit, fading severity, product phase-locked loop (PLL) bandwidthbit duration (B_LT_b), switching threshold of SSC and diversity order of SC on BER performance. The influence of B_LT_b in different channel conditions and modulation formats is pointed out. The numerical results are confirmed by computer simulations

    On the Monotonicity of the Generalized Marcum and Nuttall Q-Functions

    Full text link
    Monotonicity criteria are established for the generalized Marcum Q-function, \emph{Q}_{M}, the standard Nuttall Q-function, \emph{Q}_{M,N}, and the normalized Nuttall Q-function, QM,N\mathcal{Q}_{M,N}, with respect to their real order indices M,N. Besides, closed-form expressions are derived for the computation of the standard and normalized Nuttall Q-functions for the case when M,N are odd multiples of 0.5 and MNM\geq N. By exploiting these results, novel upper and lower bounds for \emph{Q}_{M,N} and QM,N\mathcal{Q}_{M,N} are proposed. Furthermore, specific tight upper and lower bounds for \emph{Q}_{M}, previously reported in the literature, are extended for real values of M. The offered theoretical results can be efficiently applied in the study of digital communications over fading channels, in the information-theoretic analysis of multiple-input multiple-output systems and in the description of stochastic processes in probability theory, among others.Comment: Published in IEEE Transactions on Information Theory, August 2009. Only slight formatting modification

    Multiple Antenna Techniques

    Get PDF

    Wireless multiuser communication systems: diversity receiver performance analysis, GSMuD design, and fading channel simulator

    Get PDF
    Multipath fading phenomenon is central to the design and analysis of wireless communication systems including multiuser systems. If untreated, the fading will corrupt the transmitted signal and often cause performance degradations such as increased communication error and decreased data rate, as compared to wireline channels with little or no multipath fading. On the other hand, this multipath fading phenomenon, if fully utilized, can actually lead to system designs that provide additional gains in system performance as compared to systems that experience non-fading channels.;The central question this thesis tries to answer is how to design and analyze a wireless multiuser system that takes advantage of the benefits the diversity multipath fading channel provides. Two particular techniques are discussed and analyzed in the first part of the thesis: quadrature amplitude modulation (QAM) and diversity receivers, including maximal ratio combining (MRC) and generalized selection combining (GSC). We consider the practical case of imperfect channel estimation (ICE) and develop a new decision variable (DV) of MRC receiver output for M-QAM. By deriving its moment generating function (MGF), we obtain the exact bit error rate (BER) performance under arbitrary correlated Rayleigh and Rician channels, with ICE. GSC provides a tradeoff between receiver complexity and performance. We study the effect of ICE on the GSC output effective SNR under generalized fading channels and obtain the exact BER results for M-QAM systems. The significance of this part lies in that these results provide system designers means to evaluate how different practical channel estimators and their parameters can affect the system\u27s performance and help them distribute system resources that can most effectively improve performance.;In the second part of the thesis, we look at a new diversity technique unique to multiuser systems under multipath fading channels: the multiuser diversity. We devise a generalized selection multiuser diversity (GSMuD) scheme for the practical CDMA downlink systems, where users are selected for transmission based on their respective channel qualities. We include the effect of ICE in the design and analysis of GSMuD. Based on the marginal distribution of the ranked user signal-noise ratios (SNRs), we develop a practical adaptive modulation and coding (AMC) scheme and equal power allocation scheme and statistical optimal 1-D and 2-D power allocation schemes, to fully exploit the available multiuser diversity. We use the convex optimization procedures to obtain the 1-D and 2-D power allocation algorithms, which distribute the total system power in the waterfilling fashion alone the user (1-D) or both user and time (2-D) for the power-limited and energy-limited system respectively. We also propose a normalized SNR based GSMuD scheme where user access fairness issues are explicitly addressed. We address various fairness-related performance metrics such as the user\u27s average access probability (AAP), average access time (AAT), and average wait time (AWT) in the absolute- and normalized-SNR based GSMuD. These metrics are useful for system designers to determine parameters such as optimal packet size and delay constraints.;We observe that Nakakagami-m fading channel model is widely applied to model the real world multipath fading channels of different severity. In the last part of the thesis, we propose a Nakagami-m channel simulator that can generate accurate channel coefficients that follow the Nakagami-m model, with independent quadrature parts, accurate phase distribution and arbitrary auto-correlation property. We demonstrate that the proposed simulator can be extremely useful in simulations involving Nakagami-m fading channel models, evident from the numerous simulation results obtained in earlier parts of the thesis where the fading channel coefficients are generated using this proposed simulator

    Recent Advances in Wireless Communications and Networks

    Get PDF
    This book focuses on the current hottest issues from the lowest layers to the upper layers of wireless communication networks and provides "real-time" research progress on these issues. The authors have made every effort to systematically organize the information on these topics to make it easily accessible to readers of any level. This book also maintains the balance between current research results and their theoretical support. In this book, a variety of novel techniques in wireless communications and networks are investigated. The authors attempt to present these topics in detail. Insightful and reader-friendly descriptions are presented to nourish readers of any level, from practicing and knowledgeable communication engineers to beginning or professional researchers. All interested readers can easily find noteworthy materials in much greater detail than in previous publications and in the references cited in these chapters
    corecore