298 research outputs found

    A Unified Method for Finding Impossible Differentials of Block Cipher Structures

    Get PDF
    In this paper, we propose a systematic method for finding impossible differentials for block cipher structures, better than the U\mathcal{U}-method introduced by Kim \textit{et al}~\cite{Kim03}. It is referred as a unified impossible differential finding method (UID-method). We apply the UID-method to some popular block ciphers such as {\sf Gen-Skipjack}, {\sf Gen-CAST256}, {\sf Gen-MARS}, {\sf Gen-RC6}, {\sf Four-Cell}, {\sf SMS4} and give the detailed impossible differentials. By the UID-method, we find a 16-round impossible differential on {\sf Gen-Skipjack} and a 19-round impossible differential on {\sf Gen-CAST256}. Thus we disprove the \textsl{Conjecture 2} proposed in \textsl{Asiacrypt\u2700}~\cite{Sung00} and the theorem in \textsl{FSE\u2709} rump session presentation~\cite{Pudovkina09}. On {\sf Gen-MARS} and {\sf SMS4}, the impossible differentials find by the UID-method are much longer than that found by the U\mathcal{U}-method. On the {\sf Four-Cell} block cipher, our result is the same as the best result previously obtained by case-by-case treatment

    Improvements for Finding Impossible Differentials of Block Cipher Structures

    Get PDF
    We improve Wu and Wang’s method for finding impossible differentials of block cipher structures. This improvement is more general than Wu and Wang’s method where it can find more impossible differentials with less time. We apply it on Gen-CAST256, Misty, Gen-Skipjack, Four-Cell, Gen-MARS, SMS4, MIBS, Camellia⁎, LBlock, E2, and SNAKE block ciphers. All impossible differentials discovered by the algorithm are the same as Wu’s method. Besides, for the 8-round MIBS block cipher, we find 4 new impossible differentials, which are not listed in Wu and Wang’s results. The experiment results show that the improved algorithm can not only find more impossible differentials, but also largely reduce the search time

    Searching for Subspace Trails and Truncated Differentials

    Get PDF
    Grassi et al. [Gra+16] introduced subspace trail cryptanalysis as a generalization of invariant subspaces and used it to give the first five round distinguisher for Aes. While it is a generic method, up to now it was only applied to the Aes and Prince. One problem for a broad adoption of the attack is a missing generic analysis algorithm. In this work we provide efficient and generic algorithms that allow to compute the provably best subspace trails for any substitution permutation cipher

    Links among Impossible Differential, Integral and Zero Correlation Linear Cryptanalysis

    Get PDF
    As two important cryptanalytic methods, impossible differential cryptanalysis and integral cryptanalysis have attracted much attention in recent years. Although relations among other important cryptanalytic approaches have been investigated, the link between these two methods has been missing. The motivation in this paper is to fix this gap and establish links between impossible differential cryptanalysis and integral cryptanalysis. Firstly, by introducing the concept of structure and dual structure, we prove that a→ba\rightarrow b is an impossible differential of a structure E\mathcal E if and only if it is a zero correlation linear hull of the dual structure E⊄\mathcal E^\bot. More specifically, constructing a zero correlation linear hull of a Feistel structure with SPSP-type round function where PP is invertible, is equivalent to constructing an impossible differential of the same structure with PTP^T instead of PP. Constructing a zero correlation linear hull of an SPN structure is equivalent to constructing an impossible differential of the same structure with (P−1)T(P^{-1})^T instead of PP. Meanwhile, our proof shows that the automatic search tool presented by Wu and Wang could find all impossible differentials of both Feistel structures with SPSP-type round functions and SPN structures, which is useful in provable security of block ciphers against impossible differential cryptanalysis. Secondly, by establishing some boolean equations, we show that a zero correlation linear hull always indicates the existence of an integral distinguisher while a special integral implies the existence of a zero correlation linear hull. With this observation we improve the integral distinguishers of Feistel structures by 11 round, build a 2424-round integral distinguisher of CAST-256256 based on which we propose the best known key recovery attack on reduced round CAST-256256 in the non-weak key model, present a 1212-round integral distinguisher of SMS4 and an 88-round integral distinguisher of Camellia without FL/FL−1FL/FL^{-1}. Moreover, this result provides a novel way for establishing integral distinguishers and converting known plaintext attacks to chosen plaintext attacks. Finally, we conclude that an rr-round impossible differential of E\mathcal E always leads to an rr-round integral distinguisher of the dual structure E⊄\mathcal E^\bot. In the case that E\mathcal E and E⊄\mathcal E^\bot are linearly equivalent, we derive a direct link between impossible differentials and integral distinguishers of E\mathcal E. Specifically, we obtain that an rr-round impossible differential of an SPN structure, which adopts a bit permutation as its linear layer, always indicates the existence of an rr-round integral distinguisher. Based on this newly established link, we deduce that impossible differentials of SNAKE(2), PRESENT, PRINCE and ARIA, which are independent of the choices of the SS-boxes, always imply the existence of integral distinguishers. Our results could help to classify different cryptanalytic tools. Furthermore, when designing a block cipher, the designers need to demonstrate that the cipher has sufficient security margins against important cryptanalytic approaches, which is a very tough task since there have been so many cryptanalytic tools up to now. Our results certainly facilitate this security evaluation process

    Related-key Impossible Differential Analysis of Full Khudra

    Get PDF
    Khudra is a 18-round lightweight block cipher proposed by Souvik Kolay and Debdeep Mukhopadhyay in the SPACE 2014 conference which is applicable to Field Programmable Gate Arrays (FPGAs). In this paper, we obtain 2162^{16} 14-round related-key impossible differentials of Khudra, and based on these related-key impossible differentials for 32 related keys, we launch an attack on the full Khudra with data complexity of 2632^{63} related-key chosen-plaintexts, time complexity of about 268.462^{68.46} encryptions and memory complexity of 2642^{64}

    Provable Security Evaluation of Structures against Impossible Differential and Zero Correlation Linear Cryptanalysis

    Get PDF
    Impossible differential and zero correlation linear cryptanalysis are two of the most important cryptanalytic vectors. To characterize the impossible differentials and zero correlation linear hulls which are independent of the choices of the non-linear components, Sun et al. proposed the structure deduced by a block cipher at CRYPTO 2015. Based on that, we concentrate in this paper on the security of the SPN structure and Feistel structure with SP-type round functions. Firstly, we prove that for an SPN structure, if \alpha_1\rightarrow\beta_1 and \alpha_2\rightarrow\beta_ are possible differentials, \alpha_1|\alpha_2\rightarrow\beta_1|\beta_2 is also a possible differential, i.e., the OR | operation preserves differentials. Secondly, we show that for an SPN structure, there exists an r-round impossible differential if and only if there exists an r-round impossible differential \alpha\not\rightarrow\beta where the Hamming weights of both \alpha and \beta are 1. Thus for an SPN structure operating on m bytes, the computation complexity for deciding whether there exists an impossible differential can be reduced from O(2^{2m}) to O(m^2). Thirdly, we associate a primitive index with the linear layers of SPN structures. Based on the matrices theory over integer rings, we prove that the length of impossible differentials of an SPN structure is upper bounded by the primitive index of the linear layers. As a result we show that, unless the details of the S-boxes are considered, there do not exist 5-round impossible differentials for the AES and ARIA. Lastly, based on the links between impossible differential and zero correlation linear hull, we projected these results on impossible differentials to zero correlation linear hulls. It is interesting to note some of our results also apply to the Feistel structures with SP-type round functions

    SoK: Security Evaluation of SBox-Based Block Ciphers

    Get PDF
    Cryptanalysis of block ciphers is an active and important research area with an extensive volume of literature. For this work, we focus on SBox-based ciphers, as they are widely used and cover a large class of block ciphers. While there have been prior works that have consolidated attacks on block ciphers, they usually focus on describing and listing the attacks. Moreover, the methods for evaluating a cipher\u27s security are often ad hoc, differing from cipher to cipher, as attacks and evaluation techniques are developed along the way. As such, we aim to organise the attack literature, as well as the work on security evaluation. In this work, we present a systematization of cryptanalysis of SBox-based block ciphers focusing on three main areas: (1) Evaluation of block ciphers against standard cryptanalytic attacks; (2) Organisation and relationships between various attacks; (3) Comparison of the evaluation and attacks on existing ciphers

    Automatic Search of Truncated Impossible Differentials for Word-Oriented Block Ciphers (Full Version)

    Get PDF
    Impossible differential cryptanalysis is a powerful technique to recover the secret key of block ciphers by exploiting the fact that in block ciphers specific input and output differences are not compatible. This paper introduces a novel tool to search truncated impossible differentials for word-oriented block ciphers with bijective Sboxes. Our tool generalizes the earlier U\mathcal{U}-method and the UID-method. It allows to reduce the gap between the best impossible differentials found by these methods and the best known differentials found by ad hoc methods that rely on cryptanalytic insights. The time and space complexities of our tool in judging an rr-round truncated impossible differential are about O(c⋅l4⋅r4)O(c\cdot l^4\cdot r^4) and O(c2˘7⋅l2⋅r2)O(c\u27\cdot l^2\cdot r^2) respectively, where ll is the number of words in the plaintext and cc, c2˘7c\u27 are constants depending on the machine and the block cipher. In order to demonstrate the strength of our tool, we show that it does not only allow to automatically rediscover the longest truncated impossible differentials of many word-oriented block ciphers, but also finds new results. It independently rediscovers all 72 known truncated impossible differentials on 9-round CLEFIA. In addition, finds new truncated impossible differentials for AES, ARIA, Camellia without FL and FL−1^{-1} layers, E2, LBlock, MIBS and Piccolo. Although our tool does not improve the lengths of impossible differentials for existing block ciphers, it helps to close the gap between the best known results of previous tools and those of manual cryptanalysis

    Down the Rabbit Hole: Revisiting the Shrinking Method

    Get PDF
    The paper is about methodology to detect and demonstrate impossible differentials in a block cipher. We were inspired by the shrinking technique proposed by Biham et al. in 1999 which recovered properties of scalable block cipher structures from numerical search on scaled down variants. Attempt to bind all concepts and techniques of impossible differentials together reveals a view of the search for impossible differentials that can benefit from the computational power of a computer. We demonstrate on generalized Feistel networks with internal permutations an additional clustering layer on top of shrinking which let us merge numerical data into relevant human-readable information to be used in an actual proof. After that, we show how initial analysis of scaled down TEA-like schemes leaks the relevant part of the design and the length and ends of the impossible differentials. We use that initial profiling to numerically discover 4 15-round impossible differentials (beating the current 13-round) and thousands of shorter ones

    Links Between Truncated Differential and Multidimensional Linear Properties of Block Ciphers and Underlying Attack Complexities

    Get PDF
    The mere number of various apparently different statistical attacks on block ciphers has raised the question about their relationships which would allow to classify them and determine those that give essentially complementary information about the security of block ciphers. While mathematical links between some statistical attacks have been derived in the last couple of years, the important link between general truncated differential and multidimensional linear attacks has been missing. In this work we close this gap. The new link is then exploited to relate the complexities of chosen-plaintext and known-plaintext distinguishing attacks of differential and linear types, and further, to explore the relations between the key-recovery attacks. Our analysis shows that a statistical saturation attack is the same as a truncated differential attack, which allows us, for the first time, to provide a justifiable analysis of the complexity of the statistical saturation attack and discuss its validity on 24 rounds of the PRESENT block cipher. By studying the data, time and memory complexities of a multidimensional linear key-recovery attack and its relation with a truncated differential one, we also show that in most cases a known-plaintext attack can be transformed into a less costly chosen-plaintext attack. In particular, we show that there is a differential attack in the chosen-plaintext model on 26 rounds of PRESENT with less memory complexity than the best previous attack, which assumes known plaintext. The links between the statistical attacks discussed in this paper give further examples of attacks where the method used to sample the data required by the statistical test is more differentiating than the method used for finding the distinguishing propert
    • 

    corecore