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Abstract. Grassi et al. [GRR16] introduced subspace trail cryptanalysis as a general-
ization of invariant subspaces and used it to give the first five round distinguisher for
Aes. While it is a generic method, up to now it was only applied to the Aes and
Prince. One problem for a broad adoption of the attack is a missing generic analysis
algorithm.
In this work we provide efficient and generic algorithms that allow to compute the
provably best subspace trails for any substitution permutation cipher.
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1 Introduction
Despite good progress in the last decades, especially within the Aes competition and more
recently within the area of lightweight cryptography, some fundamental questions of the
design and analysis of block ciphers (or hash-functions or cryptographic permutations)
still remain open. Several of those fundamental questions can be found in the area of
differential cryptanalysis and its variants. In differential cryptanalysis we are interested in
studying the behavior of the output differences of (parts of) the cipher for a given fixed
input difference. In order to analyze the distribution of those differences, we (i) are required
to make simplifying assumptions (like assuming independent round keys), (ii) argue about
average behavior only, and (iii) study differential characteristics instead of differentials.
While the general experience is that for most practical applications, the simplified analysis
is a sufficiently good heuristic, the situation is clearly unsatisfactory from a scientific
perspective. Any progress here would significantly improve our understanding of block
ciphers.

Another example of a related area for which a strict analysis without simplifying
heuristics is still missing is the topic of truncated differentials. Informally, for truncated
differentials, instead of trying to understand the exact behavior of the output difference,
one restricts to understand certain patterns that appear in the differences with an unusual
high probability. Truncated differentials have been introduced by Knudsen [Knu95] more
than 20 years ago and since then been used in the analysis of many symmetric primitives,
e. g., [BN14; Gra17; KRW99; Tez16]. Surprisingly, even the case of truncated differentials
with probability one is not fully understood yet, as this work shows.

Recently, new interest in truncated differentials has been triggered by [GRR16] where
the notion of subspace trail cryptanalysis has been defined and used to derive new interesting
properties of the Aes. As subspace trails are closely related to truncated differentials
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with probability one, those recent works again highlight that it is important to finally
completely understand this topic.

A one round subspace trail can be captured as follows: Given a function F on n bit
strings, a subspace trail is specified by two subspaces U, V ⊆ Fn2 , such that any coset of U
is mapped to a coset of V , that is

∀a ∈ Fn2 ∃b ∈ Fn2 such that F (U + a) ⊆ V + b

and we denote this by U → V .
Extending this concept to r rounds of an iterated block cipher with round function F ,

we consider subspace trails given by a tuple of vector spaces (U0, . . . , Ur) such that for all
i we have

Ui → Ui+1.

The important question, both for the design as well as for the analysis of block
ciphers, is how to identify the most powerful subspace trails, where most powerful basically
corresponds to covering as many rounds as possible. In the case of truncated differentials,
several heuristics have been used to solve this problem so far. For SPN ciphers, where
each round function consists of a layer of parallel S-boxes followed by a linear mapping,
the two most common ones are to ignore the details of the S-box and to restrict to the
cases where U0 only activates one S-box. While intuitively this approach seems to cover
the best subspace trails, it seems hard to exclude the existence of better subspace trails
outside those special cases. Indeed, to underline that the heuristic of activating a single
S-box is not sufficient in general we provide several examples (see Section 3) where the
best subspace trails actually activate more than one S-box.

For the designers of block ciphers it would be very convenient to exclude the existence
of subspace trails without making any restrictions and thus to avoid having to base the
security arguments of a cipher upon heuristics.

For attackers it is interesting to see if attacks could be improved by avoiding those
restrictions. As an example, the subspace trail used in [GRR17] does not make use of
any specific properties of the Aes S-box. Thus, one important question raised is, if those
results on Aes could actually be improved by taking the specific structure of the Aes
S-box into account.

1.1 Our Contribution
In this work we rigorously analyse subspace trails for SPN ciphers. As a result of our
considerations, we provide efficient and generic algorithms that can be applied to any SPN
cipher and compute the longest subspace trails without any heuristics or restrictions.

As a first step in Section 2, after fixing our notation and recalling basic facts, we recall
that it is actually possible to efficiently compute the entire subspace trail for any number
of rounds efficiently, given the starting subspace U0. Thus, the task of finding the best
solution actually boils down to choosing the best starting spaces U0. However, apriori
there is a huge choice of possible starting spaces and it is clearly inefficient to simply try all
possible U0. We thus have to exhibit a way to reduce the choice of U0 to a suitable number
in such a way that we are guaranteed to not exclude the best choices. Our consideration
here show an interesting difference depending on whether the S-box used in the cipher has
linear structures or not.1 Makarim and Tezcan [MT14] already observed an influence of
linear structures on truncated differentials, but restricted themselves to linear structures
in the coordinate functions of S-boxes. By considering all linear structures of an S-box, we
are able to fully understand its influence on subspace trails.

1We like to note that both situations, that is S-boxes with and without linear structures occur in actual
cipher designs.
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More precisely, if the S-box used in the cipher does not have any linear structures (see
Section 4), we can prove that the approach sketched above, that is to ignore the details of
the S-box and to only consider the case where U0 activates a single S-box, always results in
the strongest subspace trail. More technically, we show that in this case for any subspace
trail the subspaces Ui are without loss of generality direct products of subspaces that are
aligned with the S-box layer. Note that the Aes S-box does not have any linear structures.
In particular, this shows that an attacker cannot hope to improve the work of [GRR17] by
taking the details of the Aes S-box into account.

In the case when the S-box actually does have linear structures (see Section 5), the
situation is slightly more complicated and the choice for U0 remains huge. However, we
show that simply switching from the input subspace of the first S-box layer to the output
subspace of the first S-box layer results in a simple and efficient workaround. Here, we can
prove that it is sufficient to consider a very limited choice of at most k2n choices for the
output subspace of the first S-box layer, where k is the number of parallel S-boxes and n
is the input size of a single S-box. The price to pay for this switch is that it is in general
unclear if any of those trails can actually be extended backwards through the first S-box
layer. However, using this approach we are able to provably bound the longest subspace
trail. More precisely, our bound is either tight (in the case where we can actually extend
trails backwards) or off by at most one round (in the case where we cannot).

All our algorithms are efficient for any concrete instance of a block cipher we are
aware of. We run the algorithms on a number of ciphers and report on the results in the
respective parts of Sections 4 and 5. Note that while our results will most likely not lead
to new attacks on the ciphers we have been investigating, the main point is that we can
now provably exclude the existence of such attacks.

We implemented all algorithms in c and Sage; the Sage the source code is listed in
the Appendix A.

1.2 Related Work
Besides the subspace trail on Aes [GRR17], subspace trail cryptanalysis has been applied to
Prince in [GR16]. A paper that is technically related, but focuses on invariant subspaces
instead of subspace trails is [LR17].

Grassi et al. [GRR16] noted the strong connection between subspace trails and truncated
differentials with probability one. Actually subspace trails are a special case of the
latter. Truncated differentials are commonly used for impossible differential cryptanalysis,
developed by Knudsen [Knu98] and Biham et al. [BBS99a; BBS99b]. Indeed, truncated
differentials with proability one, and thus subspace trails as a special case, can be used to
construct impossible differentials, e. g. by looking for two trails that miss in the middle.

Several automatic tools were proposed for finding impossible differentials. However,
none of them is able to provably find the best impossible differential efficiently.

The majority of these do not consider S-box details [Cui+17; Kim+03; Luo+09; Luo+14;
Sun+16; WW12]. Only few attempts were done to understand the influence of the S-box
layer. Wang and Jin [WJ17] improve on [Sun+16] by analysing this influence in the case
of the Aes. An attempt to partially cover the S-box influence is the notion of undisturbed
bits, developed in the context of probability one truncated differentials [Tez14]. Makarim
and Tezcan [MT14] started to describe undisturbed bits with linear structures of coordinate
functions of S-boxes. Exploiting these bits results in the best known impossible differentials
for some block ciphers [TTD14; Tez14; Tez16].

Derbez and Fouque [DF16] and Sasaki and Todo [ST17] tackle the influence of an S-box
without restricting to a special one. The first develop a generic algorithm working on a
system of equations which describes the algorithm under scrutiny. While this in principle
allows to handle a very large class of block ciphers, it comes at the cost of an increased
runtime. To solve this problematic long runtime, the authors revert to handling (parts of)
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the S-box as a black box. Moreover, the truncated differentials considered are restricted to
the case where state bits may be active or passive, while more general subspaces are not
handled. The second use a different approach, namely mixed integer linear programming
(MILP). Due to size constraints, the MILP model is not able to handle 8-bit S-boxes and
also block sizes of 256 or 512 bits seem to be out of reach with this technique. Additionally,
the authors did not consider all possible starting differences, but focused on activating
only single S-boxes.

2 Notations and Preliminaries
We start by recalling some definitions and state some useful lemmata, which we need later.

2.1 Basics
By F2 we denote the finite field with two elements and by Fn2 the n dimensional vector
space over F2. For the canonical inner product in Fn2 we write 〈·, ·〉, that is for x, y ∈ Fn2
we have 〈x, y〉 =

∑
i xiyi. Note that most of the following is included to facilitate a self

containing work.

Definition 1 (Orthogonal Complement). Let V ⊆ Fn2 be a subspace. Then

V ⊥ := {a ∈ Fn2 | ∀v ∈ V : 〈a, v〉 = 0}

is the orthogonal complement (or perpendicular complement) of V.

We are going to use two well known properties of the orthogonal complement later.
Namely, that the complement of a direct sum is the direct sum of its complements, i. e.

(V1 × · · · × Vn)⊥ = V ⊥1 × · · · × V ⊥n ,

and given two subspaces U, V it holds that

U ⊆ V ⇒ V ⊥ ⊆ U⊥.

One of the two most common cryptanalytic techniques is differential cryptanalysis.
Here properties of the derivative of a vectorial Boolean function are studied.

Definition 2 (Derivative). Let F : Fn2 → Fm2 . The derivative of F in direction α is defined
as

∆ : Fn2 × (Fn2 → Fm2 )→ (Fn2 → Fm2 )
∆α(F )(x) := F (x) + F (x+ α).

The second notation we utilize in this work are linear structures. First, recall the
definition of a linear structure for a Boolean function f : Fn2 → F2, see e. g. [CV05; Eve88;
Lai95]:

Definition 3 (Linear Structures in Boolean functions). Let f : Fn2 → F2. The set of linear
structures of f is

LS(f) = {u | ∆u(f)(x) = c ∀x ∈ Fn2 , c ∈ F2}.
We call u ∈ LS(f) for which the derivative is constant zero (or one) a 0-linear structure
(or 1-linear structure).

Note that LS(f) and LS0(f) are subspaces and LS(f) is partitioned by the above
distinction into LS(f) = LS0(f) ∪ LS1(f), where LS1(f) is either empty or a coset of
LS0(f).

This definition can be naturally extended to vectorial Boolean functions.
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Figure 1: Three rounds of a generic SPN with four S-boxes.

Definition 4 (Linear Structures in vectorial Boolean functions). Let F : Fn2 → Fm2 . The
set of linear structures of F is

LS(F ) := {(α, u) ∈ Fm2 × Fn2 | 〈α,∆u(F )(x)〉 = c ∀x ∈ Fn2 , c ∈ F2} (1)

We define the set Lu as

Lu(F ) := {α ∈ Fn2 | (α, u) ∈ LS(F )},

Just like LS(f), we can partition Lu(F ) = L0
u(F ) ∪ L1

u(F ) by fixing the constant c in
Eq. (1) to either 0 or 1, and where the later is either empty or a coset of the first. Finally,
like with LS(f), linear structures with constant c = 0 are called 0-linear structures, with
c = 1 they are called 1-linear structures.

In this work we deal with substitution permutation ciphers, see Fig. 1. That is, we
consider iterated ciphers where each round consists of an S-box layer followed by a linear
mapping. As it does not affect any of our considerations, we ignore the key-addition and
the key-scheduling.

Turning to the parts of an SPN construction, the most common design of an S-box
layer is to use the same S-box in parallel for the whole state, which is covered in the next
definition. We stick to this sort of S-box layer for the remainder of the work. Extension to
the more general case of different S-boxes is straightforward.

Definition 5 (S-box layer). Let F : Fn2 → Fn2 be an S-box. Then an S-box layer F k is
the parallel application of F for k times:

F k : (Fn2 )k → (Fn2 )k

F k(x1, . . . , xk) := (F (x1), . . . , F (xk))

And finally, we call an S-box active, if it has a non-zero input/output difference,
otherwise passive.

2.2 Subspace Trails
Grassi et al. [GRR16] introduced subspace trail cryptanalysis as a generalization of invariant
subspaces. We recall the definition of subspace trails.

Definition 6 (Subspace Trail). Let F : Fn2 → Fn2 . Linear subspaces U, V ⊆ Fn2 are called
a (one round) subspace trail, if

∀a : ∃b : F (U + a) ⊆ V + b
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We denote this by U F→ V . We write U F9 V , if they do not form a subspace trail, i. e.

∃a : ∀b : F (U + a) * V + b

An r + 1-tuple of subspaces (U1, . . . , Ur+1) is called a subspace trail (over r rounds), if

Ui
F→ Ui+1 ∀i ∈ {1, . . . , r + 1}.

We can identify some trivial subspace trails:

• U = {0}, V = {0}

• pick any U ⊆ Fn2 , V = Fn2

Besides these, if U F→ V , then for all U ′ ⊆ U and V ′ ⊇ V we have U ′ F→ V ′. The intuition
here is that decreasing U will never result in a bigger V and increasing V does of course
also not change the possible output differences in the trail. This leads to the following
definition.

Definition 7 (Essential Subspace Trail). Let F : Fn2 → Fm2 and U ⊆ Fn2 , V ⊆ Fm2 . If
U

F→ V forms a subspace trail, i. e. F (U + a) ⊆ V + b, and if for all subspaces U ′ and V ′

of Fn2 the two properties (2) and (3) hold, we call U F→ V an essential subspace trail:

∀U ′ ⊃ U : U ′ F9 V (2)

∀V ′ ⊂ V : U F9 V ′ (3)

The two properties above ensure that we cannot increase U , nor decrease V without
destroying the subspace trail property. Essential subspace trails are clearly the most
interesting ones from an attacker perspective. Another important observation is the
following.

Corollary 1. Let U1
F→ U2 be a subspace trail through F and V1 ⊆ U1 a subspace contained

in U1. Then there exists a subspace V2 ⊆ U2, s. t. V1
F→ V2 is also a subspace trail:

U1
F−→ U2

⊆ ⊆

V1
F−→ V2

(4)

In other words, it is actually enough to consider one dimensional starting subspaces
only, when trying to identify the longest possible subspace trail. That is, the effect of
reducing the initial dimension of the starting subspace can only cause longer subspace
trails, not shorter ones. Thus when we are using this to bound the subspace trail lengths
we are potentially only overestimating the length. However, as even in this case the number
of starting spaces to consider grows exponentially with the block size, this is still clearly
unfeasible for most common block sizes.

We next elaborate on the relation between subspace trails and truncated differentials
with probability one.

2.3 Truncated Differentials
Truncated differentials were introduced in [Knu95]. The notation was later generalized
to subspaces of differences in [BLN15; BLN16]. Following this line, we define truncated
differentials as affine spaces of differences.
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Definition 8 (Truncated Differential). Let F : Fn2 → Fm2 . A truncated differential of
probability one is defined by a pair of affine subspaces (U ⊆ Fn2 , s ∈ Fn2 ), and (V ⊆ Fm2 , t ∈
Fm2 ), for which

∀α ∈ U : ∀x ∈ Fn2 : F (x) + F (x+ α+ s) ∈ V + t.

We write U + s
F7→ V + t.2

To extend the notation over several iterated rounds of F , we call an r + 1-tuple of
affine subspaces (U1 + s1, . . . , Ur+1 + sr+1) a truncated differential trail (over r rounds), if

Ui + si
F7→ Ui+1 + si+1 ∀i ∈ {1, . . . , r + 1}.

Note that this definition can be generalized for subsets. For example, any impossible
differential where an input difference a does not lead to an output difference b can be seen as
a truncated differential with probability one as {0}+ a 7→ Fm2 \ {b}+ 0. However, omitting
the structure (affine) subspaces provide makes it much harder to handle differentials
algorithmically and we thus stick to the notation using affine subspaces. Additionally the
above definition is typically extended to truncated differentials that do not hold for every
x but instead with some high probability. We do not cover truncated differentials with
probability smaller than one, as we only consider subspace trails that hold with probability
one.

The following lemma is the key observation that links subspace trails to truncated
differentials.

Lemma 1. Given U F→ V . Then

∀u ∈ U : Im(∆u(F )) ⊆ V.

Moreover, for any subspace U ⊂ Fn2 it holds that

U
F→ span

(⋃
u∈U

Im(∆u(F ))
)

Proof. Let u ∈ U . Because U F→ V is a subspace trail for F , for any x ∈ Fn2 : both, x and
x+ u, are in a coset U + x of U . Due to the subspace trail, they get mapped to a coset of
V : F (x), F (x+ u) ∈ V + b. Therefore their sum is again in V : F (x) + F (x+ u) ∈ V .

Lemma 1 also confirms the intuition that subspace trail attacks and truncated differen-
tials with probability one are closely related. Grassi et al. [GRR16] already discussed this,
but we want to state this explicitly:

Corollary 2 (Link between Subspace Trails and Truncated Differentials). Given U F→ V .
Then U and V determine a truncated differential with linear subspaces that holds with
probability one: U + 0 F7→ V + 0.

Thus, while subspace trails are included in truncated differentials (as linear subspaces
are a special case of affine subspaces), the converse is not true in general. In other words,
using truncated differentials we obtain a bit more information on the actual structure of
the investigated function. This is depicted in the following example.

2This notation is similar to the one for subspace trails on purpose. As we stick to subspace trails in the
following sections, it is only needed here, anyway.
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Example 1. We choose a single Present S-box, see [Bog+07], as F and compute the
subspace trail, resp. truncated differential, in terms of linear and affine subspaces for the
starting difference 0x1:

{0x0, 0x1} F→ {0x0, 0x3, 0x4, 0x7, 0x9, 0xa, 0xd, 0xe}

{0x0}+ 0x1 F7→ {0x0, 0x4, 0xa, 0xe}+ 0x9

The affine subspaces we obtain are one dimension smaller than the linear subspaces.

Therefore truncated differentials are rather a generalization of subspace trails than vice
versa. For the remainder of this work, we focus on the search for subspace trails.

2.4 Computing A Trail for a Given Input Difference
A starting point for finding subspace trails is: Given an initial subspace, how to compute
the resulting trail? One approach is based on Lemma 1. In order to compute V , we have to
compute the images of the derivatives of F in direction U . To speed this up, we can exploit
two facts. First, when choosing x ∈R Fn2 , assuming a random behavior, it is sufficient to
take slightly more than n many x to compute the subspace spanned by the image. Second,
we do not need to compute the image of every element in U ; instead it is enough to take a
basis of U , see the following lemma.

Lemma 2. Given U ⊆ Fn2 and a basis b1, . . . , bk of U , then

span
(⋃
u∈U

Im(∆u(F ))
)

= span

 ⋃
1≤i≤k

Im(∆bi(F ))

.
Proof. It is clear that the set on the right side is a subset of the set on the left side of the
equation. Thus, we are left with showing that the left side is a subset of the right side.
Moreover, as we consider the linear span on both sides, it suffices to show that any

v ∈
⋃
u∈U

Im(∆u(F ))

is contained in

span

 ⋃
1≤i≤k

Im(∆bi
(F ))

.
We will prove this by induction over the dimension of U . The case dim(U) = 1 is

trivial. Now assume that the statement is correct for any U ′ of dimension smaller than k.
We consider

v ∈ Im(∆u(F ))
for u ∈ U . That is, there exist an element x ∈ Fn2 such that

v = ∆u(F )(x) = F (x) + F (x+ u).

As the bi form a basis of U , we can express u as a linear combination of the bi, that is

u =
k∑
i=1

λibi

for suitable λi ∈ F2. Thus

v = F (x) + F (x+
k∑
i=1

λibi).
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By defining x′ = x+ λkbk we get

v = F (x) + F (x+
k∑
i=1

λibi)

= F (x′ + λkbk) + F (x′ +
k−1∑
i=1

λibi)

= F (x′ + λkbk) + F (x′) + F (x′) + F (x′ +
k−1∑
i=1

λibi)

= λk∆bk
(F )(x′) + λ′∆u′(F )(x′)

where

λ′ =
k−1∨
i=1

λi, u′ =
k−1∑
i=1

λibi.

Thus
v ∈ span(Im(∆b1(F )) ∪ Im(∆u′(F ))),

and the lemma follows by induction as u′ is contained in a (k − 1) dimensional subspace

U ′ = span({b1, . . . , bk−1})

Assembling the above observations, we get the recursive Algorithm 1 to compute the
optimal subspace trail for a given starting subspace U .

Algorithm 1 Compute subspace trails
Precondition: A nonlinear, bijective function F : Fn2 → Fn2 and a subspace U .

1 function Compute Trail(F , U)
2 if dim(U) = n then
3 return the list [U ]
4 V ← ∅
5 for ui basis vectors of U do
6 for enough x ∈R Fn2 do
7 V ← V ∪∆ui

(F )(x)
8 V ← span(V )
9 return the list [U ] + Compute Trail(F, V )

Note that in the case where F has algebraic degree two, its derivative ∆ui
(F ) is linear

in all possible directions ui and thus we can compute V in Algorithm 1 deterministically.
For the sake of simplicity, we leave out this optimization.

In Lines 6 and 7 we are sampling random elements of the subspace V . To get the full
subspace we are looking for, when computing the span, we have to test enough random x.
Assuming V is a random subspace of Fn2 and upper bounding its dimension by n, we are
interested in the probability that m random vectors of length n form a matrix with full
rank n. The probability for the ith vector to be linearly independent of the previous i− 1
vectors is 1− 2i−1−m. Thus the probability for all m vectors to be linearly independent is∏n−1
i=0 (1− 2i−m). This is also known as (2−m; 2)n, the 2-Pochhammer symbol or 2-shifted

factorial. Computing (2−m; 2)n shows that it is “enough” to sample e. g. m = n + 100
random x to compute the full subspace V with overwhelming probability.3

3With m = n + 100 we obtain an error probability of 2−100, and m = n + 20 results in roughly 2−20.
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Unfortunately this still does not reduce the number of possible starting differences.
Thus let us now take a more detailed look at the parts of an SPN. The influence of the
linear layer on subspace trails is straightforward.

Proposition 1 (Subspace trails through linear layers). Let L : Fn2 → Fn2 be a bijective
linear function. Then every U ⊆ Fn2 defines a subspace trail of the form U

L−→ L(U). U
and L(U) have the same dimension. Moreover, any essential subspace trail for L is of this
form.

Proof. Recall that for a subspace trail U L−→ V it holds that

V ⊇
⋃
u∈U

Im(∆u(L)).

For any bijective linear function

Im(∆u(L)) = {L(x) + L(x+ u)} = {L(x) + L(x) + L(u)} = {L(u)}.

As L is bijective, for any pairwise different u1, u2 ∈ U , L(u1) and L(u2) are also different.
Thus, V = L(U) and dim(U) = dim(V ).

The S-box layer exhibits a more interesting behavior. Here, we need to distinguish
between S-boxes without non-trivial linear structures and ones with linear structures. The
first case is covered in Section 4, the second in Section 5.

Before we study the S-box layer, we will next motivate why the problem of finding the
best subspace trail is not as easy as it might seem.

3 Activating Only Single S-boxes
As mentioned in the introduction, one common heuristic used in finding long truncated
differentials, is to activate only a single S-box in the input difference. Due to the close
relation of truncated differentials and subspace trails discussed above it seems natural to
use the same heuristic for the latter. Intuitively it may seem that using starting spaces U
that contain non-zero values only for a single S-box performs the best.

In this section we argue that this is not always the best approach. This is done by
considering two examples. The first one is a toy example based on the Present S-box,
while the second one is the cryptographic permutation Keccak-f.

Example 2. We choose again the Present S-box, F : F4
2 → F4

2, and a block size of
16 bits, so the S-box layer applies four S-boxes in parallel, F 4 : F16

2 → F16
2 . The round

function R : F16
2 → F16

2 is then R(x) := L · F 4(x), where as the linear layer L we choose

L = L′ ·B−1 =



0 0 0 1 1 0 1 0 0 0 0 1 1 0 1 0
1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1
0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1
0 0 0 1 1 0 1 1 1 0 1 0 0 0 0 0
1 0 1 0 0 0 0 1 1 0 1 1 1 0 1 1
0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 1 1 0 1 0 1 0 1 0
0 0 1 1 1 0 1 1 0 0 0 0 1 0 1 0
1 1 1 0 0 0 0 0 1 0 1 1 0 0 0 1
1 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0
1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0
1 0 1 1 1 0 1 1 0 1 0 0 1 0 1 1
0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0
1 0 1 1 0 0 0 0 0 0 0 1 1 1 1 0
0 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0
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with

L′ =



0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1
1 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1
0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0
0 0 1 0 0 0 0 0 0 1 1 1 1 1 0 0
0 0 0 1 0 0 0 0 0 0 1 1 0 1 1 0
0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 1
0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0
0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0


, B =



1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0
0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 1
1 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1
0 0 1 0 0 0 0 0 1 1 0 1 0 1 0 0
0 0 0 1 0 0 0 0 0 1 0 1 1 1 0 0
0 0 1 0 0 0 0 0 0 1 0 1 1 0 0 0
0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0
0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1
0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 1
0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 1
0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 1
0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0
0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0


.

Let us first observe which subspace trails this round function exhibits. Almost all
subspace trails starting with only one active S-box are of the form

dim = 1→ dim = 4→ dim = 16.

Thus reaching the full dimension after two rounds. In contrast to this, the subspace
trail with a 0x1 difference on every S-box input, more precisely the starting subspace
is {0x0000, 0x1111} – which is one dimensional but activates all four S-boxes in the
beginning, has the following form:

0x1111 : dim = 1→ dim = 9→ dim = 11→ dim = 16, (5)

effectively lasting for a full additional round. This is of course due to the special structure
of the linear layer. The left part of the chosen basis B consists of exactly the vectors
spanning the space of dimension nine after the first round. In combination with the given
L′, all these vectors are then mapped to only activating the rightmost three S-boxes (with
a 0x1 difference on the third S-box), leaving the last S-box passive.

Still, there are four subspace trails, with only one active S-box, that also reach three
rounds:

0x1000 : dim = 1→ dim = 3→ dim = 14→ dim = 16
0x0001 : dim = 1→ dim = 3→ dim = 15→ dim = 16
0x0f00 : dim = 1→ dim = 3→ dim = 14→ dim = 16
0x000f : dim = 1→ dim = 3→ dim = 15→ dim = 16

But note that all these subspace trails are worse, as the last dimension, before reaching
the full dimension, is higher than eleven. In this example it is thus not the best choice,
to activate only one S-box. Also note that the resulting linear layer L looks sufficiently
random, s. t. its hidden structure might be hard to find. Of course it is very unlikely
that such an effect occurs, when the design of the linear layer follows e. g. the wide trail
strategy [DR02a].

Example 3. A real-world example of the above observation is the SHA-3 hash function,
more precisely Keccak-f [Ber+11; ST15]. Starting with any subspace trail of dimension
one that has only one active S-box gives us a three round trail with final dimension 1139
in the best case. But instead starting with an other one dimensional subspace trail with
two active S-boxes results in a different three round trail that has dimension 949 – a huge
reduction compared to the initial trail. The exact dimensions are the following:

1× 0x4 : dim = 1→ dim = 3→ dim = 65→ dim = 1139→ dim = 1600
2× 0x4 : dim = 1→ dim = 5→ dim = 49→ dim = 949→ dim = 1600

The big advantage of looking only at possible input spaces with one active S-box is
the huge reduction in starting points we need to analyse. But as we have just seen, we
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cannot rely on these special inputs, when we want to prove the absence of subspace trails.
While we can argue with Corollary 1 that it is enough to look at trails starting with a one
dimensional subspace, we are still facing the problem to cope with exponentially many
possible subspace trails. In the next sections, we develop arguments and algorithms to
again reduce this complexity.

4 S-box layers without Linear Structures
The distinction of S-boxes based on their linear structures is based on the following lemma
that explains the link. Recall that Lu(F ) is defined as the set of all α such that

〈α,∆u(F )(x)〉 = c ∀x ∈ Fn2
Let us start by considering a single S-box F : Fn2 → Fn2 only.

Lemma 3. Given an essential subspace trail U F→ V . Then V ⊥ =
⋂
u∈U

Lu(F ).

Proof. According to Lemma 1 it holds that

∀x ∈ Fn2 ∀u ∈ U : ∆u(F )(x) ∈ V

Now, for an arbitrary element α ∈ V ⊥ this implies that

∀x ∈ Fn2 ∀u ∈ U : 〈α,∆u(F )(x)〉 = 0.

Thus
V ⊥ =

⋂
u∈U

Lu(F )

and, as the trail is essential, the statement follows.

In particular we have Corollary 3 as a direct consequence.

Corollary 3. If F has no non-trivial linear structure, then there are only two essential
subspace trails: {0} → {0} and Fn2 → Fn2 .

The most important observation is that, in the case of F without linear structures, a
similar observation holds for the entire S-box layer consisting of k parallel S-boxes. Namely,
in this case any essential subspace trail is the direct product of subspace trails of the single
S-box. This implies with the Corollary 3 that any essential subspace trail through an S-box
layer can simply be characterized by active and passive S-boxes. The following proposition
covers exactly this.

Proposition 2 (Subspace trails through S-box layers). Let F k be an S-box layer, and
U

Fk

→ V an essential subspace trail. If F has no non-trivial linear structures, then

U = V = U1 × · · · × Uk

where for 1 ≤ i ≤ k it holds that Ui ∈ {{0},Fn2}.

Proof. Let U Fk

→ V be essential. Then the following holds ∀α = (α1, . . . , αk) ∈ V ⊥:

〈
α,∆u

(
F k
)
(x)
〉

=
〈α1

...
αk

 ,

∆u1(F )(x1)
...

∆uk
(F )(xk)

〉

=
k∑
i=1
〈αi,∆ui

(F )(xi)〉 = 0 (∀xi ∈ Fn2 )
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Thus every term 〈αi,∆ui
(F )(xi)〉 is constant. As F has no non-trivial linear structures,

this implies that either αi or ui is zero. But then, in both cases, if one of the two is zero,
the other can take any value and still has to be in the corresponding subspace, because
the trail is, by assumption, essential.

It is important to note that not only Corollary 3 does not hold for F with linear
structures, but more fundamentally (and maybe counterintuitively) the statement that
any essential subspace trail is a direct product of subspace trails of the single S-box does
not hold in the case of F with linear structures. A particular case of this is given by the
subspace trail in Example 2 (see Eq. (5)). We come back to this case in Section 5.

Let us give a specific notation for the particular structure of the above subspaces. If
U = U1 × · · · × Uk with Ui ∈ {{0},Fn2}, we write U = {{0},Fn2}

u iff Ui = Fn2 ⇔ ui = 1
where ui is the ith bit of the binary depiction of u.

Now a direct consequence of the proposition is the following corollary.

Corollary 4. If F has no non-trivial linear structures, there are only 2k possible U ∈
{{0},Fn2}

k, s. t. ∃V ⊆ (Fn2 )k : U Fk

→ V is essential.

In other words, and we would like to stress this, an S-box without non-trivial linear
structures behaves like any generic S-box. Particularly the only important property of
such an S-box layer is, if the S-box is “activated” or not. As, e. g. the Aes S-box does
not have any linear structures (and neither does its inverse has any), this means that we
cannot improve subspace trail attacks given in [GRR17] by taking details of the S-box into
account.

With the above we can construct Algorithm 2 to compute a list of all one round
subspace trails. This list is enough to construct all possible subspace trails. To iterate the
rounds we just have to look up the next subspace in it. After reaching a subspace with
full dimension, the actual trail cannot be iterated further.

Algorithm 2 No Non-Trivial Linear Structures
Precondition: A linear layer matrix M : Fn·k×n·k2 .

1 function One Round Subspace Trails(M)
2 empty list L
3 for possible initial subspaces represented by u ∈ {0, 1}k do
4 U = {{0},Fn2}

u

5 U ′ = {M · ui | ui basis vectors of U}
6 V = (V1, . . . , Vk) = {{0},Fn2}

v, s. t.

7 Vi =
{
{0} if U ′i = {0}
Fn2 else

resp. vi =
{

0 if U ′i = {0}
1 else

8 append (u, v) to L
9 return L

Results
Besides the normal round function, we also have to take the inverse into account, as an
S-box and its inverse do not necessarily have the same linear structures. It may even be the
case that an S-box has no non-trivial linear structures, while its inverse has some. Examples
for such S-boxes are the ones from Safer [Mas94], SC2000 [Shi+02], and Fides [Bil+13].
Moreover, the inverse of the linear layer might be weaker than the linear layer itself.

Perrin [Per17] collected a list of S-boxes used or discussed in the literature. From
this list of over 200 S-boxes, we filtered those designs that are generic SPNs and applied
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Table 1: Lengths of the longest subspace trails in various SPN ciphers with S-boxes that
do not have any non-trivial linear structures. re denotes the number of encryption rounds
covered, rd the number of decryption rounds, and d the final dimension.

Algorithm 2
Cipher re d rd d

Aes [DR02b] 2 32 2 32
Anubis [BR] 2 104 —† —†

Klein [GNL11] 3 60 2 32
Kuznyechik [GOST15] 1 8 1 8
Prince [Bor+12] 2 16 2 16
Qarma [Ava17]* 2 36 2 36
* Qarma comes with three S-boxes, two of
these do not exhibit linear structures. The
given results are thus for Qarma instantiated
with either σ1, or σ2.
† Anubis uses involutional operations, so we
only give the encryption trails.

Algorithm 2 to them, if the corresponding S-box has no non-trivial linear structures. The
resulting lengths of the longest subspace trails are listed in Table 1. To the best of our
knowlegde, all these trails are not better than what is already known in the literature.

Note that this algorithm works for any generic S-box that has no non-trivial linear
structures. Regarding its runtime, there are 2k possible initial subspaces. For each we have
to compute the corresponding output subspace, which boils down to a matrix multiplication
with every basis vector of the input subspace. Altogether this results in an overall runtime
that is exponential in the number of S-boxes and linear in the dimension of the linear layer.
A non-optimized c implementation takes seconds to finish the computations for the tested
ciphers on a single cpu core of a standard laptop.

From a designers perspective this maintains the ability to independently choose the
linear and S-box layer, with respect to subspace trails. Nevertheless, we might not want to
use such a decoupled design approach, e. g. in the design process of lightweight cryptography,
we often aim for vigorous optimized designs. During such an optimization process, we might
decide to trade strong security properties for more efficient parts by carefully matching the
components of the whole design. A recent proposal, which does exactly this, is [Ban+17].

Thus we also have to cover the other case, involving S-boxes with non-trivial linear
structures.

5 S-box layers with Linear Structures
As mentioned above, the core observation in the case of an S-box layer with an S-box
without linear structures is that any essential subspace trail is the direct product of
subspace trails for the single S-boxes. Unfortunately, this does not hold when moving to
S-boxes that actually do have linear structures. An example of this has been presented in
Section 4.

However, without a significant reduction of the possible starting subspaces that have
to be considered, we do not have the possibility to guarantee the non-existence of long
subspace trails. To overcome this problem, we move from considering the input subspace
to the first S-box layer to the output subspace of the first S-box layer. The key point
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U1
S−→ U ′1

L−→ U2
S−→ · · · L−→ Uk

⊆

W1 = {W} L−→ W2
S−→ · · · L−→ Wl

Figure 2: How Corollary 1 is used to upper bound the length of subspace trails.

is that even though we cannot restrict the input subspaces in a meaningful way, we can
actually do so for the output subspaces. Namely, we will show below that the output space
of the first S-box layer always contains a subspace that (again) activates only one S-box.
Figure 2 depicts this approach.

More precisely, as it is too expensive to check the trail length of every possible U1,
we look at the output spaces U ′1 after the first S-box layer. Applying Corollary 1 results
still in a subspace trail starting from W1 ⊆ U ′1, and we additionally restrict ourselves to
one dimensional W1. Eventually, we use the length l of the subspace trail W1 → Wl to
provably bound the length k of the longest subspace trail. Note that it stays uncertain at
this point if any of those trails can actually be extended backwards through the first S-box
layer, thus k = l if the trail cannot be backward extended, or k = l + 1 else. However,
using this approach we are able to provably bound the longest subspace trail. Moreover
our bound is either tight or off by at most one round.

The remaining problems are: What is the problem with backward extension? Why
does the length of W1 →Wl actually gives a meaningful bound on the longest subspace
trail? And third, we have to find a (small) set W of all possible W1, s. t. every possible U1
contains at least one element from it after the first S-box layer.

Backward extension Admittedly it is easy, given any W1, to find an U1, s. t. U1 is
a starting point for a subspace trail that contains W1 after the S-box layer. But the
real problem is that we want to backward extend W1 in such a way that both trails
continue with the same dimensions. This can either happen if U1 →W1 is essential and
dim(U1) = dim(W1) = 1, but then U1 would be a probability one differential characteristic
for the S-box layer, or if W1 →W2 is not essential. In the latter case, it is not clear how
to extend W1 backwards, as we are missing the information what else U ′1 contains and is
missing in W1 to make the trail essential.

Bounding the length Assume the longest subspace trail starting from an element in W
covers l rounds. From Fig. 2 it is clear that l ≥ k, and we can either backward extend W1
or we cannot. If l = k and backward extension is possible, our bound l is off by one round
compared to the actual longest subspace trail. On the other side, if we cannot backward
extend the trail, our bound is tight. If l > k (this is possible, because W1 is a subset of U ′1
and thus might cover more rounds), we effectively found a longer trail, we can directly use
this as the longest subspace trail, and our bound is tight.

The set W For W, we look at all possible ways to activate one S-box after the first S-box
layer. As the choices for activating one S-box are very limited and typically the number
of S-boxes is small compared to the overall block size, W is also small compared to all
possible starting points. Thus we need to show that W is an appropriate set in the sense of
our above requirement – that is, for every possible U1 there is one element W , s. t. W ∈ U ′1
after the first S-box layer. Before stating the main proposition, we need the following
lemma.
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Lemma 4. Let F be an S-box with differential uniformity δF < 2n, i. e. for all α, β ∈ Fn2 ,
the cardinality of {x ∈ Fn2 | F (x) + F (x+ α) = β} is smaller than 2n. Then

∀u ∈ Fn2 \ {0} : Lu(F ) 6= Fn2 .

Proof. Assume δF < 2n and there is an u, s. t. Lu(F ) = Fn2 . Let {ei} be the canonical
basis for Lu(F ). For every ei the following holds:

〈ei,∆u(F )(x)〉 = cei ∀x ∈ Fn2 , cei ∈ F2

But then the differential characteristic u = (u1, . . . , un) to v = (ce1 , . . . , cen
) holds with

probability one and thus δF = 2n, which is a contradiction.

We construct the set W of subspaces as follows:

W :=
{
Wi,α := {0}i−1 × {0, α} × {0}k−i

∣∣∣ α ∈ Fn2 , 1 ≤ i ≤ k
}
.

The following proposition shows that any output subspace after the S-box layer actually
has to contain at least one element W ∈W.

Proposition 3. Let F : Fn2 → Fn2 be an S-box with differential uniformity δF < 2n, and
U

Fk

→ V a non-trivial subspace trail. Then there exists a W ∈W such that

W ⊆ V

Proof. As U is non-trivial, it contains at least one non-zero element u = (u1, . . . , uk). For
an arbitrary element β ∈ V ⊥ and all x ∈ Fn2 we get

〈β,∆u(F )(x)〉 = 0

which implies that β ∈ L0
u(F k) and thus

V ⊥ ⊆ L0
u(F k)

Furthermore,
L0
u(F k) ⊆ Lu1(F )× Lu2(F )× · · · × Luk

(F ).

As u is non-zero, at least one of its components ui is non-zero. According to Lemma 4,
Lui(F ) 6= Fn2 , which implies that there exists an α ∈ Fn2 such that

Lui
⊆ {0, α}⊥

Putting things together we conclude that

V ⊥ ⊆ L0
u(F k) ⊆ (Fn2 )i−1 × {0, α}⊥ × (Fn2 )k−i.

By looking at the orthogonal complement of both sides we finally get(
(Fn2 )i−1 × {0, α}⊥ × (Fn2 )k−i

)⊥
= {0}i−1 × {0, α} × {0}k−i ⊆ V,

which concludes the proof.

We can now build Algorithm 3, which simply applies the algorithm in Section 2.4
to every element in W to complete the corresponding trail. Because |W| is small and
Algorithm 1 is efficient, this will allow us to compute the longest subspace trail that starts
after the first layer of S-boxes, and its trail bounds the longest possible subspace trail.
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Algorithm 3 Generic Subspace Trail Search
Precondition: A linear layer matrix M : Fn·k×n·k2 , and an S-box F : Fn2 → Fn2 .

1 function Generic Subspace Trail Length(M , F )
2 empty list L
3 for possible initial subspaces represented by Wi,α ∈W do
4 L.append(Compute Trail(F k ◦M, ({0},Wi,α)))
5 return max {len(t) | t ∈ L}

Table 2: Lengths of the longest subspace trails in various SPN ciphers with 1-linear
structures. re denotes the number of rounds covered for encryption, rd the number of
rounds covered for decryption, and d the final dimension.
Algorithms 2 and 3 are compared, where the algorithm taking the influence of linear
structures into account (Algorithm 3) finds better results, that is longer trails and/or lower
dimensions.

Algorithm 3 Algorithm 2
Cipher re d rd d re d rd d

Ascon [Dob+16] 3 298 1 125 3 310 1 155
Gift [Ban+17] 3 60 3 60 2 16 2 16
Keccak [Ber+11] 2 546 1 169 2 1290 1 270
Present [Bog+07] 3 43 3 63 2 16 2 16
Pride [Alb+14] 2 31 2 34 2 56 1 40
Qarma [Ava17]* 2 36 2 36 2 36 2 36
Serpent [BAK98] 2 88 2 62 2 100 2 68
Skinny64 [Bei+16] 5 48 5 48 4 48 4 48
Skinny128 [Bei+16] 5 96 5 96 5 96 5 96
* The given results are for Qarma instantiated with σ0.

Results
We again filtered the list of S-boxes by Perrin [Per17] for SPN constructions and S-boxes
that exhibit 1-linear structures. The runtime of Algorithm 3 is similar to the one of
the previous algorithm. Here, we have to compute trails for |W| = k · 2n many initial
subspaces. Computing trails for a given U0 is dominated by Gaussian eliminations for the
basis reductions of the corresponding subspaces. Thus, the runtime mainly depends on
the block size, length of trails and number and size of the S-box. Although our reference c
implementation has room for optimizations, it takes only a few seconds to find the trails
of 64-bit block ciphers and a few minutes to find the trails of 128-bit block ciphers using a
single cpu core on a standard laptop.

In Table 2, we upper bound the length of subspace trails for several SPN ciphers. To
the best of our knowledge, no subspace trails for any of these ciphers is known in the
literature at the time of writing. We give the resulting trail lengths of Algorithm 3 with
the corresponding dimensions of the final subspace. Note that for a subspace trail of length
r the actual upper bound is r + 1. But as already mentioned above, we might be able to
backward extend the trail for one more round.

One example, where exactly this happens, is Skinny128. The best impossible differ-
ential known is given in [Bei+16, Section 4.3] and exploits a six round differential in the
encryption direction that misses another five round differential in decryption direction.
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Algorithm 3 finds a five round subspace trail, thus in this case the known differential
reaches the 5 + 1 bound.

As a comparison to Algorithm 2, we also give the resulting longest subspace trails for
the case of an S-box without linear structures in the second part of Table 2. Here again
Skinny64 is a nice example, because it highlights the influence of the linear structures in
its S-box. The bound of four rounds by Algorithm 2 is too low compared to the actual
best trail.

6 Open Problems
We presented efficient algorithms to identify (or bound the length of) subspace trails for
any SPN. We like to mention some interesting possibilities for future research.

There are basically two directions to generalize our results. First, it would be interesting
to not only focus on SPN ciphers but also cover Feistel structures. A technically related
problem to the generalization is the following: For a subspace trail U Fk

−→ V the joint space
of inputs and outputs U×V ⊆ F2n

2 is (obviously) a direct product of subspaces. A question
that appears when studying Feistel structures, is if there exists a meaningful generalization
where one considers more general subspaces of F2n

2 for the joint input and output spaces.
An answer to this question could not only be useful for the case of Feistel ciphers, but
be of independent interest as well. However, although our results for SPN ciphers do not
directly apply to Feistel ciphers, our algorithms can be used to obtain probability one
subspace trails for them. We observe that the longest subspace trails our algorithms can
find are compatible with the longest probability one truncated differentials that are used
in the literature for obtaining impossible differentials via the miss-in-the-middle technique.
Moreover, since we take into account the S-box properties and we focus on the dimensions
instead of non-indeterminate bit differences, the dimensions we find are most of the time
better than the ones used in the literature. These reductions in the dimensions can provide
more freedom to the attacker and may lead to better attacks. We provide the longest
subspace trails that our search algorithms find in Table 3.

To obtain our results, we search for the longest subspace trail starting with a single
active S-box only. For ciphers like Simon that do not use an S-box, we consider differences
in one word only. Although we obtain a 13-round subspace trail for Skipjack, we cannot
use it to extend the 24-round impossible differential of [BBS05; BBS99a] to 25 or 26 rounds,
because Skipjack does not use identical round functions for all rounds. The limitations of
our algorithms should also be considered when constructing impossible differentials using
probability one subspace trails:

• A subspace trail with full dimension may still be useful for constructing impossible
differentials via the miss-in-the-middle technique. Even if it reaches full dimension,
it may still contain exploitable information like, e. g., an S-box output difference
being nonzero.

• Unlike SPN, for Feistel ciphers it may be possible to obtain (re + rd + 1)-round
impossible differentials (instead of re + rd) by using properties of the round function.

• This direct application of our search algorithms to Feistel ciphers of course do not
prove the resistance against subspace trail attacks.

The second way to generalize our results is to consider truncated differential trails with
probability one instead of subspace trails. As mentioned in Section 2, the only difference is
that one moves from subspaces to affine subspaces. Indeed, in the case of S-boxes without
linear structures, our results are directly applicable to truncated differential trails as well.
However, in the case of S-boxes with linear structures, the situation is quite different. Here,
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Table 3: Lengths of the longest truncated differentials used in the best known impossible
differentials in various Feistel ciphers. r denotes the number of rounds covered by the
differential, and d the dimension at the miss-in-the-middle-point. Our results are obtained
via subspace trails.

Literature Our Results
Cipher r d Source r d

Camellia 4 128† [BL12] 4 105
Clefia 5 128† [Tsu+08] 5 112
Lblock 7 —‡ [WZ11] 7 58
Piccolo 4 64† [WW12] 3 48
Simon32/64 6 29 [DF16] 6 30*

Simon64/128 8 —‡ [BNS14] 8 62
Simon128/256 12 —‡ [BNS14] 12 126
Skipjack 12 48 [BBS05; BBS99a] 13 48
* Moving to affine subspaces reduces this dimension to 29. Thus,
this is an another example to show the differences between sub-
space trails and truncated differentials.
† The contradiction for the miss-in-the-middle is caused by exploit-
ing special properties of the round function.
‡ The truncated differential is not explicitly given in the literature,
so we do not know its exact dimension.

the main task is to find a suitable reduction in the possible offsets of the affine spaces used,
which seems non-trivial.

Finally, we like to mention that invariant subspaces (see e. g. [LMR15]) behave very
differently, even though the names might suggest the opposite. Let F : Fn2 → Fn2 . A
subspace U ⊆ Fn2 is called invariant with respect to F , if

∃a, b : F (U + a) = U + b

The important difference here is that invariant subspaces are defined for one coset U + a
being mapped to one other coset U + b. In contrast, for a subspace trail all cosets of U
have to be mapped to cosets of V .

It is actually not trivial to understand the possible invariant subspaces of an S-box
layer, even in the case of an S-box without linear structures (see [LR17] for interesting
partial results along those lines). In particular, it is not the case that an invariant subspace
for an S-box layer is always the direct product of invariant subspaces of the single S-boxes.
An easy counterexample is the following: Consider two parallel application of an S-box. If
the two inputs are identical, so are the outputs. That is, the space

U = {x, x}

is an invariant subspace for any S-box and is clearly not a direct product. Hence, an
efficient classification of all invariant subspaces for an S-box layer is a non-trivial but
interesting open problem as well.
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A Sage code

1 def to_n_bits (n, x):
2 return Integer (x). digits (base =2, padto=n)[:: -1]

1 def derivative (f, u):
2 return lambda x: f(x) + f(x + u)

1 def active_sboxes_to_subspace (bits , n):
2 """
3 Return a subspace of dimension n*k, corresponding
4 to full spaces of dim. n where index in bits is one
5 and to zero spaces of dim. n where the corresponding
6 index is zero and k = len(bits ).
7 """
8 vs = VectorSpace (GF(2), n)
9 zero_space = vs. subspace ([])

10 full_space = vs. subspace ( identity_matrix (n))
11 ls = [ zero_space if i == 0 else full_space
12 for i in bits]
13 return reduce ( lambda a, b: a. direct_sum (b), ls)

1 def compute_trail (f, U, n):
2 """
3 Return the subspace trail from U onwards
4

5 INPUT:
6 - ‘‘f‘‘ -- function ; map from GF (2)^n to GF (2)^n
7 - ‘‘U‘‘ -- subspace ; defining the starting point
8 - ‘‘n‘‘ -- integer ; dimension of the vector space
9 """

10 if U. dimension () == n:
11 return [U]
12

13 vs = VectorSpace (GF(2), n)
14 V = []
15 for _ in range(int (1.5*n)):
16 V += [ derivative (f, u)(vs. random_element ())
17 for u in U.basis () + [vs.zero ()]]
18 V = vs. subspace (V)
19

20 return [U] + compute_trail (f, V, n)

1 def one_round_trails ( linear_layer , k):
2 """
3 Return a list of subspace pairs (U, V), st U and V
4 form a subspace trail through k parallel applications
5 of an Sbox without linear structures followed by the
6 given linear layer
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7

8 INPUT:
9 - ‘‘linear_layer ‘‘ -- matrix ; a n*k ‘times ‘ n*k

10 matrix over GF (2)
11 - ‘‘k‘‘ -- integer ; the number of parallel SBoxes
12 """
13 n = Integer ( linear_layer .ncols () / k)
14

15 # we have to check 2^k possible initial
16 # U = [(u_1 , u_2 , ..., u_k )], u_i \in {0, 1}
17 subspaces = {}
18 for u in range (1, 1<<k):
19 # compute U from active SBoxes
20 u_bits = Integer (u). digits (base =2, padto=k)
21 U = active_sboxes_to_subspace (u_bits , n)
22

23 # map linear layer over basis vectors
24 v_basis = [ linear_layer * bi for bi in U.basis ()]
25

26 # reduce basis to one vector that has a one entry
27 # iff at least one of the basis vectors has a one
28 # entry at the same position
29 v_bits = map( lambda bi:
30 reduce ( lambda a, b:
31 int(a) | int(b),
32 bi),
33 zip (* v_basis ))
34

35 # reduce bits to one per sbox only
36 v_bits = [1 if v_bits [i*n:(i+1)*n] != [0]*n else 0
37 for i in range(k)]
38

39 # compute V from active SBoxes
40 V = active_sboxes_to_subspace (v_bits , n)
41 subspaces [U] = V
42 return subspaces

1 def algorithm3 (f, k, n):
2 """
3 Return the set of all subspace trails containing W_{i,alpha}
4

5 INPUT:
6 - ’’f’’ -- function ; mapping from F_2^n -> F_2^n
7 - ’’k’’ -- integer ; number of parallel S-boxes in f
8 - ’’n’’ -- integer ; dimension of one S-box
9 """

10 from itertools import product
11

12 dim = n*k
13 vs = VectorSpace (GF(2), dim)
14

15 trails = [[]]
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16 # simply generate every possible W_{i,alpha} and compute
17 # the corresponding subspace trail
18 for i, alpha in product (range (1, k+1), range (1, 1<<n)):
19 w_i_alpha = vector (GF(2),
20 [0]*(n*(k-i)) +
21 to_n_bits (n, alpha) +
22 [0]*(n*(i -1))
23 )
24 W_i_alpha = vs. subspace ([ w_i_alpha ])
25

26 trails . append ( compute_trail (f, W_i_alpha , dim ))
27

28 return trails
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