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We improve Wu and Wang’s method for finding impossible differentials of block cipher structures. This improvement is more
general than Wu andWang’s method where it can find more impossible differentials with less time. We apply it on Gen-CAST256,
Misty, Gen-Skipjack, Four-Cell, Gen-MARS, SMS4, MIBS, Camellia∗, LBlock, E2, and SNAKE block ciphers. All impossible
differentials discovered by the algorithm are the same as Wu’s method. Besides, for the 8-round MIBS block cipher, we find 4 new
impossible differentials, which are not listed in Wu and Wang’s results. The experiment results show that the improved algorithm
can not only find more impossible differentials, but also largely reduce the search time.

1. Introduction

Impossible differential cryptanalysis, introduced by Biham et
al. [1] and Knudsen [2] independently, is a special case of dif-
ferential cryptanalysis that uses differentials with probability
zero to sieve the right keys from the wrong keys. It is one of
the most powerful attacks for block ciphers and is considered
in many block cipher designs [3–10]. The best cryptanalytic
results for some block ciphers are obtained by impossible
differential cryptanalysis [1, 11]. For example, the currently
best attack on the 31-round Skipjack is still the impossible
differential cryptanalysis by Biham et al. [1].

The key step in impossible differential cryptanalysis of
a block cipher is to find the longest impossible differential.
Given two variables 𝑥1, 𝑥2 ∈ F𝑛2 , the difference of 𝑥1 and𝑥2 is usually denoted as Δ𝑥 = 𝑥1 ⊕ 𝑥2. An impossible
differential for an 𝑛-subblock block cipher is in the form(Δin󴀀󴀂󴀠𝑟Δout), where Δin = (Δ𝑥1, . . . , Δ𝑥𝑛) and Δout =(Δ𝑦1, . . . , Δ𝑦𝑛). (Δin󴀀󴀂󴀠𝑟Δout) means the probability of the
output difference is Δout after 𝑟 rounds of a block cipher for
an input difference Δin is zero. At the first glance, impossible
differentials are obtained manually by observing the block
cipher structure. However, since the emergence of impossible

differential cryptanalysis, automated techniques for finding
impossible differentials have been introduced.

The first automated technique is called the Shrinking

method introduced by Biham et al. [1].This method is simple
but very useful. It only considers truncated differentials
whose differences distinguish only between zero and arbi-
trary nonzero difference. Given a block cipher, the adversary
first designs a mini version of this block cipher, which scales
down the block cipher but preserves the global structure.
Then the adversary exhaustively searches for this mini cipher
and obtains some truncated impossible differentials. Usually
these truncated impossible differentials of the mini cipher
remain impossible differentials in the normal version. This
method can deal with most block ciphers in the real world.
However, it becomes very slow if the number of subblocks of
a block cipher is as large as 16, since exhaustive search on the
mini version of this type of cipher is still a heavy load formost
computers.

The second automated technique is based on the miss in
the middle approach. This method combines two differen-
tials, one from the input and the other from the output, both
with probability 1. However, these two differentials cannot
meet in the middle since they can never be equal in the
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middle. The U method [12, 13] and the UID method [14]
both belong to this category. In the U method and the UID
method, the adversary first represents the block cipher struc-
ture as a matrix; then given a differential pair (Δin, Δout),
he calculates the 𝑚-round intermediate difference from Δin
forwardly and the (𝑟 − 𝑚)-round intermediate difference
from Δout backwardly by the matrix method. If there is a
contradiction for these two intermediate differences, then an
impossible differential (Δin󴀀󴀂󴀠𝑟Δout) is verified. Representing
a block cipher by the matrix has been a popular method
in impossible differential and integral and zero correlation
linear cryptanalysis [8, 10, 15–20].

In [21], Wu and Wang extend the U-method and UID
method to a more generalized method which does not use
themiss in themiddle approach.They treat the 𝑟-round block
cipher structure as a system of equations, which describe the
propagation behavior of differences in the inner primitives,
especially sbox permutations or branch swapping of the
block cipher structure. To judge if a truncated differential(Δin, Δout) is impossible, they predict information about
unknown variables from the known ones iteratively. Finally a
truncated differential is verified by checking the constrained
conditions in the system. This method is similar to a linear
programming method for solving optimization problems.

In [22], Sun et al. show that Wu and Wang’s automatic
searchmethod can find all impossible differentials of a cipher
that are independent of the choices of the inner primitives.
However, Wu andWang’s method can only find all truncated
impossible differentials since the choice of truncated differ-
ence may result in missing some impossible differentials.
Wu and Wang’s method only considers differences Δin =(𝑥1, . . . , 𝑥𝑛) and Δout = (𝑦1, . . . , 𝑦𝑛), where 𝑥𝑖 and 𝑦𝑖
are zero or nonzero values. They assign an indicator to
indicate the choice of 𝑥𝑖 and 𝑦𝑖, representing by 0 a subblock
without difference and by 1 a subblock with a difference. The
relationships between nonzero differences have been omitted.
For example, 𝑦𝑖 may be equal to some 𝑥𝑗, where 1 ≤ 𝑖, 𝑗 ≤ 𝑛.
If some linear constraints between nonzero variables in Δin
and Δout are needed, Wu and Wang claimed their method
could still work by translating all linear constraints into the
system of equations. However, this method increases the run
complexity and implementation of the search method. Since
it changes the equation system for every value of (Δin, Δout)
and if the relationship between Δin and Δout is complicated,
the matrix will be very large.

The idea of the UID method is that it represents the
differential with symbols and utilizes the propagation prop-
erty of the linear accumulated symbols. The idea of the
Wu-Wang method is to utilize solving linear equations to
determine an impossible differential. We show that the Wu-
Wang method can be improved by combining the idea of
the UID method and Wu-Wang method. Instead of using 1
to represent the nonzero difference, we use a letter symbol
to represent a difference and different symbols represent
different nonzero values. This method can represent more
relationships between these subblocks. For example, if Δin =(𝑎, 0, 0, 𝑎) and Δout = (𝑎, 0, 0, 𝑏) for a 4-subblock structure
where 𝑎 and 𝑏 are different nonzero values, then we have𝑥1 = 𝑥4 = 𝑦1 and 𝑦4 ̸= 𝑥1. In our method, the matrix of

the system does not need to be changed with (Δin, Δout). We
also improve theWu-Wang method by simplifying the test of
whether there are solutions for linear systems. Since the most
time consuming part is the matrix operation, our improved
method can find more impossible differentials in less time.

We implement themethod in java language and apply it to
many block cipher structures, including Gen-CAST256 [15],
Gen-Skipjack [23], Four-Cell [24], Gen-MARS [12], Gen-
RC6 [23], SMS4 [14], Misty [25], MIBS [26], Camellia∗ [27],
LBlock [28], E2 [29], and SNAKE [30] ones. For these block
ciphers, we rediscover all known impossible differentials.
Especially for the 8-round MIBS cipher, we find 4 new
impossible differentials, which are not listed in Wu and
Wang’s work. Our improvement largely reduced the run time
for finding impossible differentials. In [31], the results for
MIBS, LBlock, and E2 are obtained in a few hours on a
2.66GHz processor with MAGMA package. However, our
results for MIBS, LBlock, and E2 are obtained within 10
seconds on a 2.20GHz processor.

2. Preliminaries

In this section we introduce some basic concepts and notions
used in this paper. We first introduce the block cipher
structures. Next we review the solvability of a system of linear
equations.

2.1. Block Cipher Structures. There are mainly two block
cipher structures, which are the Feistel structure and its gen-
eralizations and the substitute permutation network (SPN).
The round function of most of those structures consists
of three basic operations: the sbox look-up, the exclusive-
or addition (Xor), and the branch swapping, where the
only nonlinear component is the sbox look-up operation.
In differential cryptanalysis, the Xor differences of plain-
text/ciphertext pairs are considered; we omit the key and
constant addition since they have no relevance to our
analysis. We assume that a block cipher structure has 𝑛
subblocks (branches), and the input and output differ-
ences are denoted by (Δ𝑥1, . . . , Δ𝑥𝑛) and (Δ𝑦1, . . . , Δ𝑦𝑛),
respectively.

2.2. The Solvability of a Linear System. Now we review
the basics in linear algebra of determining the solvability
of a system of linear equations. Let 𝑚, 𝑛 be two positive
integers, 𝑚 < 𝑛; let 𝐴𝑥 = 𝑏 be a system of 𝑚 linear
equations with 𝑛 variables, where 𝐴 is 𝑚 × 𝑛 matrix over
F2; and 𝑥 = (𝑥1, . . . , 𝑥𝑛) and 𝑏 = (𝑏1, . . . , 𝑏𝑚) are
two bit vectors; then the augmented 𝑚 × (𝑛 + 1) matrix𝐵 = [𝐴 | 𝑏] can determine the solvability of the linear
system.

A regular method is to deduce the reduced row echelon
form (a.k.a. row canonical form) ofmatrix𝐵 byGauss-Jordan
elimination algorithm. The reduced row echelon form of a
matrix is unique and denoted by 𝐵󸀠. One starts to check 𝐵󸀠
from the last row to the first, to see if there exists a row in
which the first 𝑛 entries are zeros and the last entry is nonzero.
If there are such rows, then the linear system has no solution.
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For example, if the augmented matrix 𝐵 of a linear system in
reduced row echelon form is

𝐵󸀠 = (1 0 0 𝑏10 1 0 𝑏20 0 0 𝑏3), (1)

where 𝑏3 is nonzero, then the linear system has no solution.

3. Mathematical Models for Finding IDs of
Block Cipher Structures

Our improvement is based onWu andWang’s method. If the
nonlinear sbox 𝑆𝑖 in a block cipher structure is a permutation,
then there is a constraint on the input difference𝑥𝑖 and output
difference 𝑦𝑖 for 𝑆𝑖; that is, 𝑥𝑖 and 𝑦𝑖 can only both be zero
or both be nonzero, denoted by 𝑥𝑖 ∼ 𝑦𝑖. The intermediate
value of a block cipher structure is called the state.The state is
updated with the round structure. In order to find impossible
differential for an 𝑟-round block cipher structure, we first set
differential variables for the states and then transform the 𝑟-
round block cipher structure into a system of linear equations
and constraints, denoted by S. Then for a given differential(Δin, Δout), where Δin = (𝑎1, . . . , 𝑎𝑛) and Δout = (𝑏1, . . . , 𝑏𝑛),
we can check if it is impossible by solvingSwith initial values(𝑎1, . . . , 𝑎𝑛, 𝑏1, . . . , 𝑏𝑛); if S has no solution, then Δin󴀀󴀂󴀠𝑟Δout.

Here we take the 5-round Feistel structure as an example.
We first assign differential variables for 5-round Feistel
structure. In Figure 1, 𝐹𝑖, 1 ≤ 𝑖 ≤ 5 are permutations; the
output difference of 𝐹𝑖 for input difference𝑋𝑖 is 𝑌𝑖; thus𝑋𝑖 ∼𝑌𝑖. According to the computation graph of 5-round Feistel
structure, we obtain the following systemS of equations and
constraints: 𝑋0 ⊕ 𝑋2 ⊕ 𝑌1 = 0, 𝑋1 ∼ 𝑌1,𝑋1 ⊕ 𝑋3 ⊕ 𝑌2 = 0, 𝑋2 ∼ 𝑌2,𝑋2 ⊕ 𝑋4 ⊕ 𝑌3 = 0, 𝑋3 ∼ 𝑌3,𝑋3 ⊕ 𝑋5 ⊕ 𝑌4 = 0, 𝑋4 ∼ 𝑌4,𝑋4 ⊕ 𝑋6 ⊕ 𝑌5 = 0, 𝑋5 ∼ 𝑌5.

(2)

In order to check if (𝑎, 0) → (𝑎, 0) is an impossible differential
where 𝑎 is a nonzero value, we solve the above system with𝑋0 = 𝑎, 𝑋1 = 0, 𝑋5 = 0, and 𝑋6 = 𝑎. Since 𝑋1 ∼ 𝑌1 and𝑋5 ∼ 𝑌5 we have 𝑌1 = 0 and 𝑌5 = 0. From linear equations of
S, we get 𝑌3 = 0; thus𝑋3 = 0 since𝑋3 ∼ 𝑌3; next from linear
equations S we obtain 𝑌2 = 0; however 𝑋2 = 𝑎 and 𝑋2 ∼ 𝑌2;
thus the system S has no solution and (𝑎, 0) → (𝑎, 0) is an
impossible differential for 5-round Feistel structure.

Now we want to find all impossible differentials for 5-
round Feistel structure; we enumerate all the possible dif-
ferential pairs (Δin, Δout) ∈ {(0, 𝑎), (𝑎, 0), (𝑎, 𝑎), (0, 𝑏), (𝑏, 0),(𝑏, 𝑏), (𝑏, 𝑎), (𝑎, 𝑏)}, where 𝑎 and 𝑏 are two different nonzero
values. For each value of (Δin, Δout), we judge if it is an
impossible differential; after all cases are tested, we will find
all impossible differentials.
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Figure 1: State variables for 5-round Feistel structure.

Thus the general algorithm for finding all 𝑟-round impos-
sible differentials for a block cipher structure is outlined as
follows:

(1) Generate all the possible differential pairs (Δin, Δout)
in a setD.

(2) Assign differential variables according to the compu-
tation figure of the 𝑟-round block cipher structure.
Generate the system S of linear equations and con-
straints with the differential variables.

(3) For each (Δin, Δout) ∈ D, solve the system S
with initial value (Δin, Δout) and check if S has no
solution. If there is no solution, then (Δin → Δout) is
an impossible differential. After all cases are checked
we obtain all impossible differentials.

4. The Detailed Algorithm

In this section we describe the detailed algorithm and
implementation details.

4.1. Generate All Possible Differential Pairs. We use symbols𝑎𝑖, 𝑏𝑖, 1 ≤ 𝑖 ≤ 𝑛, to denote different 2𝑛 as the nonzero
values. For a block cipher structure, the input difference is(Δ𝐼1, . . . , Δ𝐼𝑛), where Δ𝐼𝑖 ∈ {0, 𝑎1, . . . , 𝑎𝑛}, and the output
difference is (Δ𝑂1, . . . , Δ𝑂𝑛), where Δ𝑂𝑖 ∈ {0, 𝑎1, . . . , 𝑎𝑛, 𝑏1,. . . , 𝑏𝑛}. Note that the input difference and output difference
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Table 1: The 5 × 13 augmented matrix of 5-round Feistel structure.0 1 2 3 4 5 6 7 8 9 10 11 12𝑋0 𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6 𝑌1 𝑌2 𝑌3 𝑌4 𝑌5 01 1 0 1 0 0 0 0 1 0 0 0 0 02 0 1 0 1 0 0 0 0 1 0 0 0 03 0 0 1 0 1 0 0 0 0 1 0 0 04 0 0 0 1 0 1 0 0 0 0 1 0 05 0 0 0 0 1 0 1 0 0 0 0 1 0

will not be zero since this will be trivial in differential
cryptanalysis.Thus there are total ((𝑛+1)𝑛−1) ⋅ ((2𝑛+1)𝑛−1)
differential pairs. This value is large for many block cipher
structures.

However, an impossible differential (Δ𝐼1, . . . , Δ𝐼𝑛) 󴀀󴀂󴀠(Δ𝑂1, . . . , Δ𝑂𝑛) for a block cipher structure is usually simple;
that is, there are very few nonzero values in (Δ𝐼1, . . . , Δ𝐼𝑛)
and (Δ𝑂1, . . . , Δ𝑂𝑛). Since the input or output differential are
complicate, it will propagate fast due to the round structure of
the cipher.Thus it is reasonable to consider simple differential
pairs. Actually all the impossible differentials found for block
cipher structures in the literature are simple.

In this paper we only consider the input difference(Δ𝐼1, . . . , Δ𝐼𝑛), where Δ𝐼𝑖 ∈ {0, 𝑎}, and the output difference(Δ𝑂1, . . . , Δ𝑂𝑛), where Δ𝑂𝑖 ∈ {0, 𝑎, 𝑏}. Thus there are total(2𝑛 − 1)(3𝑛 − 1) differential pairs that need to be checked.

4.2. Generate the System S. Given a block cipher structure,
we first need to draw the computational figure and assign
differential variables, as introduced in the analysis of 5-
round Feistel structure. This step is varying according to
different block cipher structures. However, since most block
cipher structures iterate the same round structure for several
times, these variables are regular and easy to implement in
a computer program. As in the analysis of 5-round Feistel
structure, the input difference of a nonlinear permutation is
denoted by variable 𝑋𝑖 and the output difference is denoted
by variable 𝑌𝑖. Thus if we see a variable 𝑌𝑖, it must be some
output difference of a nonlinear permutation.

For a block cipher structure with 𝑟 rounds, there are 𝑝
variables 𝑋𝑖, 0 ≤ 𝑖 ≤ 𝑝, and 𝑞 numbers of variables 𝑌𝑖, 1 ≤𝑖 ≤ 𝑞. The numbers 𝑝 and 𝑞 are determined by the round
structure and the round number 𝑟. For the 𝑟-round Feistel
structure, 𝑝 = 𝑟 + 2 and 𝑞 = 𝑟. We first denote all variables in
a variable vector as𝑋 = (𝑋0, . . . , 𝑋𝑝−1, 𝑌1, . . . , 𝑌𝑞) , (3)

and then linear equations in systemS can bewritten as𝑀𝑋 =
0, where𝑀 is a 𝑘𝑟 × (𝑝 + 𝑞)matrix over 𝐹2 and 0 is a (𝑝 + 𝑞)-
dimensional zero vector, where 𝑘 is the number of linear
equations in one round of the block cipher structure. The
augmented matrix of these linear equations is 𝐵 = [𝑀 | 0].
For the 5-round Feistel structure, the augmented matrix 𝐵 is
denoted in Table 1.

The set of constraints in S can be maintained as a map
N. Let id(𝑋𝑖) denote the index of the variable 𝑋𝑖 in vector𝑋; given a constraint 𝑋𝑖 ∼ 𝑌𝑖, we add (id(𝑋𝑖), id(𝑌𝑖)) into

the map N. For the 5-round Feistel structure, N ={⟨1, 7⟩, ⟨2, 8⟩, ⟨3, 9⟩, ⟨4, 10⟩, ⟨5, 11⟩}. In the real implemen-
tation, it is noted that, for most block cipher structures,
the distance between constraints 𝑋𝑖 and 𝑌𝑖 is fixed and
determined by the round structure and the round number;
that is, id(𝑌𝑖) − id(𝑋𝑖) is a constant. For example, the distance
of constraints 𝑋𝑖 and𝑌𝑖 for a 𝑟-round Feistel structure is 𝑟+1.
Thus themapN is not needed to be implemented but only the
fixed index distance is needed.This observation facilitates the
real implementation of the algorithm.

4.3. Determine the Solvability of S. In the beginning, we
assign a symbol “?” to each variable in the variable vector𝑋, which means every variable is undetermined. Given a
differential pair (Δin, Δout), we need to check if there exist
solutions of the system S with the initial value (Δin, Δout).
We first need to initialize the variable vector 𝑋 according
to (Δin, Δout). As in the 5-round Feistel structure, for a
differential pair Δin = (𝑎, 0), Δout = (𝑎, 0), the variable
vector𝑋 is initialized as follows:𝑋0 𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6 𝑌1 𝑌2 𝑌3 𝑌4 𝑌5
a 0 ? ? ? 0 a ? ? ? ? ?
For a constraint 𝑋𝑖 ∼ 𝑌𝑖, the algorithm updates (𝑋𝑖, 𝑌𝑖)

and detects contradictions as follows.

(i) The value𝑋𝑖 is updated:
(a) If𝑋𝑖 = 0 and 𝑌𝑖 = ?, then 𝑌𝑖 is set to 0.
(b) If 𝑋𝑖 is a nonzero symbol and 𝑌𝑖 = ?, then 𝑌𝑖 is

set to the nonzero symbol “∗.”
(c) If 𝑋𝑖 = 0 and 𝑌𝑖 is an nonzero symbol, then we

obtain a contradiction.

(ii) The value 𝑌𝑖 is updated:
(a) If 𝑌𝑖 = 0 and𝑋𝑖 = ?, then𝑋𝑖 is set to 0.
(b) If 𝑌𝑖 = 0 and 𝑋𝑖 is an nonzero symbol, then we

obtain a contradiction.

We use ⊕ to denote the symmetrical difference (Xor) of𝑋1 and 𝑋2. For example, if 𝑋1 = {𝑎1} and 𝑋2 = {𝑏1}, then𝑋1 ⊕𝑋2 = {𝑎1, 𝑏1}; if𝑋1 = {𝑎1} and𝑋2 = {0}, then𝑋1 ⊕𝑋2 ={𝑎1}; if𝑋1 = {𝑎1} and𝑋2 = {𝑎1, 𝑏1}, then𝑋1 ⊕ 𝑋2 = {𝑏1}.
The function UpdateMatrix(𝐵,𝑋) updates the augmen-

ted matrix 𝐵 according to the variable vector 𝑋. If the 𝑖th
variable in 𝑋 is 0, then the corresponding 𝑖th column of 𝐵
is set to a zero vector. As in [21], this method keeps solutions
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// Update the augmented matrix 𝐵 according to the variable vector 𝑋
(1)𝐾 ← the size of𝑋;
(2) for 𝑖 ← 0 to 𝐾 − 1 do
(3) 𝑡 ← 𝑋[𝑖];
(4) if 𝑡 is 0 then
(5) Every element of the 𝑖th column of 𝐵 is set to 0.
(6) else if 𝑡 is not “?” and 𝑡 is not “∗” then
(7) 𝐿 ← the number of rows of 𝐵;
(8) for 𝑟 ← 0 to 𝐿 − 1 do
(9) if 𝐵[𝑟, 𝑖] is 1 then
(10) 𝐵[𝑟, 𝑖] ← 0;
(11) 𝐵[𝑟, 𝐾 − 1] ← 𝐵[𝑟, 𝐾 − 1] ⊕ 𝑡;
(12) end
(13) end
(14) end
(15) end

Algorithm 1: Function UpdateMatrix(𝐵,𝑋).
of the augmented matrix 𝐵 unchanged. If 𝑋𝑖 is not in the set{0, ?, ∗}, we check each row of 𝐵; if the value of the 𝑖th column
at the 𝑟th row 𝐵𝑟,𝑖 is 1, then we set Xor 𝑋i to the last element
of the 𝑟th row of 𝐵 and set 𝐵𝑟,𝑖 to 0 (Algorithm 1).

The function UpdateVector(𝑋,N, 𝑗, 𝐽) updates the 𝑗th
variable 𝑋𝑗 with the value 𝐽; at the same time all constraints
in N are maintained. As described in the beginning of this
subsection, the function updates 𝑋𝑗 with the value 𝐽 by
checking each constraint inN and returns true if it succeeds
or false if there is a contradiction. There are many subcases,
as described in the detailed algorithm. During the updating
process, theremay be contradictions. For example, if𝑋𝑗 = {𝑎}
and 𝐽 = {𝑎, 𝑏} which means 𝐽 = 𝑎 ⊕ 𝑏, there is a contradiction
since 𝑎 ⊕ 𝑏 can never be 𝑎. If 𝐽 is {0} but the corresponding
variable which is the sbox output of 𝑋𝑗 is nonzero or 𝐽 is {0}
but the corresponding variable which is the sbox input of𝑋𝑗
is nonzero, there will be contradictions (Algorithm 2).

The function ReducedRowEchelon(𝐵) transforms the 𝜄 ×𝜅 matrix 𝐵 into the reduced row echelon form by Gauss-
Elimination algorithm.Note that every element in the first 𝜅−1 columns of 𝐵 is in F2, while elements in the last column of 𝐵
are represented by a set of symbols.Thus the Xor operation in
the last column of 𝐵 is the symmetrical difference operation.
The readers can refer to [32] for the detailed algorithm of
transforming a matrix into the reduced row echelon form.

The detailed algorithm for checking if a differential is
impossible is described in Algorithm 3. In Algorithm 3,
the variable vector 𝑋 is first initialized according to the
differential pair (Δin, Δout) and the constraint array N.
Then the algorithm continues checks if there is a contra-
diction with a loop test until 𝐵 and 𝑋 are not updated
any more. During the loop the algorithm first updates 𝐵
according to 𝑋 by the UpdateMatrix(𝐵,𝑋) function and
then transforms 𝐵 into the reduced row echelon form
by the ReducedRowEchelon(𝐵) function to see if 𝐵 has
solutions. If 𝐵 has no solutions, the algorithm obtains a

contradiction and stops. Otherwise if there exists a solution
for a variable from the reduced row echelon form, the
index and the value of the variable are denoted as (𝑗, 𝐽).
The algorithm updates the variable vector 𝑋 with (𝑗, 𝐽)
by the UpdateVector(𝑋,N, 𝑗, 𝐽) function; if the updating
process returns false, a contradiction is obtained and the
algorithm stops; otherwise, the algorithm continues to run.

4.4. Complexity. For the 𝜄 × 𝜅 matrix 𝐵 and the 𝜅 − 1 di-
mension vector 𝑋, the time complexity of the func-
tion UpdateMatrix is 𝜄 ⋅ 𝜅, the time complexity of the func-
tion ReducedRowEchelon is 𝜄2 ⋅ 𝜅, and the time complexity
of the function UpdateVector is a constant 𝑐, while loop
continues running 𝜅/2 times since there at most 𝜅 − 1 values
in𝑋 and in each loop either 2 variables are updated or there is
a contradiction.Thus the total complexity of the algorithm is(𝑐/2) ⋅ 𝜄2𝜅2, where 𝑐 is a small constant. The space complexity
is dominated by storing the matrix 𝐵 and is about 𝜄 ⋅ 𝜅. The
time complexity of the Wu-Wang method is 𝑇 ⋅ 𝜄2𝜅2 and this𝑇 is much larger than our 𝑐. The Wu-Wang method stores
3 matrices; thus its space complexity is at least triple our
method.

4.5. Comparison with Previous Method. In [31], Wu and
Wang proved that the U-method and the UID method are
specific cases of theWu-Wang method.They found that their
method can find longer impossible differential for the MIBS
cipher than by U-method and the UID method. However,
in the UID method, for an impossible differential pair((Δ𝐼1, . . . , Δ𝐼𝑛), (Δ𝑂1, . . . , Δ𝑂𝑛)), the relationship between
input variables and output variables is considered since UID
method uses symbols to denote values. For example, the UID
method considers the relation between Δ𝐼𝑖 and Δ𝑂𝑗 and
checks if they are equal; however the U-method and Wu-
Wang method only use 0 and 1 to denote zero and nonzero
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// Update the variable vector 𝑋 according to the variable (𝑗, 𝐽) where 𝐽 is the value

of the 𝑗th variable in 𝑋.N is the array of constraints.
input: the variable vector𝑋, the constraint arrayN, (𝑗, 𝐽).
output: A boolean flag indicates if the update procedure success.

(1) flag←true;
(2) foreach 𝑎 ∈ N do
(3) 𝑘0 ← 𝑎[0]; 𝑘1 ← 𝑎[1];
(4) if 𝑗 is equal to 𝑘0 then
(5) if 𝐽 ⊕ 𝑋𝑘0 is not 0 then
(6) flag←false; // Ex. 𝐽 = 𝑎 ⊕ 𝑏 but 𝑋𝑘0 = 𝑎, a contradiction.
(7) return flag;
(8) else if 𝐽 is 0 and 𝑋𝑘0 is ? then
(9) if 𝑋[𝑘1] is not 0 then flag←false;
(10) return flag;
(11) end
(12) 𝑋𝑘0 ← 0; 𝑋𝑘1 ← 0;
(13) else if 𝐽 is a nonzero value then
(14) 𝑋𝑘0 ← 𝐽; 𝑋𝑘1 ← ∗;
(15) end
(16) else if 𝑗 is equal to 𝑘1 then
(17) if 𝐽 ⊕ 𝑋𝑘1 is not 0 then flag←false
(18) return flag;
(19) else if 𝑋𝑘1 is ? and 𝐽 is 0 then
(20) 𝑋𝑘1 ← 0; 𝑋𝑘0 ← 0;
(21) end
(22) end
(23) end
(24) return flag;

Algorithm 2: Function UpdateVector(𝑋,N, 𝑗, 𝐽).
values, which omit the relationship between input and output
differentials.

Our improved method combines the advantages of the
UID method and Wu-Wang method. Every impossible dif-
ferential found by the UID method and Wu-Wang method
can be found by our improved method. As Wu and Wang’s
method, impossible differentials found by our improved
method must be correct if the algorithm is implemented
correctly. Compared with Wu and Wang’s method, our
improved method is more complete. The symbol representa-
tion of a difference can represent more relationships between
different difference values. Thus it can find more impossible
differentials and the matrix 𝐵 does not change with different
values of (Δin, Δout) in the beginning of the algorithm, while,
in theWu-Wang method, to add linear relationships between
nonzero values in (Δin, Δout), thematrix 𝐵must change with
different values of (Δin, Δout). This will consume more time
during the run of the algorithm.

The most time consuming part in the algorithm is the
matrix operation. To check if the augmented matrix has any
solutions, theWu-Wangmethodneeds to compute the rank of
the matrices𝑀 and 𝐵. We show that this step is not required
since we can check the solvability of the system from the
reduced row echelon form of the matrix 𝐵, as introduced

in the preliminaries section. Thus our improvement largely
reduces the search time of finding impossible differentials of
a block cipher structure.

5. Applications and Experiment Results

We implement the algorithm in java language and apply it
to many block cipher structures, including Gen-CAST256
[33], Misty [25], Gen-Skipjack [23], Four-Cell [24], Gen-
MARS [33], Gen-RC6 [33], SMS4 [34], MIBS [26], Camellia∗
[27, 31], LBlock [28], E2 [29], and SNAKE [30]. We present
the java code of this algorithm and complete impossible
differential results in GitHub [35]. To reduce the space of this
paper, we present some of the impossible differential results
in Table 2. The file Impossible Differential.txt in [35] lists the
complete impossible differential results for these block cipher
structures. Most impossible differentials discovered by our
algorithm are the same as the Wu-Wang method.

Moreover, for the 8-round MIBS, we find new 4 impos-
sible differentials, which are not found by the Wu-Wang
method since these 4 new impossible differentials are not
simple truncated impossible differentials. MIBS is a 16-
subblock Feistel structure with substitution and permutation
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input: A differential pair (Δin, Δout) and the system S

output: A boolean flag indicates if (Δin, Δout) is an impossible differential
(1) 𝐵 is the 𝜄 × 𝜅 augmented matrix of S;
(2)𝑋 is the 𝜅 − 1 dimension variable vector;
(3)N is the map of constraints of S;
(4) flag←false;
(5) index←true;
(6) Initialize every variable in𝑋 according to (Δin, Δout) and the constraints inN;
(7) while index do
(8) UpdateMatrix (𝐵,𝑋) // Update 𝐵 according to 𝑋;/∗ Transform 𝐵 into the reduced-row-echelon form by Gauss-Jordan Elimination ∗/
(9) ReducedRowEchelon (𝐵);
(10) if 𝐵 has no solution then
(11) flag←true;
(12) break;
(13) else
(14) index← false;
(15) count← 0;
(16) for 𝑖 ← 𝜄 to 1 do
(17) 󳨀→V ← Row 𝑖 of 𝐵;
(18) if the sum of the first 𝜅 − 1 elements of 󳨀→V is 1 then
(19) 𝑗 ← the index of the element 1 in 󳨀→V ;
(20) 𝐽 ← the last element of 󳨀→V ; // the solution of the 𝑗th variable in 𝑋
(21) /∗ update the variable vector 𝑋 with (𝑗, 𝐽) and return true if there is

no contradiction and return false otherwise. ∗/
(22) 𝑏 ←UpdateVector (𝑋,N, 𝑗, 𝐽);
(23) if 𝑏 is false then
(24) flag← true;
(25) return flag;
(26) else
(27) index← true;
(28) end
(29) end
(30) end
(31) end
(32) end
(33) return flag;

Algorithm 3: The algorithm for checking an impossible differential.

Table 2: Summary of impossible differentials (IDs) of some well-known block ciphers structures found by different methods.

Block cipher UID [14] Wu-Wang [31] This paper
Gen-Skipjack 16: (0, 0, 0, 𝑎)󴀀󴀂󴀠16(𝑏, 0, 0, 𝑏) — Same as UID
Gen-CAST256 19: (0, 0, 0, 𝑎)󴀀󴀂󴀠19(𝑎, 0, 0, 0) — Same as UID
Four-Cell 18: (𝑎, 0, 0, 0)󴀀󴀂󴀠18(𝑏, 𝑏, 0, 0) — Same as UID
Gen-MARS 11: (0, 0, 0, 𝑎)󴀀󴀂󴀠11(𝑎, 0, 0, 0) — Same as UID

Gen-RC6 9: (0, 0, 𝑎, 0)󴀀󴀂󴀠9(0, 𝑎, 0, 0) — Same as UID
9: (𝑎, 0, 0, 0)󴀀󴀂󴀠9(0, 0, 0, 𝑎)

SMS4 11: (0, 0, 0, 𝑎)󴀀󴀂󴀠11(𝑎, 0, 0, 0) — Same as UID
Misty — — 4 : (0, 𝑎)󴀀󴀂󴀠4(𝑏, 𝑏)
SNAKE — — 11 : (0, 0, 0, 0, 0, 0, 𝑎, 0)󴀀󴀂󴀠11(0, 0, 𝑏, 0, 0, 0, 0, 0)
Camellia∗ — 8-round, 4 IDs Same as Wu-Wang
MIBS — 8-round, 6 IDs 8-round, 10 IDs
LBlock — 14-round, 80 IDs Same as Wu-Wang
E2 — 6-round, 56 IDs Same as Wu-Wang
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Table 3: Impossible differentials for 8-round MIBS. There are 4 new found impossible differentials. 𝑎 and 𝑏 are nonzero values and 𝑎 and 𝑏
can have the same value.

Number Δin Δout Reference
1 (0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 𝑎, 0, 0) (𝑏, 0, 0, 0, 0, 0, 0, 𝑏; 0, 0, 0, 0, 0, 0, 0, 0)

This paper2 (0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 𝑎, 0, 0) (0, 0, 0, 0, 𝑏, 0, 0, 𝑏; 0, 0, 0, 0, 0, 0, 0, 0)
3 (0, 0, 0, 0, 0, 0, 0, 0; 𝑎, 0, 0, 0, 0, 0, 0, 𝑎) (0, 0, 0, 0, 0, 𝑏, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0)
4 (0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 𝑎, 0, 0, 𝑎) (0, 0, 0, 0, 0, 𝑏, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0)
5 (0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 𝑎, 0, 0, 0, 0, 0) (0, 0, 0, 0, 𝑏, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0)
6 (0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 𝑎, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 𝑏; 0, 0, 0, 0, 0, 0, 0, 0)
7 (0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 𝑎, 0, 0, 0) (0, 0, 𝑏, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0) [31]

8 (0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 𝑎, 0, 0, 0) (0, 0, 0, 0, 0, 0, 𝑏, 0; 0, 0, 0, 0, 0, 0, 0, 0)
9 (0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 𝑎, 0) (0, 0, 0, 0, 𝑏, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0)
10 (0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 𝑎) (0, 0, 𝑏, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0)
(SP) round function. In the SP round function, the 8 sub-
blocks are first substituted by 8 sboxes; then an 8 × 8 matrix
is applied as the permutation. The permutation matrix 𝑃 is

(((((((((((
(

1 1 0 1 1 0 1 10 1 1 1 1 1 1 01 1 1 0 1 1 0 10 1 1 1 0 0 1 11 0 1 1 1 0 0 11 1 0 1 1 1 0 01 1 1 0 0 1 1 01 0 1 1 0 1 1 1

)))))))))))
)

. (4)

There are total 10 impossible differentials found for 8-round
MIBS by our improved algorithm. The new four 8-round
impossible differentials found are listed in Table 3.

Compare with Wu and Wang’s algorithm, this improve-
ment is more general since it not only finds more impossible
differentials for a block cipher structures, but also has better
efficiency. The results for MIBS are obtained on a 2.66GHz
processor with MAGMA package in a few hours by Wu and
Wang’s algorithm [31]. However, our results for MIBS are
obtained on a 2.20GHz processor in java language in less
than 10 seconds. Thus, the algorithm presented in this paper
is more efficient than Wu and Wang’s algorithm.

6. Conclusion

In this paper we improve Wu and Wang’s algorithm for
finding impossible differentials of block cipher structures.
The improved method is more general than Wu and Wang’s
method where it can find more impossible differentials with
less time. We apply this method to many block cipher struc-
tures.The experiment results show that this improvement can
largely reduce the search time for the impossible differentials
of a block cipher, since there are known relationships between
impossible differential and integral and zero correlation
linear cryptanalysis [22, 36, 37]. This method can be used as
a cryptanalytic tool to evaluate the security of a block cipher
against these kinds of cryptanalysis.
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