4 research outputs found

    Colourings of cubic graphs inducing isomorphic monochromatic subgraphs

    Get PDF
    A kk-bisection of a bridgeless cubic graph GG is a 22-colouring of its vertex set such that the colour classes have the same cardinality and all connected components in the two subgraphs induced by the colour classes (monochromatic components in what follows) have order at most kk. Ban and Linial conjectured that every bridgeless cubic graph admits a 22-bisection except for the Petersen graph. A similar problem for the edge set of cubic graphs has been studied: Wormald conjectured that every cubic graph GG with ∣E(G)∣≡0(mod2)|E(G)| \equiv 0 \pmod 2 has a 22-edge colouring such that the two monochromatic subgraphs are isomorphic linear forests (i.e. a forest whose components are paths). Finally, Ando conjectured that every cubic graph admits a bisection such that the two induced monochromatic subgraphs are isomorphic. In this paper, we give a detailed insight into the conjectures of Ban-Linial and Wormald and provide evidence of a strong relation of both of them with Ando's conjecture. Furthermore, we also give computational and theoretical evidence in their support. As a result, we pose some open problems stronger than the above mentioned conjectures. Moreover, we prove Ban-Linial's conjecture for cubic cycle permutation graphs. As a by-product of studying 22-edge colourings of cubic graphs having linear forests as monochromatic components, we also give a negative answer to a problem posed by Jackson and Wormald about certain decompositions of cubic graphs into linear forests.Comment: 33 pages; submitted for publicatio

    A unified approach to construct snarks with circular flow number 5

    Get PDF
    The well-known 5-flow Conjecture of Tutte, stated originally for integer flows, claims that every bridgeless graph has circular flow number at most 5. It is a classical result that the study of the 5-flow Conjecture can be reduced to cubic graphs, in particular to snarks. However, very few procedures to construct snarks with circular flow number 5 are known. In the first part of this paper, we summarise some of these methods and we propose new ones based on variations of the known constructions. Afterwards, we prove that all such methods are nothing but particular instances of a more general construction that we introduce into detail. In the second part, we consider many instances of this general method and we determine when our method permits to obtain a snark with circular flow number 5. Finally, by a computer search, we determine all snarks having circular flow number 5 up to 36 vertices. It turns out that all such snarks of order at most 34 can be obtained by using our method, and that the same holds for 96 of the 98 snarks of order 36 with circular flow number 5
    corecore