20,155 research outputs found

    Wall Crossing As Seen By Matrix Models

    Get PDF
    The number of BPS bound states of D-branes on a Calabi-Yau manifold depends on two sets of data, the BPS charges and the stability conditions. For D0 and D2-branes bound to a single D6-brane wrapping a Calabi-Yau 3-fold X, both are naturally related to the Kahler moduli space M(X). We construct unitary one-matrix models which count such BPS states for a class of toric Calabi-Yau manifolds at infinite 't Hooft coupling. The matrix model for the BPS counting on X turns out to give the topological string partition function for another Calabi-Yau manifold Y, whose Kahler moduli space M(Y) contains two copies of M(X), one related to the BPS charges and another to the stability conditions. The two sets of data are unified in M(Y). The matrix models have a number of other interesting features. They compute spectral curves and mirror maps relevant to the remodeling conjecture. For finite 't Hooft coupling they give rise to yet more general geometry \widetilde{Y} containing Y.Comment: 44 pages, 9 figures, published versio

    Quantum Loop Representation for Fermions coupled to Einstein-Maxwell field

    Get PDF
    Quantization of the system comprising gravitational, fermionic and electromagnetic fields is developed in the loop representation. As a result we obtain a natural unified quantum theory. Gravitational field is treated in the framework of Ashtekar formalism; fermions are described by two Grassmann-valued fields. We define a CC^{*}-algebra of configurational variables whose generators are associated with oriented loops and curves; ``open'' states -- curves -- are necessary to embrace the fermionic degrees of freedom. Quantum representation space is constructed as a space of cylindrical functionals on the spectrum of this CC^{*}-algebra. Choosing the basis of ``loop'' states we describe the representation space as the space of oriented loops and curves; then configurational and momentum loop variables become in this basis the operators of creation and annihilation of loops and curves. The important difference of the representation constructed from the loop representation of pure gravity is that the momentum loop operators act in our case simply by joining loops in the only compatible with their orientaiton way, while in the case of pure gravity this action is more complicated.Comment: 28 pages, REVTeX 3.0, 15 uuencoded ps-figures. The construction of the representation has been changed so that the representation space became irreducible. One part is removed because it developed into a separate paper; some corrections adde

    Nijenhuis operator in contact homology and descendant recursion in symplectic field theory

    Full text link
    In this paper we investigate the algebraic structure related to a new type of correlator associated to the moduli spaces of S1S^1-parametrized curves in contact homology and rational symplectic field theory. Such correlators are the natural generalization of the non-equivariant linearized contact homology differential (after Bourgeois-Oancea) and give rise to an invariant Nijenhuis (or hereditary) operator (\`a la Magri-Fuchssteiner) in contact homology which recovers the descendant theory from the primaries. We also sketch how such structure generalizes to the full SFT Poisson homology algebra to a (graded symmetric) bivector. The descendant hamiltonians satisfy to recursion relations, analogous to bihamiltonian recursion, with respect to the pair formed by the natural Poisson structure in SFT and such bivector. In case the target manifold is the product stable Hamiltonian structure S1×MS^1\times M, with MM a symplectic manifold, the recursion coincides with genus 00 topological recursion relations in the Gromov-Witten theory of MM.Comment: 30 pages, 3 figure

    Are ghost surfaces quadratic-flux-minimizing?

    Full text link
    Two candidates for "almost-invariant" toroidal surfaces passing through magnetic islands, namely quadratic-flux-minimizing (QFMin) surfaces and ghost surfaces, use families of periodic pseudo-orbits (i.e. paths for which the action is not exactly extremal). QFMin pseudo-orbits, which are coordinate-dependent, are field lines obtained from a modified magnetic field, and ghost-surface pseudo-orbits are obtained by displacing closed field lines in the direction of steepest descent of magnetic action, Adl\oint \vec{A}\cdot\mathbf{dl}. A generalized Hamiltonian definition of ghost surfaces is given and specialized to the usual Lagrangian definition. A modified Hamilton's Principle is introduced that allows the use of Lagrangian integration for calculation of the QFMin pseudo-orbits. Numerical calculations show QFMin and Lagrangian ghost surfaces give very similar results for a chaotic magnetic field perturbed from an integrable case, and this is explained using a perturbative construction of an auxiliary poloidal angle for which QFMin and Lagrangian ghost surfaces are the same up to second order. While presented in the context of 3-dimensional magnetic field line systems, the concepts are applicable to defining almost-invariant tori in other 11/21{1/2} degree-of-freedom nonintegrable Lagrangian/Hamiltonian systems.Comment: 8 pages, 3 figures. Revised version includes post-publication corrections in text, as described in Appendix C Erratu

    Evidence for F(uzz) Theory

    Full text link
    We show that in the decoupling limit of an F-theory compactification, the internal directions of the seven-branes must wrap a non-commutative four-cycle S. We introduce a general method for obtaining fuzzy geometric spaces via toric geometry, and develop tools for engineering four-dimensional GUT models from this non-commutative setup. We obtain the chiral matter content and Yukawa couplings, and show that the theory has a finite Kaluza-Klein spectrum. The value of 1/alpha_(GUT) is predicted to be equal to the number of fuzzy points on the internal four-cycle S. This relation puts a non-trivial restriction on the space of gauge theories that can arise as a limit of F-theory. By viewing the seven-brane as tiled by D3-branes sitting at the N fuzzy points of the geometry, we argue that this theory admits a holographic dual description in the large N limit. We also entertain the possibility of constructing string models with large fuzzy extra dimensions, but with a high scale for quantum gravity.Comment: v2: 66 pages, 3 figures, references and clarifications adde

    Photofragmentation of the H_3 molecule, including Jahn-Teller coupling effects

    Get PDF
    We have developed a theoretical method for interpretation of photoionization experiments with the H_3 molecule. In the present study we give a detailed description of the method, which combines multichannel quantum defect theory, the adiabatic hyperspherical approach, and the techniques of outgoing Siegert pseudostates. The present method accounts for vibrational and rotation excitations of the molecule, deals with all symmetry restrictions imposed by the geometry of the molecule, including vibrational, rotational, electronic and nuclear spin symmetries. The method was recently applied to treat dissociative recombination of the H_3^+ ion. Since H_3^+ dissociative recombination has been a controversial problem, the present study also allows us to test the method on the process of photoionization, which is understood better than dissociative recombination. Good agreement with two photoionization experiments is obtained.Comment: 10 figure
    corecore