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Photofragmentation of the H3 molecule, including Jahn-Teller coupling effects

Viatcheslav Kokoouline* and Chris H. Greene
Department of Physics and JILA, University of Colorado, Boulder, Colorado 80309-0440, USA

(Received 21 November 2003; published 23 March 2004)

We have developed a theoretical method for interpretation of photoionization experiments with the H3

molecule. In the present study we give a detailed description of the method, which combines multichannel
quantum defect theory, the adiabatic hyperspherical approach, and the techniques of outgoing Siegert pseu-
dostates. The present method accounts for vibrational and rotation excitations of the molecule, deals with all
symmetry restrictions imposed by the geometry of the molecule, including vibrational, rotational, electronic,
and nuclear spin symmetries. The method was recently applied to treat dissociative recombination of the H3

+

ion. Since H3
+ dissociative recombination has been a controversial problem, the present study also allows us

to test the method on the process of photoionization, which is understood better than dissociative recombina-
tion. Good agreement with two photoionization experiments is obtained.

DOI: 10.1103/PhysRevA.69.032711 PACS number(s): 33.80.Eh, 33.20.Wr, 33.20.Vq

I. INTRODUCTION

The simplest polyatomic molecules, H3 and H3
+, have

been intensively studied during the last decades. Interest in
these molecules is motivated by the fact that the H3

+ ion
plays an important role in the chain of chemical reactions in
interstellar space, acting as protonator in chemical reactions
with almost all atoms. In particular, dissociation recombina-
tion (DR) of H3

+ with an electron leads via several interme-
diate steps to the production of water in interstellar space.
Many successful models in interstellar chemistry are based
on H3

+ DR. In addition, H3
+ attracts theorists as a bench-

mark for high accuracy calculations with small molecules:
Theoreticalab initio methods can be tested against existing
experimental H3

+ spectroscopy data. The interest in the neu-
tral H3 molecule is closely related to the problem of H3

+ DR.
But H3 also presents great interest from another point of
view. Experimental studies[1–5] of the metastable H3 mol-
ecule and several later theoretical studies[4–7] revealed
non-Born-Oppenheimer effects of coupling between its elec-
tronic, vibrational, and rotational degrees of freedom. As was
shown recently[8,9], these non-Born-Oppenheimer effects
play an important role in H3

+ DR as well. The present study
is devoted to a theoretical treatment of H3 photoionization.

There are three main reasons for this study. The first one
is to explore a new theoretical method for the treatment of
polyatomic photoionization. Our method is based on multi-
channel quantum defect theory(MQDT) [10–13], the adia-
batic hyperspherical approach to vibrational dynamics of
three nuclei, the formalism of outgoing wave Siegert states
[14–16], and inclusion of a non-Born-Oppenheimer
coupling—Jahn-Teller effect. The second reason is related to
a recent study of H3

+ DR [8,9], where the reported method
was very successful in treatment of H3

+ DR, giving good
agreement between theoretical calculations and experimental
results from storage rings[17–19]. However, since that

method is new, it is desirable to test it in greater detail. An
application to the interpretation of H3 photoionization ex-
periments[4,5] is such a test. These photoionization experi-
ments were successfully interpreted in previous theoretical
work [4–7], where another method based on MQDT was
applied. Thus, the present treatment can also be tested
against the previous theoretical studies.

Our treatment of photoionization is similar to the one de-
veloped by Stephens and Greene[6,7], and employed in
Refs.[5–7] for interpretation of two photoionization experi-
ments by Bordaset al. [4] and by Mistríket al. [5]. Both
experiments were interpreted using a full rovibronic frame
transformation[6,7]. The present treatment has several dif-
ferences from the one proposed by Stephens and Greene. The
first difference is the use of the adiabatic hyperspherical ap-
proximation [20–22] for the representation of vibrational
wave functions. Stephens and Greene used the exact three-
dimensional vibrational wave functions. The second differ-
ence is the correction of the incompatibility between the
form for the reaction matrices used in Refs.[5–7,23] and the
quantum defect parameters of Jahn-Teller coupling used in
the mentioned studies. In fact, the values of Jahn-Teller
quantum defect parameters used in Refs.[5–7,23] are com-
patible with an alternative form of the reaction matrix, which
was adopted in Refs.[24–26]. In the present work we use the
same form ofK matrix as in Refs.[5–7,23] and quantum
defect parameters from Ref.[5]. Thus, Jahn-Teller param-
etersd andl from Ref.[5] should be multiplied by −p to be
used in the present study. The third difference is in the sym-
metrization of the total rovibrational wave functions of the
H3

+ ion. In Refs.[5–7] the symmetrization is made accord-
ing to the procedure proposed by Spirko and Jensen[27]:
Rotational and vibrational parts of the total wave function
are symmetrized separately and in two-step procedure. In the
present treatment we symmetrize the total wave function
only once at the very final step. This greatly simplifies the
construction of wave functions of a required symmetry. The
fourth difference is in calculation of dipole transition mo-
ments. Calculating the dipole moment into a final state,
Stephens and Greene accounted only for the diagonal com-
ponent of the final state wave function. Our treatment ac-

*Present address: Department of Physics, University of Central
Florida, Orlando, FL 32816-2385, USA.

PHYSICAL REVIEW A 69, 032711(2004)

1050-2947/2004/69(3)/032711(16)/$22.50 ©2004 The American Physical Society69 032711-1



counts for all nondiagonal wave function components con-
tributing to the dipole transition element.

The article is organized as follows. Section II describes
construction of the total wave function of H3

+ and compares
our method of the construction with the method proposed in
Ref. [27]. In Sec. III, we build up the scattering matrix that
represents the collision between an electron and an ion. Sec-
tion IV presents a derivation of dipole transition moments
and oscillator strengths for H3. We discuss results of our
calculation and compare those results with experimental data
in Sec. V. Section VI states our conclusions.

Atomic units are used in this paper unless otherwise
stated.

II. SYMMETRY OF THE TOTAL WAVE FUNCTION
OF H3

+

In this study we consider onlyp-wave scattering(or half-
scattering) of the electron from the molecule. As demon-
strated in Refs.[5,7], higher electronic partial waves make
much smaller contribution than thep wave to the photoion-
ization spectrum. Similar to our study of H3

+ dissociative
recombination, we chose the molecular axisZ along the main
symmetry axis of the molecule. Directions of two other axes,
X andY, are shown in Fig. 3 of Ref.[9].

A. Total wave function

The total wave functionFt
n.sym of the ion can be repre-

sented as a sum of terms, each of which is product of three
factors[9]:

Ft
n.sym= FgI

I RN+K+m+sa,b,gdFvsQd. s1d

In the above equation,a , b, and g are three Euler angles
defining the orientation of the molecular fixed axis with re-
spect to the space fixed coordinates system. Below, we de-
scribe briefly the construction of all three factors in the prod-
uct of Eq. s1d. A more detailed description is given in
Ref. f9g.

The rotational partRsa ,b ,gd of the total wave function
in Eq. (1) is the symmetric top wave function for H3

+, which
is proportional to the Wigner function[28]. The quantum
numbersN+, K+, andm+ refer to the total angular momentum
N+ and its projections on the molecularZ axis, K+, and the
laboratoryz axis, m+. The transformation properties of the
symmetric top wave function under theD3h group are given
in Table II of Ref.[9].

The vibrational symmetry of H3
+ and H3 is described by

the groupC3vC3v is a subgroup ofD3h: D3h=sh ^ C3v, where
sh is the operation of reflection with respect to the plane of
three nuclei. For our discussion of the vibrational symmetry
of H3

+, it is convenient to use normal coordinatesQ1, Qx,
and Qy (for definitions, see, for example, Ref.[5]). Q1 de-
scribes the symmetric stretch mode. The motion along this
coordinate is characterized by the(approximate) quantum
numberv1 and by the corresponding frequencyv1. Normal
coordinatesQx andQy correspond to two vibrational modes
having the same frequency of oscillationsv2. Vibrations
alongQx andQy are characterized by the approximate num-

bersvx andvy, correspondingly. The total vibrational energy
can be approximatedE=v1sv1+1/2d+v2svx+vy+1d. (The
vibrational quantum numbersv1, vx, andvy, and the corre-
sponding energyE are not exact as long as the ionic molecu-
lar potential is not exactly harmonic.) Due to the degeneracy
of the Qx and Qy modes, the two-dimensional vibrational
motion along theQx andQy coordinates can be equivalently
represented in polar vibrational coordinatesr and f. Then,
instead of quantum numbersvx and vy, it is convenient to
definev2=vx+vy and l2, wherel2 is associated with the mo-
tion alongf coordinate: vibrational angular motion around
the symmetry axis. Thus, the vibrational energy is deter-
mined only by the quantum numbersv1 and v2: E=v1sv1

+1/2d+v2sv2+1d. The numberv2 shows how many vibra-
tional quanta are in the asymmetric mode. The numberl2
determines how many of the asymmetric quantav2 contrib-
ute to the vibrational angular momentum, −v2ø l2øv2. In
reality, due to the anharmonicity of potentials, the vibrational
energy of states with samev1 and v2 but different l2 are
slightly different. However, pairs of states with ±l2, where

l2Þ3k̃ (here and below,k̃ is any integer number), are strictly
degenerate. This is a consequence of the fact that theD3h
symmetry group has doubly degenerate representations.
Thus, vibrational wave functions,

FvsQd = uv1,v2
l2l, s2d

of the ion are specified by the triad of quantum numbers
v1,v2

l2. The quantum numberl2 can have values −v2,−v2
+2, . . . ,v2−2,v2 and it controls the symmetry of the vibra-

tional wave functions. States withl2=3k̃, with an integerk̃
Þ0, can be ofA1 or A2 symmetry. In order to distinguish the
two symmetries using the numberl2, we will label statesA1

with positivel2, l2=3k̃, k̃ù0, andA2 states with negativel2.

A pair of states withl2Þ3k̃ having both signs ofl2 consti-
tutes the degenerate pair of functions, that transform accord-
ing to theE representation. In contrast to the numbersv1,v2

l2,
the classifications with symmetry labelsA1, A2, or E are
exact.

In the present treatment the relative phase of degenerate

statesuv1,v2
l2l with l2Þ3k̃ is slightly different from the one

used in Ref. [29]. Transformations ofuv1,v2
l2l with the

present choice of phases are summarized in Table III of
Ref. [9].

The third factor of the total ionic wave function is the
nuclear spin wave function, Ref.[30]. The nuclear spin states
are classified according to the total spinI =3/2 or I =1/2.
These states are constructed as described in Ref.[9]. The
result is F0

I sI =3/2d, F−1
I sI =1/2d, and F+1

I sI =1/2d wave
functions, transformed according to theA1 % E representation
of the respective symmetry groupS3 of three identical par-
ticle permutations. The stateF0

I sM =3/2d transforms accord-
ing to the A1 representation; the statesF−1

I sI =1/2d and
F+1

I sI =1/2d transform according to theE representation.
The transformation of the total wave functionFt

n.sym is
determined by the quantum numbersK+, l2, andgI. The final
step in the construction of the total wave function is an ap-
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propriate symmetrization ofFt
n.sym. Since the total wave

function should be antisymmetric with respect to operation
of (12) we determineFt:

Ft =
1
Î2

fFt
n.symsK+,l2,gId − s− 1dN+

s2Ft
n.syms− K+,l28,− gIdg,

s3d

In the above equations2=1 for all vibrational states exclud-

ing A2, for which s2=−1; l2=−l28 if l2=3k̃±1, and l2= l28 if

l2=3k̃. The condition for antisymmetry with respect to Eq.
s12d is specified explicitly. If the symmetrization is trivial,
i.e., both terms in Eq.s3d are identical, then the wave func-
tion is

Ft = Ft
n.symsK+,l2,gId. s4d

It is only possible ifgI =0, K+=0, andl2= l28.
The fermionic nature of nuclei also requires that the wave

function Ft should be antisymmetric with respect to opera-
tions of (13) and (23). It is only possible ifFt transforms
according to theA28 or A29 representations of theD3hsMd
group. This condition can be written asG̃=3k̃, where G̃
=K++ l2+gI. The determination of the total symmetry has
one exception from the above rule, namely, when the sym-
metrization is trivial:l2=−l28 ,K+=0. For this case, the rovi-
brational part of the product(4) hasA1 or A2 symmetry, thus,
gI can only be 0. Finally, the overall parity of the total state,
which is determined as transformational under the operation
of total inversionE* , is determined by the numberK+: The
parity is even ifK+ is even and the parity is odd ifK+ is odd.

In this study we are primarily interested in the orthomodi-
fication of the H3 molecule ofA28 symmetry. Thus, Eq.(3) is
reduced to

Ft =
1
Î2

fRN+K+m+sa,b,gduv1,v2
l2l

− s− 1dN+
s2uRN+−K+m+sa,b,gduv1,v2

l28lg s5d

or, whenK+=0 andl2= l28, to

Ft = RN+K+m+sa,b,gduv1,v2
l2l. s6d

Only states withG̃=K++ l2=3k̃ and with evenK+ are al-
lowed. Again there is an exception, when the symmetrization
is trivial: WhenK+=0 andN+ is even(rotational symmetry is

A18), l2=3k̃ can only be negative(A2 vibrational symmetry);
whenK+=0 andN+ is odd, l2=3k̃ must be positive or zero.

B. H3
+ vibrational dynamics in an adiabatic hyperspherical

approach

As in our study of H3
+ dissociative recombination

[8,9,23], we employ the adiabatic hyperspherical approach to
describe the vibrational dynamics of H3

+ and H3 in three
dimensions. In this approach, three hyperspherical coordi-
nates, the hyperradiusR and two hyperanglesu,w, represent

three vibrational degrees of freedom[9,20–22]. In our calcu-
lations we use accurate potential surfaces of H3

+ from
Refs.[31,32].

The hyperspherical coordinates used are symmetry-
adapted coordinates: Each operation of theC3v group—a
permutation of instantaneous positions of the three
nuclei—is described with an appropriate change in the hy-
peranglew only. With this respect, the hyperspherical coor-
dinates are similar to the normal coordinates of H3

+ [5,7,9],
where all operations fromC3v involve the polar anglef
uniquely. For example, the effect of thes123d operation is a
cyclic permutation of the three internuclear distances. In the
hyperspherical coordinates, it is realized by adding the angle
2p /3 to w as determined in Eqs.(23) of Ref. [9]. The opera-
tion (12) exchanges the internuclear distancesr2 and r3.
Equations(23) of Ref. [9] show that this operation corre-
sponds to a mirror reflection about the axisws12d
=f−p /2 ,p /2g. Only the angle w is changed, intow8
=s12dw=p−w. This operation is exhibited in Fig. 1: The
operation(12) exchanges nuclei 1 and 2, transforming the
triangleTa into Tb. The figure also shows all three symmetry
axes, corresponding to three binary permutationss12d, s23d,
and s13d. These symmetry properties of the hyperspherical
vibrational coordinates simplify our treatment appreciably.

In the adiabatic hyperspherical method we first solve the
vibrational Schrödinger equation at a fixed hyperradiusR [9],

FIG. 1. The figure demonstrates how the two-dimensional space
of the hyperanglesu and w reproduces all possible shapes of a
triangle consisting of three nuclei. The size of the system is con-
trolled by the hyper-radius, which is not shown here. Hyperanglew
starts at pointw=0 and goes counter clockwise from 0 to 2p. The
hyperangleu is 0 at the symmetric configuration and it changes to
u=p /2 where it represents linear configurations. The figure also
shows symmetry axes: Every operation in the groupC3v involves
only the hyperanglew. For example, the operation(12) transforms
the triangleTa into the triangleTb, which corresponds to a reflection
around the linew=p /2 , . . . ,3p /2.
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obtaining a set of energiesUi and corresponding eigenfunc-
tions Fisu ,wd. ChangingR, we obtain a set of adiabatic po-
tential curvesUisRd and adiabatic hyperspherical eigenstates
Fisu ,w ;Rd. As mentioned above, each element from theC3v
symmetry group is represented by a corresponding transfor-
mation involving only the hyperanglew. The hyperradius is
not involved in theC3v operations. Thus, the vibrational hy-
perspherical statesFisu ,w ;Rd and curvesUisRd can be clas-
sified according to irreducible representations of the group
C3v, namely, each stateFisu ,w ;Rd and corresponding curve
UisRd can be labeled by eitherA1, A2, or the E irreducible
representation. The representationE is two dimensional.
Thus, two degenerateE componentsFisu ,wd will be labeled
by Ea andEb. Their linear combinations are also good vibra-
tional eigenstates.

Several low ionic hyperspherical curvesUi
+sRd are shown

in Fig. 2. We specify the pairv2
l2 of quantum numbers for

first several states. As in the familiar Born-Oppenheimer ap-
proximation for diatomic molecules, curves of the same sym-
metry do not cross, whereas curves of different symmetries
may cross. One can see from Fig. 2 that low-lying potential
curves with the samev2 are almost degenerate. This is be-
cause the anharmonicity is quite small for low states. How-
ever, atv2=4 the potential curves with quantum numbers
v2

l2=44 andv2
l2=40,2 are already significantly separated.

Similar to Ref. [9], from real-valuedE states obtained
after a diagonalization at fixedR, in the space of the two
hyperanglesu andw, we construct “helicity”[38] E states:

uv2
l2l =

1
Î2

sEa + iEbd,

uv2
l28l = uv2

−l2l =
1
Î2

sEa − iEbd. s7d

The sign ofl2 in the above equation is chosen in such a way
that (123) transforms the stateuv2

±l2l as

s123duv2
±l2l = es±2pil 2/3duv2

±l2l. s8d

For example, iful2u=2, thenl2=−2 andl28=2 ssee discussion
in Sec. II Cd. Finally, we multiply all real-valued vibrational
functionsA2 by i in order to obtain a real reaction matrixK.

Once the adiabatic hyperspherical potential curvesUi
+sRd

are determined, we calculate vibrational energiesEi,v by
solving the adiabatic hyperradial equation,

F−
1

2m

]2

] R2 + Ui
+sRdGci,v

+ sRd = Ei,vci,v
+ sRd, s9d

wherehv , ij;hv1,v2
l2j. In solution of Eq.s9d, we seek solu-

tions sSiegert statesd that obey outgoing wave boundary con-
ditions f14,15g at a finite hyperradiusR0, which are normal-
ized as in Ref.f9g.

Inclusion of Siegert states into the treatment allows us to
represent the dissociation of the neutral H3 formed during the
collision between H3

+ and the incidente−.

C. Comparison with an alternative symmetrization procedure

An alternative procedure for the symmetrization of the
total wave function was proposed by Spirkoet al. [27].
Spirko et al. describe how rovibrational wave functions of
differentD3h representations,G=A1

z , A2
z , Ea

z, andEb
z, are ob-

tained from the products of rotational and vibrational parts.
We use the symbolz to specify the parity of a state, where
z=8 or z=9. (In Ref. [27], the symbol † was used for this
purpose.) In the approach of Ref.[27], the rotational states
with G=A1

z , A2
z , Ea

z, or Eb
z are obtained by combining the

symmetric top statesuN+,K+,m+l (Eqs. (59)–(61) of Ref.
[27]). Then products of rotational and vibrational states are
constructed. At the next step, these products are symmetrized
again to give rovibrational states of good symmetry. This
final step is quite laborious since one has to consider all
possible combinations of different rotational and vibrational
states(Eqs. (62)–(77) of Ref. [27]). To properly include all
states of different nuclear spin symmetries, one would have
to construct nuclear spin states and then use a similar sym-
metrization procedure(Eqs.(62)–(77) of Ref. [27]) one more
time. In implementing the procedure of Spirkoet al. for con-
struction of thee−+H3

+ scattering matrix, we have found
that it is difficult to obtain all states of the right symmetry.
When carried out incorrectly, our scattering matrix displayed
nonzero matrix elements between states of different symme-
tries, which of course signals an error. For this reason, we

FIG. 2. Lowest adiabatic hyperspherical potentials of the H3
+

ion plotted as functions of hyperradius. Potentials of theA1 sym-
metry are plotted with solid lines,A2 curves are represented with
dot-dashed lines, andE curves are represented with dashed lines.
Every E curve is doubly degenerate. For several lowest curves we
also specify approximate quantum numbersv2 and l2. For excited
hyperspherical states such quantum numbers cannot be defined
since the three-dimensional ionic potential is strongly anharmonic
at large energies. As is clear in the figure the potentialv14

4 is
already strongly shifted from its partnersv14

2 and v14
0 toward to

the next family of statesv15
l2.
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think that our symmetrization procedure is advantageous for
the present study, where we typically include and symme-
trize hundreds of states. Our procedure involves only two
simple steps and can be easily automated on a computer.
First, the products of rotational, vibrational, and nuclear spin
nonsymmetrized states are constructed. For each product, the

numberG̃ [or the total symmetry for the states that are trivi-
ally symmetrized, such as Eq.(6)] is determined. It describes
behavior of the product under the symmetry operations(12)
and (123). Then the symmetrization procedure(if it is not
trivial) is accomplished by a single equation[see Eq.(3)].

To facilitate the comparison with the procedure, proposed
by Spirko et al. [27], we introduce a “helicity” pair of de-
generateE states, which transform in a uniform way, irre-
spective of their nature: rotational, vibrational, or nuclear
spin. We determine two degenerate statesuE+l and uE−l by
their symmetry properties

s123duE±l = e±is2p/3duE±l,

s12duE±l = uE7l, s10d

irrespective of coordinates: rotational, vibrational, electronic,
or nuclear spin. Using Table II of Ref.[9], it can be easily
verified that rotational uE±

r,zl states are obtained from
uN+,K+,m+l according to

uE+
r,zl = uN+,K+,m+l, if K+ = 3k̃ + 1, s11d

uE−
r,zl = s− 1dN+

uN+,− K+,m+l, if K+ = 3k̃ + 1,

uE+
r,zl = uN+,− K+,m+l, if K+ = 3k̃ + 2,

uE−
r,zl = s− 1dN+

uN+,K+,m+l, if K+ = 3k̃ + 2.

In the above equation,k̃ is a non-negative integer. Vibra-
tional uE±

vl states are obtained using Eq.(8) as

uE±
vl = uv1,v2

±ul2ul, if ul2u = 3k̃ + 1,

uE±
vl = uv1,v2

7ul2ul, if ul2u = 3k̃ + 2. s12d

In addition to uE±l states we introduce another pair of
statesuEal and uEbl as

uE±l =
1
Î2

suEal ± i uEbld. s13d

or

uEal =
1
Î2

suE+l + uE−ld,

uEbl =
1

iÎ2
suE+l − uE−ld. s14d

The statesuEal and uEbl are real. Using Eqs.(10) and (14),
we obtain that

s12duEal = uEal,

s12duEbl = − uEbl. s15d

Using Eqs.(10), (13), and (14) and the fact thate±is2p/3d

=−s1/2d± isÎ3/2d, we have for the operation(123)

s123duEal = −
1

2
uEal −

Î3

2
uEbl,

s123duEbl =
Î3

2
uEal −

1

2
uEbl. s16d

At this stage, we can compare the present convention for
uEal and uEbl states with the one from Ref.[27]. Comparing
formulas(15) and (16) with Eqs.(51)–(54) of Ref. [27], we
conclude that the two conventions foruEal and uEbl vibra-
tional states coincide. A comparison for rotationaluEal and
uEbl states should account for a different choice of coordinate
axes made in Ref.[27] and in the present study. In order to
compare with the present work, axesx and y in Ref. [27]
must be exchanged. This will affect Eqs.(60) and (61) in
Ref. [27]: The factors−1dJ in Eqs.(60) and (61) at the sec-
ond term of the equations must be omitted. After this modi-
fication, Eqs.(60) and (61) in Ref. [27] describe exactly the
same states as the rotational states determined in Eqs.(11)
and (14) of the present study.

Now we can derive formulas(62)–(77) of Ref. [27] for
the product of rotational and vibrational states. Consider, for
example, Eq.(75) of Ref. [27] describing an overallEb state
composed fromuEal and uEbl rotational and vibrational
states. Using Eq.(14) and the fact thatuE+l= uE−l ^ uE−l and
uE−l= uE+l ^ uE+l, we derive

uEb
zl =

1

iÎ2
suE+l − uE−ld

=
1

iÎ2
fuE−

vluE−
r,zl − uE+

vluE+
r,zlg

=
1

i2Î2
hsuEa

vl − i uEb
vldfuEa

r,zl − i uEb
r,zlg − suEa

vl + i uEb
vld

3fuEa
r,zl + i uEb

r,zlgj

= −
1

iÎ2
fuEa

vluEb
r,zl + uEb

vluEa
r,zlg. s17d

Comparing with Eq.s75d of Ref. f27g we see that theuEbl
function of Eq.s75d differs from our state by an overall sign.
The sign is important since it affects the result of thes123d
operation.(The correspondinguEal state fEq. s70d of Ref.
f27gg has the correct sign.) Note that Eq.s75d of Ref. f27g
also has a typographical error: Instead of symbolA2 in the
first term, there should beuEal.

The rest of the formulas,(62)–(77) in Ref. [27], can be
derived in a similar way.
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III. THE SCATTERING MATRIX FOR AN ELECTRON
COLLIDING WITH H 3

+

A. Short-range scattering matrix of H3
++e− in presence

of Siegert vibrational pseudostates

Once vibrational Siegert pseudostates are calculated, the
scattering matrix, describing the collision of the electron
with the vibrating H3

+ ion, can be constructed. A vibrational
frame transformation[33] can be used to calculate the am-
plitude Si,i8 for the scattering from one vibrational statei8 to
anotheri. Here, the indicesi and i8 enumerate vibrational
states and states of different projectionsL of the electron
angular momentum. The vibrational part of the indices is
represented by the triadhv1,v2

l2j: The pairv2
l2 represents one

hyperspherical curveUi
+sRd; the index v1 enumerates the

Siegert pseudostates lying within that curve. Therefore the
amplitudeSi,i8 for the process

e−sL8d + H3
+sv18,v28

l28d → e−sLd + H3
+sv1,v2

l2d s18d

is calculated in two steps, similar to the two-step calculation
of vibrational energies. First, we determineR-dependent am-
plitude

Sv2,l2,L;v28,l28,L8sRd = ŠkFv2,l2
uSL;L8sQduFv28,l28

l‹su,wd, s19d

where the double brackets means an integration over hyper-
angles at constant hyperradiusR, andQ represents three in-
ternuclear coordinates. The scattering matrixSL;L8sQd in-
cludes the Jahn-Teller interaction and is calculated from the
reaction matrixK as described in Ref.f9g (see Eqs.s18d–s20d
of Ref. f9g).

The scattering matrixSsQd in Eq. (19) has indicesL and
L8 and represents an amplitude for the process:

e−sl = 1,L8d + H3
+sQd → e−sl = 1,Ld + H3

+sQd. s20d

Therefore, SL,L8sQd represents the scattering amplitude
when the electron scatters from one channelL to anotherL8,
while the nuclei do not have time to move. Equations20d
describes the short-range H3

++e− collision in the clumped-
nucleus approximation, where nuclear degrees of freedom
are not yet coupled to the electronic degrees of freedom.

The equation for the second step reads similarly as

Sv1,v2,l2,L;v18,v28,l28,L8

= kcv1,v2,l2
sRduSv2,l2,L;v28,l28,L8sRducv18,v28,l28

sRdlS, s21d

where bracketsklS means the integration in the sense of Sieg-
ert pseudostates, i.e., with an implied surface termf9,14–16g:

kcv1,v2,l2
sRduSv2,l2,L;v28,l28,L8sRducv18,v28,l28

sRdlS

=E
0

Rf

cv1,v2,l2
sRdSv2,l2,L;v28,l28,L8sRdcv18,v28,l28

sRddR

+ i
cv1,v2,l2

sRfdSv2,l2,L;v28,l28,L8sRfdcv18,v28,l28
sRfd

kv1,v2,l2
+ kv18,v28,l28

. s22d

When the integral in the above equation is evaluated, the

usual complex conjugation of the bra wave function
cv1,v2,l2

sRd is omitted. The quantitykv1,v2,l2
is a complex

wave number obtained from the complex energyEv1,v2,l2
of

the corresponding Siegert stateuv1,v2
l2l f9,16g:

Ehv1,v2,l2j = khv1,v2,l2j
2 /s2md + Dv2,l2

, s23d

where Dv2,l2
is the dissociation limit of the corresponding

adiabatic hyperspherical curveUv2,l2
sRd. In the present ap-

proachDv2,l2
is approximated by a value ofUv2,l2

sRd at large
hyperradiusRf, Dv2,l2

=Uv2,l2
+ sRfd.

Due to the presence of Siegert states with complex
eigenenergies, this electron-ion scattering matrix is not uni-
tary. The nonunitarity accounts for the fact that the electron
can become stuck in the ion, leading to the dissociation of
the system into neutral products.

B. Rotational frame transformation and the final short-range
scattering matrix

The electron-ion scattering matrixSi,i8, constructed above,
does not account for the possibility of rotational excitation of
the ion. If the H3

+ ion is initially in one rotational state
sN+8 ,K+8d, a collision with the electron can scatter the rota-
tional state intosN+,K+d. Thus, an elementSi,i8 of the total
scattering matrixS describes a transition from one ro-

vibrational state i8=hv18 ,v28
l28jsN+8 ,K+8d to another i

=hv1,v2
l2jsN+,K+d. In indices i and i8, we do not specify

quantum numbers that are conserved during the collision.
These quantum numbers are the total energyE, the total
nuclear spinI of H3

+, the total angular momentum of the
systemN and its projectionm on the laboratoryz axis [see
Eq. (26) below] and, finally the total symmetry of the sys-
tem: A28 or A29.

The change in the rotational excitationsN+8 ,K+8d
→ sN+,K+d is taken into account using the rotational frame
transformation approximation[13,33]: Such a transition oc-
curs mainly when the electron approaches close to the ion.
Since a basis of rotational functions exists for which the
short-range rotational Hamiltonian is diagonal, the transition
amplitude forsN+8 ,K+8d→ sN+,K+d can be described by con-
sidering the coefficients that link the long-range quantum
numberssN+,K+d with the short-range quanta. The short-
range rotational states are specified by the projectionL of
the electronic angular momentuml on the ion-fixedZ axis

and by the projectionK of the total angular momentumNW

=NW ++ lW of the neutral molecule on the sameZ axis. N and l
are conserved quantum numbers in both rotational bases.
(This is one approximation of our treatment, because in re-
ality l-changing collisions can occur with a small amplitude.)
Below, we present a detailed description of the rovibrational
frame transformation for thee−+H3

+ system and specify all
quantum numbers in both regions of interaction betweene−

and H3
+.

At large electron-ion distances, the system is described by
the electronic angular momentuml and its projectionl on
the laboratoryz axis, by the total ionic angular momentumN,
its projectionm+ on the laboratoryz axis and its projection
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K+ on the molecular symmetry axisZ. Correspondingly, we
represent the wave function of thee−+H3

+ system by a prod-
uct of Ft

n.sym and Yllsu ,wd (at this stage we do not specify
electronic radial part of the total wave function):

RN+m+K+sabgdYllsu,wdVsv1,v2
l2dFI . s24d

The anglesu ,w are spherical angular coordinates of the elec-
tron in the laboratory coordinate systemsLSd.

At short distances, the most appropriate molecular states,
i.e., the states that almost diagonalize the Hamiltonian, are

specified by the projectionL of lW on the molecularZ axis; by
three internuclear coordinatesQ since these remain approxi-
mately frozen during a single collision; by the total angular
momentum of the systemN, including the electron momen-
tum; and by its projections on the molecularZ axis, K, and
on the laboratoryz axis,m. Thus, the total wave function at
short distances is

uN,K,m,L;v1,v2
l2l = s− 1dl−LRN+m+K+sabgdYlLsu8,w8duQlFI .

s25d

The anglesu8 ,w8 determine the position of the electron rela-
tive to the molecular coordinate systemsMSd. The transfor-
mation between the two wave functions isf9g

uN+,K+;N,m;v1,v2
l2l = o

L

Cl,−L;N,K
N+,K+

uN,K,m,L;v1,v2
l2l,

s26d

which can be considered as if two angular momentaNW and lW

with projectionsK and −L were added to give the momen-

tum NW + with the projectionK+=K−L. The quantum numbers
N, l ,m are not changed by the rotational, Eq.s26d, nor vibra-
tional frame transformations, Eqs.s19d and s21d. Therefore,
they are good quantum numbers at short and long distances,
within the approximation of this study.

Note that all three projectionsL ,K ,K+ can be negative or
positive. Equation(26) differs, for example, from the one in
Ref. [34] where all rotational functions are symmetrized with
respect to different signs of projections. We keep both nega-
tive and positive projections explicitly in order to symme-
trize products of electronic, rotational, vibrational, and
nuclear spin components of the total wave functions at the
very final step. As was mentioned above, this simplifies the
symmetrization procedure.

The total short-range scattering matrix can now be con-
structed using the frame transformation techniques: When
the electron is far from the ion, the interaction Hamiltonian is
diagonal in the basis of the long-range wave functions; at
short distances, short-range wave functions almost diagonal-
ize the Hamiltonian. The short-range Hamiltonian is not ex-
actly diagonal in the basis of states of Eq.(25). It has off-
diagonal elements inL, owing to the Jahn-Teller coupling.
The following selection rules can be formulated:(i) The
Hamiltonian can only couple vibrational states of the same
vibrational symmetry and the same value ofL, or (ii ) A
p-wave electron can couple the rovibrational channels ac-

cording to the rulesL=1,l2=−1d↔ sL8=−1,l28=1d. These
selection rules insure that the total symmetryG of the system
is conserved during the collision.

The actual form of the coupling matrixSL,L8sQd is given
in Refs.[7,25,26]. The final scattering matrix is represented
as

S
N+,K+,v1,v

2
l2;N+8,K+8,v18,v

28
l28

sN,K,m,l,I,Gd

= o
L,L8

Cl,−L8;N,K
N+8,K+8 FE

S
Vsv18,v28

l28;QdSL,L8sQd

3Vsv1,v2
l2;QddQGCl,−L;N,K

N+,K+
. s27d

The integraleS in the above equation is evaluated according
to Eqs.s19d and s21d. The scattering matrix of Eq.s27d is
diagonal over quantum numbersN, K , l , m, I, and G. In
the above equationG specifies the total molecular symmetry
G=A28 or A29 of the considered state;I specifies the total spin
1/2 or 3/2. Therefore, photoionization oscillator strengths
can be calculated separately for all possible values of these
quantum numbers.

In practice, we calculateS using nonsymmetrized states
of the types(1) and (24). The symmetrization procedure of
Eq. (5) is then performed directly on the scattering matrix.
Let the total dimension of the matrixSN+,K+,v1,v

2
l2;N+8,K+8,v18,v

28
l28

be Ntot3Ntot. For the full specification of the scattering pro-
cess, the photoionization threshold energies of rovibrational
statesi =hv1,v2

l2jsN+,K+d ; i =1,2, . . .Ntot are needed. We use
accurate energies available in the literature[35,36]. For some
excited rovibrational levels, however, where no data exist,
the energies were calculated using the adiabatic hyperspheri-
cal and rigid-rotor approximations. Another group of even
higher energies are found to be complex, as expected for our
Siegert pseudostate representation.

Equation (27) gives theNtot3Ntot scattering matrix de-
scribinge−+H3

+ collisions. This matrix will be used to cal-
culate the photoionization oscillator strengths.

IV. OSCILLATOR STRENGTHS FOR THE
INTERPRETATION OF H 3 PHOTOIONIZATION

EXPERIMENTS

We apply our method to describe two photoionization ex-
periments involving the H3 molecule[4,5]. Both experiments
have previously been successfully interpreted using multi-
channel quantum defect theory[5–7]. The present approach
differs from previous theoretical studies. Two main differ-
ences are(i) the adiabatic hyperspherical method employed
for vibrational degrees of freedom and(ii ) an inclusion of the
previously missed factors−pd in the Jahn-Teller parameters
d and l. Below we give a detailed description of how the
dipole transition moments and oscillator strengths are calcu-
lated.

A. Vibrational wave function of the initial state

In the experiment by Bordaset al. [4], the spectrum of the
photoionization process,
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H33sA28sN8 = 1,K8 = 0,h000jd + v1 → H3
+ + e−, s28d

was measured. Here,v1 is the photon energy. In the second
experiment by Mistríket al. [5], a similar process was inves-
tigated. Mistrík et al. investigated photoionization starting
from a different initial vibrational state,

H33sA28sN8 = 1,K8 = 0,h100jd + v2 → H3
+ + e−, s29d

wherev2 is the photon energy. In both processes indicated,
the initial symmetryA28 refers to the total molecular symme-
try. The total molecular spin isI =3/2 in both experiments.
The total symmetry can be viewed as a direct product of the
symmetryA28 of the H3

+ ion with N+=1,K+=0,I =3/2 and
the symmetryA18 of the 3s electron. The dipole moment op-
erator transforms according to irreducible representationA19
of theD3h group, since the dipole operator is proportional to
the spherical harmonicY1msu8 ,f8d. As a result, the final
state of the electron-ion complex must haveA29 total symme-
try. Since we only consider final electronic states withl =1
sthe symmetry isA19, when the electron is at large distances
from the iond, the final symmetry of the ion should beA28.

As in to the previous theoretical treatments[5–7], in order
to evaluate the dipole transition moments from the initial
states in Eqs.(28) and (29), we use the 3s molecular poten-
tial surface of H3 calculated by Nager and Jungen[37], in a
Coulomb approximation. Vibrational wave functions of the
h000j and h100j initial states were calculated using the adia-
batic hyperspherical approach as described above.

B. Scattering wave function ofe−+H3
+: All asymptotic

channels are open

In the preceding section, the scattering matrix for
electron-ion collisions have been presented. However, for de-
termination of transition dipole moments we need to know
not only the scattering matrix, but also wave functions of
corresponding scattering states. Following general quantum
defect theory[10,12], we start with a scattering wave func-
tion assuming that the electron energy is so large that all
possible entrance channels are open. We use the same phase
conventions for wave functions as in Ref.[12]. The wave

functionCW i8 having outgoing wave in the channeli only can
be represented as aNtot component vector, where each com-
ponentCii8 with i =1, . . . ,Ntot corresponds to the incoming
wavein channeli:

Cii8 = Fisvd
1

iÎ2
ff i

+srddii8 − f i
−srdSii8

† g,

i = 1, . . . ,Ntot. s30d

The functionsf i
± are outgoing/incoming waves in channeli.

They are defined in Ref.[12]. The factorFisvd is a part of
the total wave function;v includes all degrees of freedom
excluding the radial one,r. The wave function(30) can be
considered as a complex conjugation of(or time-reversed to)
the familiar incoming wave scattering state, having an in-
coming wave only in the channeli8. There areNtot functions
of the Type(30) and the whole set ofNtot wave functions

with Ntot components can be considered as aNtot3Ntot ma-
trix C.

C. Scattering wave function ofe−+H3
+ when some

channels are closed

When the energy of the system is low enough such that
some asymptotic channels are closed to ionization, the total
wave function of the system must asymptotically(in the ra-
dial coordinater) vanish in the corresponding channels.
Thus, the total wave function differs from the one given by
Eq. (30). Let No and Nc=Ntot−No represent the numbers of
open and closed channels at a given total energyE. In this
situation: (i) there are onlyNo physically acceptable wave
functions of the Type(30) instead ofNtot; (ii ) theseNo func-
tions are zero at infinity in closed channels. Every acceptable
wave function should have the following asymptotic behav-
ior [12]:

Cii8
s−d → Fisvd

1

iÎ2pki

seikirdii8 − e−ikirSii8
†physd, i = 1, . . . ,No;

Cii8
s−d → 0, i = No + 1, . . . ,Ntot. s31d

As is well known, and shown in Refs.[10,12], one way to
obtain states with this asymptotic behavior is to construct

linear combinations of statesCW i8. In the matrix form this can
be written as

Cs−d = CB. s32d

TheNtot3No matrix Cs−d consists ofNo vectors, each hav-
ing Ntot components. TheNtot3No matrix B of the linear
transformation is derived in Ref.f12g. If we partition the
coefficient matrix into open and closed subspaces, as

B = SBo

Bc
D , s33d

the open-channel partBo is represented by anNo3No iden-
tity matrix and the closed partBc is

Bc = − sScc
† − e2ibd−1Sco

† . s34d

In the above equation the matricesScc
† andSco

† are submatri-
ces ofS†, which is itself partitioned as
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S† = SSoo
† Soc

†

Sco
† Scc

† D s35d

andbsEd is a diagonalNc3Nc matrix

bi jsEd =
p

Î2sEi − Ed
di j , s36d

where Ei refers to a particular ionization thresholdi
=hv1,v2

l2jsN+,K+d.
After we apply the transformation(32), the component

C
oi8
s−d of the ith independent wave functionCW

i8
s−d in the open

channelo is given outside the reaction volume by

Coi8
s−d = Fosvd

1

iÎ2
ffo

+srddo,i8 − fo
−srdSoi8

†physg,

o = 1, . . . ,No, s37d

where the physicalNo3No scattering matrixS†phys is

S†phys= Soo
† − Soc

† sScc
† − e2ibd−1Sco

† . s38d

The closed-channel componentsC
ci8
s−d of CW

i8
s−d are determined

by

Cci8
s−d = FcsvdWcsrdZci8,

c = No + 1, . . . ,Ntot. s39d

In the above equation,Wcsrd is the Whittaker function andZ
is theNc3No matrix of closed-channel coefficients(see Eqs.
(2.52–2.54) of Ref. [12]). In a compact notation, the wave

function CW
i8
s−d can be written as[12]:

CW s−d = o
o=1

No

Fosvd
1

iÎ2
ffo

+srddo,i8 − fo
−srdSoi8

†physg

+ o
c=No+1

Ntot

FcsvdWcsrdZci8. s40d

D. Dipole moments of transitions from the initial bound state
of H3 to scattering states

We need to evaluateNo dipole transition moments
from a fixed initial state, Cini =f3s2A28 ,h000js1,0dg or

f3s2A28 ,h100js1,0dg into all No final statesCW f
s−d. Each such

moment is represented as

df = kCW f
s−dueW · rWuCinil, s41d

whereeW is a unitary vector of laser light polarization. The
initial state is closed for autoionization and, therefore, is rep-
resented asCini =FinisvdWinisrdnini

−3/2. The factornini
−3/2 is due

to the unity normalization of the initial bound state: The
Whittaker function itself vanishes at infinity, but is chosen
to have an energy-normalized amplitude at smallr. There-
fore, the dipole momentdf is written as

df = o
j=1

No KF jsvd
1

iÎ2
ff j

+srdd j ,f − f j
−srdS j f

†physgueW · rWuFinisvdWinisrdnini
−3/2L + o

j=No+1

Ntot

kF jsvdWjsrdZjf ueW · rWuFinisvdWinisrdnini
−3/2l.

s42d

The dipole momentdf above depends strongly on energy and, therefore, it must be calculated at a fine energy mesh.
Calculation of all terms in Eq.(42) is computationally expensive. However, inspecting the terms in Eq.(42), we notice, that
each term can be represented as a product of two factors: one factor depends strongly on energy, another factor is weakly
energy dependent. Briefly, the two sums above can be combined in one single sum of the form:

df = o
j=0

Ntot

d̃jṽ j f , s43d

where each term of the sum is represented as product of two factorsd̃j and ṽ j f :

d̃j =5KF fsvd
1

iÎ2
f f
+srdueW · rWuFinisvdWinisrdnini

−3/2L , if j = 0

KF jsvd
1

iÎ2
f j
−srdueW · rWuFinisvdWinisrdnini

−3/2L , if j = 1, . . . ,No

kF jsvdWjsrdueW · rWuFinisvdWinisrdnini
−3/2l, if j = No + 1, . . . ,Ntot

s44d
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ṽ j f = 51, if j = 0

− S j f
†phys, if j = 1, . . . ,No

Zjf , if j = No + 1, . . . ,Ntot

s45d

Note that in Eq.s43d the summation starts atj =0 but not at
j =1 as in Eq.s42d. This is because we represent the term
with j = f in Eq. s42d as a sum of two terms in Eq.s43d, with
j =0 fcorresponds tof j

+srdd j ,fg and with j = f fcorresponds to
f j
−srdS j f

†physg. This is necessary in order to separate energy
dependent factors from energy independent ones.

The partitioning given by Eq.(43) allows us to signifi-
cantly reduce the calculation time, because over the small
range considered in this calculation, it is adequate to evaluate

d̃j only once for all energies. However,d̃j should be calcu-
lated at every energy point.

E. Transition dipole moment: Integration over all degrees
of freedom

Calculation ofNtot dipole moments of Eq.(42) implies
integration over all degrees of freedom. In practice, the inte-
gration is accomplished in several steps. First, we integrate
over radial coordinater, calculating geometry dependent el-
ementsmo

± andmc:

mo
±sQd = ±

1

iÎ2
E

0

`

fo
±srdWinisrdnini

−3/2rdr ,

mcsQd =E
0

`

WcsrdWinisr ;Qdnini
−3/2sQdrdr . s46d

In order to avoid strong energy-dependence of these ele-
ments, we do not include factorsSoi8

†phys andZci8 at this stage
of the calculation. Therefore, the elementsmo

± and mc are
essentially independent of the photoionization energy.

In Eq. (46) the Whittaker functionWinisrd is calculated for
l =0 and the effective quantum numbernini

−3/2sQd that depends
on configuration and linked to the 3s potential of H3 as

ninisQd =
1

Î2fV+sQd − V3ssQdg
, s47d

whereV+sQd is the ionic potential andV3ssQd is the potential
of the 3s state. Quantum defects needed to calculate func-
tionsWcsrd and fo

±srd of final states are obtained from diago-
nalization of the scattering matrixS. The integral of Eq.s46d
is calculated numerically.

When evaluating Eq.(46), we must choose the principal
quantum numbern for final states(n is always 3 for the
initial state). For a given energyE of the photoionizing neu-
tral molecule,nf is determined individually for every final
statef using ionization threshold energyEf

+ of the channelf.
If E approaches closely to the thresholdEf

+, we take a large
but finiten, typically n=20. Such approach is justified by the
fact that the overlap in Eq.(46) depends weakly onnf if nf is
significantly larger thanni =3. In principal, this procedure
can be used for each photoionization energyE. Since the
typical theoretical spectrum is calculated for typically more

than 105 energy points, this makes the evaluation of Eq.(46)
at all energiesE expensive. To reduce the calculation time,
we have adopted fixed values ofn f and, therefore, fixed over-
laps in Eq.(46) for several energiesE. SincemjsQd in Eq.
(46) varies slowly withE, this approach provides much more
rapid and sufficiently accurate values of the matrix elements
in Eq. (46).

The next step in our evaluation of the dipole moments of
Eq. (42) is the integration over the vibrational coordinatesQ.
The total vibrational function in the adiabatic approximation
is represented as a product of hyper-radial and hyperangular
componentsCvibsQd=cv1

sRdFv2l2
su ,fd. Knowing the wave

functionsCvibsQd and theQ-dependent matrix moments of
Eq. (46), we can calculate the desired dipole matrix elements
between initial and final vibrational states as follows:

Rshv1,v2
l2j j ;hv1,v2

l2jinid =E dQChv1,v2
l2j

vib* sQdmjsQdCini
vibsQd,

s48d

wheremj is mo
± or mc. In the same manner as for the scatter-

ing matrix, we evaluate this integral in two steps; first in the
space of hyperangles, then in the space of the hyper-radius.

The next step is to evaluate the integration over angular
coordinates in Eq.(44). To do this, we write explicitly all
quantum numbers of the final and initial wave functions,
which is given by Eq.(24), and we write the dipole moment

d̃j as

d̃j = kNj
+,Kj

+;Nj,mjhv1,v2
l2j jueW · rWuNini

+ ,Kini
+ ;Nini,minihv1,v2

l2jinil.

s49d

This expression can be represented in a form that is more
suitable for our calculations. After some angular momentum
algebrasfor more details see the Appendixd we derive the

following formula for the dipole momentd̃j.

d̃j =
1

Î2Nj + 1
C1,0;1,mini

Nj,mini o
L j

s− 1d1−L j

3Cl j,−L j;Nj,L j

Nj
+,0 C1,L j;1,0

Nj,L j Rshv1,v2
l2j j ;hv1,v2

l2jinid. s50d

It gives the dipoles momentsd̃j in terms of vibrational matrix
elements of Eq.s48d, which are calculated numerically.

In applying the present treatment to the interpretation of
the photoionization experiments by Bordaset al. [4] and by
Mistrík et al. [5], we consider only two different initial states
specified by the set of quantum numbersi
=fhv1,v2

l2jinil iniLinig. For the final state,fhv1,v2
l2j j l jL jg, only

the index l j =1 is fixed—we consider onlyp wave final
states.

F. Final theoretical photoionization spectrum

After the matrix elementsd̃j have been obtained, the di-
pole transition momentsdf are calculated using Eq.(42). As

we mentioned before,d̃j can be calculated once and used for
all photoionization energies, provided the energy range of the
entire calculated photoabsorption spectrum is not too exten-
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sive. However, the coefficientsṽ j f must be recalculated at
every final state energy of the theoretical photoionization
spectrum. Having calculated the dipole transition moments
df, the total oscillator strength into the open ionization chan-
nels is then given by[11]

df

dE
= 2vo

f=1

No

udfu2, s51d

wherev is the frequency of the laser light.

G. Quantum defect parameters used in the calculation

In order to construct the scattering matrix and dipole mo-
ment vector, we use the quantum defect parameters
d ,l ,mL=0sQd, and mL=±1 determined by Mistríket al. [5]
from accurateab initio calculations of potential-energy sur-
faces of H3. As mentioned in our previous work[8,9], the
parametersd ,l determined in Ref.[5] should be multiplied
by factor −p in order to correct the convention inconsistency
in the definition of the reaction matrixK in Ref. [5]. The
parametersd ,l ,mL=0sQd ,mL=±1 are slightly different for dif-
ferent Rydberg states[5]. In our calculation we use values
obtained for n=4 Rydberg states:d=−p1090 cm−1,l
=−p12 360 cm−1, mL=±1=0.395. The quantum defect
mL=0sQd depends weakly on nuclear configurationQ. We
use mL=0sQd from Ref. [5]. The ionization energies of 40
lowest states are taken from the same reference.

V. RESULTS AND COMPARISON
WITH THE EXPERIMENTS

In the experiment by Bordaset al. [4], the initial state of
H3 is the statei1;fH3A28stotdh000jsN=1,K=0d ,3sg, the ini-
tial state in the experiment by Mistríket al. [5] differs only
by the symmetric stretch vibrational quantum numberv1,
which is singly excited: i2;fH3A28stotdh100jsN=1,K
=0d ,3sseldg. The energy difference between these two states
is 3212.6 cm−1. In the first experiment the energy region
around the ground rovibrational level of the ion is probed by
a tunable laser. The energy difference between the statei1
and the ground rovibrational statefH3

+A28siondh000jsN+

=1,K+=0dg of the ion is 12 867.6 cm−1. In the second ex-
periment[5], the energy region around the state with singly
excitedv1=1 modefH3

+A28siondh100jsN+=1,K+=0dg of the
ion is probed. The energy difference between these two ionic
levels, and fH3

+A28siondh000jsN+=1,K+=0dg, is
3176.06 cm−1. In the present treatment the energy origin is
set to the ground ionic state.

Figures 3 and 4 show experimental and calculated spectra
for the two experiments. The overall agreement is quite
good. Below we give a more detailed discussion of the com-
parison between the experiments and our calculation.

In constructing the theoretical spectrum, we have com-
bined the spectra forN=0 andN=2 according to the experi-
mental conditions. Specifically, to compare our theoretical
results with the experiment by Bordaset al., we have
summed up the separate theoretical spectra forN=0 andN
=2. To compare with the experiment by Mistríket al. we

have accounted for a fixed angle of 60° between the linear
polarization vectors of two the lasers used in the experiment.
We used the prescription of Ref.[5], according to which the
final spectrumdf /dE is constructed as

df

dE
=

1

4

df0
dE

+
13

16

df2
dE

, s52d

wheredf0/dE and df2/dE are the spectra calculated forN
=0 andN=2, respectively.

The energy regions accessible in the experiments have
three qualitatively different regimes, namely, the discrete,
Beutler-Fano and continuum regimes.

The Beutler-Fano regime arises at energies between two
different rotational levels associated with the same vibra-
tional state. For both experiments, this region occurs at final
state energies between thefhv10

0jsN+=1,K+=0dg and

FIG. 3. Comparison of calculated photoionization spectra(upper
and middle panel) and the experimental(lower panel) spectrum
obtained by Bordaset al. [4]. In this experiment, the initial state of
H3 is f3s2A28 ,h000js1,0dg. The upper panel shows theoretical spectra
calculated separately forN=0 (black line) andN=2 (gray line). The
middle panel shows the sum result of the two spectra convolved
with the experimental resolution width 0.15 cm−1. Therefore, the
spectrum in the middle panel should be compared with the experi-
mental spectrum. Here and in all following figures, the energy is
related to the ground rovibrational level of H3

+sA28d ,h000js1,0d.
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fhv10
0jsN+=3,K+=0dg states of the ion, wherev1=0 for the

experiment of Ref.[4] andv1=1 for the experiment of Ref.
[5]. Autoionization in this region usually occurs quite rapidly
compared to autoionization in other energy ranges. Consider,
for example, an electron is excited into a Rydberg state at-
tached to thefhv10

0jsN+=3,K+=0dg ionic level, at a total
energy abovehv10

0jsN+=1,K+=0dg. Since both rotational
levels have the same vibrational excitation, the correspond-
ing Franck-Condon overlap between the Rydberg state and a
continuum state of thehv10

0jsN+=1,K+=0dg level is very
favorable, which generates a large autoionization width, as is
evident in the Beutler-Fano regions of both experiments. Fig-
ure 5 shows a detailed comparison between theory and the
experiment[4] for the Beutler-Fano region, and Fig. 6 pre-
sents a detailed comparison with the second experiment[5].
The agreement between theory and experiment is good,
which is the evidence supporting the approximations we
have adopted in our theoretical description.

The continuum regime is situated above the correspond-
ing Beutler-Fano energy range. Generally, autoionization is
much slower in such regions. Figure 7 compares the calcu-
lated spectrum with the experiment of Ref.[4]. We draw
attention to two broad resonances around 740 cm−1 and
950 cm−1. Not only do these nicely reproduce the experi-
mental spectrum, but also, importantly, they are caused by
Jahn-Teller coupling. However, in the previous experimental

and theoretical studies, these features were ignored, probably
because they were construed as noise. The present calcula-
tion suggests that these are real resonances, broadened by a
strong interaction between rotational and vibrational degrees
of freedom. Figure 8 compares the present calculation with
the results of Ref.[5]. In this figure we would like to note

FIG. 4. Comparison of the theoretical(upper panel) spectrum
with the observed one(lower panel) from experiment of Ref.[5]. In
this experiment, the initial state differs from the experiment by Bor-
daset al.: f3s2A28 ,h100js1,0dg. In constructing the theoretical spec-
trum, we have combined the spectra forN=0 andN=2 according to
experimental conditions(see text). The final spectrum is convolved
with the experimental resolution width of 0.2 cm−1.

FIG. 5. Comparison between theoretical(upper panel) and ex-
perimental(lower panel) results: the Beutler-Fano part of the spec-
trum shown in Fig. 3. This energy region corresponds to energies
betweenh000jN+=3 andh000jN+=1 ionic rotational levels. The se-
ries of wide resonances are due to the fast rotational autoionization
of states withN+=3 to an open continuum of theN+=1 rotational
level. Interlopers at 70 cm−1 and 150 cm−1 are two examples of
resonances playing an important role in DR of H3

+.

FIG. 6. Theoretical(upper panel) and experimental(lower
panel, from Ref.[5]) Beutler-Fano spectra. Theory reproduces most
of the experimental features.

V. KOKOOULINE AND C. H. GREENE PHYSICAL REVIEW A69, 032711(2004)

032711-12



two other features. The experimental data are rather noisy,
but an inspection of the calculated and experimental spectra
suggests that the calculated resonances appearing around
3770 cm−1 and around 3850 cm−1 correspond to broad ob-
served resonances. Again, the large widths of the two reso-
nances are caused by Jahn-Teller coupling.

The discrete regime is the energy range where autoioniz-
ation of Rydberg states is energetically forbidden. However,

we will follow the convention proposed in Ref.[5] and will
call the region belowfH3

+A28siondh000jsN+=1,K+=0dg as
discrete too when we refer toi2 as the initial state. This
convention is justified by the fact that autoionization of such
states is slow, owing to an unfavorable Franck-Condon over-
lap of these states with the ground ionic state. Figure 9
shows a comparison of experimental[5] and calculated spec-
tra for the discrete spectrum of thei2 initial state.

Although the overall agreement between theory and ex-
periment is still good overall, there are some resonances in
the experimental spectrum that are absent from the calculated
spectrum. Some of these missing resonances could conceiv-
ably be caused by an influence of thed electronic wave. This
possibility was demonstrated by Mistrík[39]. For example,
an additional resonance in the experimental spectrum around
2970 cm−1 appears to be caused by annds Rydberg electron.

VI. CONCLUSION

In the present study, we propose an updated theoretical
method for treatment of photoionization in the H3 molecule.
The main engine of the method, MQDT including the Jahn-
Teller coupling and the rovibrational frame transformation, is
the same as in studies by Stephens and Greene[6,7]. How-
ever, we have improved beyond Refs.[5–7] in the treatment
of the symmetry issues associated with different degrees of
freedom. We have proposed a new and more efficient sym-
metrization procedure that accounts for the symmetries of
nuclear spin as well as the rotational and vibrational parts of
the total wave function. Another improvement is that we in-
clude into the description of H3 photoionization the possibil-
ity that the system may break apart by dissociation in addi-
tion to ionization. To the best of our knowledge, this is the
first time that photodissociation has been included in its com-

FIG. 7. A part of the theoretical(dark line) and the experimental
(gray line) spectra(see Fig. 3) corresponding to the H3 continuum
above theh000js30d rovibrational level of H3

+. Relatively wide
resonances at 740 cm−1 and 950 cm−1 are produced by the Jahn-
Teller coupling between electronic and vibrational motion of H3.
Although the overall agreement between theory and experiment is
better than in previous theoretical studies[4,6,7], several experi-
mental features still exist that are not reproduced in the present
approach.

FIG. 8. Theoretical(dark line) and experimental(gray line)
spectra(see Fig. 4) corresponding to the H3 continuum above the
h100js30d rovibrational level of H3

+. Similar to Fig. 7, the agree-
ment between theory and experiment is better than in the previous
theoretical study[5], but there are several uninterpreted experimen-
tal resonances.

FIG. 9. Theoretical(upper panel) and experimental(lower
panel) [5] spectra of H3 in the quasidiscrete energy region below the
h100js10d rovibrational level of H3

+. The initial state for the dipole
transition(H3 photoexcitation) is f3s2A28 ,h100js1,0dg. This region is
referred as quasidiscrete since states, populated starting from
f3s2A28 ,h100js1,0dg, are only weakly interacting with lower ionic
states withv=h000j.
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petition with photoionization for the richly resonant Rydberg
spectrum of a triatomic molecule. Although in this system,
predissociation apparently does not play an important role
for the overall spectra under consideration, it is important, at
least, for some Rydberg states of H3. In fact, the importance
of the dissociation channel was recently demonstrated ex-
perimentally[40]. In a future study, hopefully, we will inves-
tigate theoretically the predissociation of such Rydberg
states. The inclusion of predissociation could also be impor-
tant in studies of other triatomic molecules. Note that as in
Refs.[8,9], we have corrected the earlier inconsistency in the
reaction matrix convention employed in Refs.[5–7,23]
which results in a multiplication of the Jahn-Teller param-
etersl andd employed in those references by the factor of
−p. In the present study, we have also improved the dipole
moment calculation, and reformulated it in a form that
should be particularly accurate for the photoionization of a
Rydberg molecular initial state. In contrast to most previous
studies of H3 photoionization[5–7], the present treatment
makes use of the adiabatic hyperspherical approach for the
vibrational motion of the nuclei in the H3

+ ion and in the H3
initial state being photoionized. Owing to the adiabatic ap-
proximation, this approach should bea priori less accurate
than the one used in Refs.[5–7], but the loss of accuracy due
to this approximation seems to be small. The possibility of
constructing a unified theoretical description of H3 photoion-
ization and H3

+ dissociative recombination is an attractive
feature of this approach(see Fig. 10).

We have obtained good agreement with both photoioniza-
tion experiments[4,5] and with many of the spectra obtained
in previous theoretical studies[5–7]. In some regions the
agreement with the experiments is even better in the present
study than it was in Refs.[5–7]. We attribute this to the
correction of the aforementioned error in determination of
the Jahn-Teller coupling parametersl and d. Although we
have been able to reproduce most of the observed resonance
features, both in position and in shape, there remain several
features in the experimental spectra that are not described by
our treatment. One possible explanation of the discrepancy
between theory and experiment is the influence ofnd Ryd-
berg states, as proposed by Mistrík[39], because we have not
taken these states into consideration.

In conclusion, we reiterate that we have developed a new
theoretical method that can be applied to a unified treatment
of photoionization and dissociative recombination for mol-
ecules of theD3h symmetry group. Our application to the H3
molecule shows good general agreement with existing ex-
perimental observations of H3 photoionization. The method
has also been shown in our previous study[8,9] to give good
agreement with measurements of H3

+ dissociative recombi-
nation.
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APPENDIX
Here we provide a detailed derivation of Eq.(50) starting

from Eq. (49).
Suppose the laser light is linearly polarized in theZ di-

rection in LS. The covariant spherical tensor components of
the polarization vector are thense+1,e0,e−1d=s0,1,0d. The
vector rW in spherical coordinates is[38]

rm =Î4p

3
ur uY1,msu,fd with m = 0, ± 1. sA1d

Then, the scalar producteW ·rW in LS is

seW · rWdLS=Î4p

3
ur uY1,0su,fd. sA2d

The expression of this product in MS is obtained by an ap-
propriate coordinate rotation,

FIG. 10. The figure demonstrates a correlation between photo-
ionization (upper panel) and dissociative recombination(lower
panel) spectra obtained theoretically and in the experiment. The
upper panel shows both experimental[4] and theoretical spectra,
similar to Fig. 3. The lower panel gives an experimental DR rate
obtained in Ref.[17], which is shown as circles. Gray line in lower
panel gives theoretical probability of DR process, calculated for the
total A28 symmetry of H3

+. This symmetry corresponds to the total
symmetry of H3 in the both photoionization experiments considered
in this study.

V. KOKOOULINE AND C. H. GREENE PHYSICAL REVIEW A69, 032711(2004)

032711-14



seW · rWdMS=Î4p

3
ur uo

L8

Y1,L8su8,f8dfD0,L8
1 sa,b,gdg* .

sA3d

Accounting Eqs.s25d ands26d, the expression for the ampli-
tude of the dipole transition of Eq.s49d becomes

d̃j =Î4p

3 o
L8

kNj
+,Kj

+;Nj,mjhv1,v2
l2j juY1,L8su8,f8d

3fD0,L8
1 sa,b,gdg* uNini

+ ,Kini
+ ;Nini,minihv1,v2

l2jinil

=Î4p

3 o
L8,L j

Cl j,−L j;Nj,Kj

Nj
+,Kj

+

s− 1dl j−L jkRsNj,mj,Kj ;abgd

3Yl jL j
su8,w8dY1,L8su8,f8dfD0,L8

1 sabgdg*

3RsNini,mini,Kini ;abgdYliniLini
su8,w8dlabgu8w8

3Clini,−Lini;Nini,Kini

Nini
+ ,Kini

+

s− 1dl ini−LiniRshv1,v2
l2j j ;hv1,v2

l2jinid.

sA4d

If the initial electronic state is 3s, then YliniLini
=Y0,0

=1/Î4p. The integral over electronic anglesu8 ,w8 is then
trivial, and the relevant angular matrix element is

kYl jL j
su8,w8duY1,L8su8,f8duYliniLini

su8,w8dlu8w8 =
dL j,L8

2Îp
.

sA5d

The integral overa , b, andg angles is evaluated using the
addition theorem for Wigner functions and their normaliza-
tion propertiesf38g:

kRsNj,mj,Kj;abgdufD0,L8
1 sabgdg* uRsNini,mini,Kini;abgdlabg

=Îs2Nj + 1ds2Nini + 1d
s8p2d2 fkDmj,Kj

Nj uD0,L8
1 uDmini,Kini

Nini labgg*

=Îs2Nj + 1ds2Nini + 1d
s8p2d2

3o
N8

fkDmj,Kj

Nj uDmini,Kini+L8
N8 C1,0;Nini,mini

N8,mini C1,L8;Nini,Kini

N8,Kini+L8 labg
*

=Î2Nini + 1

2Nj + 1

3C1,0;Nini,mini

Nj,mini C1,L8;Nini,Kini

Nj,Kini+L8 dNj,N8dmj,mini
dKj,Kini+L8

=Î2Nini + 1

2Nj + 1
C1,0;Nini,mini

Nj,mini C1,L8;Nini,Kini

Nj,Kini+L8 . sA6d

The matrix element then becomes

d̃j =
1
Î3
Î2Nini + 1

2Nj + 1 o
L j

Cl j,−L j;Nj,Kj

Nj
+,Kj

+

C1,0;Nini,mini

Nj,mini C1,L j;Nini,Kini

Nj,Kini+L j

3dmj,mini
dKj,Kini+L j

Clini,−Lini;Nini,Kini

Nini
+ ,Kini

+

3s− 1d1−L jRshv1,v2
l2j j ;hv1,v2

l2jinid. sA7d

Using the fact thatNini =Nini
+ =1,Kini =Kini

+ ,mini =mini
+ =mj ,Kj

=Kini +L j and also the requirementKini
+ =0, which arises

from symmetry restrictions on the initial rovibrational
state, the last relation simplifies in this case to

d̃j =
1

Î2Nj + 1
C1,0;1,mini

Nj,mini o
L j

s− 1d1−L j

3Cl j,−L j;Nj,L j

Nj
+,0 C1,L j;1,0

Nj,L j Rshv1,v2
l2j j ;hv1,v2

l2jinid. sA8d

The last formula is Eq.s50d.
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