6 research outputs found

    On hard real-time scheduling of cyclo-static dataflow and its application in system-level design

    Get PDF
    This dissertation addresses the problem of designing hard real-time streaming systems running a set of parallel streaming programs in an automated way such that the programs provably meet their timing requirements. A scheduling framework is proposed with which it is analytically proven that any streaming program, modeled as an acyclic Cyclo-Static Dataflow (CSDF) graph, can be executed as a set of real-time periodic tasks. The proposed framework computes the parameters of the periodic tasks corresponding to the graph actors and the minimum buffer sizes of the communication channels such that a valid periodic schedule is guaranteed to exist. In order to demonstrate the effectiveness of the proposed scheduling framework, a system-level design flow that incorporates the scheduling framework is proposed. This proposed design flow accepts, as input, algorithmic sequential specifications of streaming programs, and then applies a set of systematic and automated steps that produce, as output, the final system implementation, which provably meets the timing requirements of the programs. The final system implementation consists of the parallelized versions of the input streaming programs together with the hardware needed to run them. The proposed scheduling framework and design flow are evaluated through a set of experiments. These experiments illustrate the effectiveness of the proposed scheduling framework and design flow.Computer Systems, Imagery and Medi

    Diversification and fairness in top-k ranking algorithms

    Get PDF
    Given a user query, the typical user interfaces, such as search engines and recommender systems, only allow a small number of results to be returned to the user. Hence, figuring out what would be the top-k results is an important task in information retrieval, as it helps to ensure that the most relevant results are presented to the user. There exists an extensive body of research that studies how to score the records and return top-k to the user. Moreover, there exists an extensive set of criteria that researchers identify to present the user with top-k results, and result diversification is one of them. Diversifying the top-k result ensures that the returned result set is relevant as well as representative of the entire set of answers to the user query, and it is highly relevant in the context of search, recommendation, and data exploration. The goal of this dissertation is two-fold: the first goal is to focus on adapting existing popular diversification algorithms and studying how to expedite them without losing the accuracy of the answers. This work studies the scalability challenges of expediting the running time of existing diversification algorithms by designing a generic framework that produces the same results as the original algorithms, yet it is significantly faster in running time. This proposed approach handles scenarios where data change over a period of time and studies how to adapt the framework to accommodate data changes. The second aspect of the work studies how the existing top-k algorithms could lead to inequitable exposure of records that are equivalent qualitatively. This scenario is highly important for long-tail data where there exists a long tail of records that have similar utility, but the existing top-k algorithm only shows one of the top-ks, and the rest are never returned to the user. Both of these problems are studied analytically, and their hardness is studied. The contributions of this dissertation lie in (a) formalizing principal problems and studying them analytically. (b) designing scalable algorithms with theoretical guarantees, and (c) evaluating the efficacy and scalability of the designed solutions by comparing them with the state-of-the-art solutions over large-scale datasets

    Multiple-vehicle resource-constrained navigation in the deep ocean

    Get PDF
    Thesis (S.M.)--Joint Program in Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Mechanical Engineering; and the Woods Hole Oceanographic Institution), 2011.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student submitted PDF version of thesis.Includes bibliographical references (p. 139-148).This thesis discusses sensor management methods for multiple-vehicle fleets of autonomous underwater vehicles, which will allow for more efficient and capable infrastructure in marine science, industry, and naval applications. Navigation for fleets of vehicles in the ocean presents a large challenge, as GPS is not available underwater and dead-reckoning based on inertial or bottom-lock methods can require expensive sensors and suffers from drift. Due to zero drift, acoustic navigation methods are attractive as replacements or supplements to dead-reckoning, and centralized systems such as an Ultra-Short Baseline Sonar (USBL) allow for small and economical components onboard the individual vehicles. Motivated by subsea equipment delivery, we present model-scale proof-of-concept experimental pool tests of a prototype Vertical Glider Robot (VGR), a vehicle designed for such a system. Due to fundamental physical limitations of the underwater acoustic channel, a sensor such as the USBL is limited in its ability to track multiple targets-at best a small subset of the entire fleet may be observed at once, at a low update rate. Navigation updates are thus a limited resource and must be efficiently allocated amongst the fleet in a manner that balances the exploration versus exploitation tradeoff. The multiple vehicle tracking problem is formulated in the Restless Multi-Armed Bandit structure following the approach of Whittle in [108], and we investigate in detail the Restless Bandit Kalman Filters priority index algorithm given by Le Ny et al. in [71]. We compare round-robin and greedy heuristic approaches with the Restless Bandit approach in computational experiments. For the subsea equipment delivery example of homogeneous vehicles with depth-varying parameters, a suboptimal quasi-static approximation of the index algorithm balances low landing error with safety and robustness. For infinite-horizon tracking of systems with linear time-invariant parameters, the index algorithm is optimal and provides benefits of up to 40% over the greedy heuristic for heterogeneous vehicle fleets. The index algorithm can match the performance of the greedy heuristic for short horizons, and offers the greatest improvement for long missions, when the infinite-horizon assumption is reasonably met.by Brooks Louis-Kiguchi Reed.S.M
    corecore