221 research outputs found

    The Shape of Damping: Optimizing Damping Coefficients to Improve Transparency on Bilateral Telemanipulation

    Get PDF
    This thesis presents a novel optimization-based passivity control algorithm for hapticenabled bilateral teleoperation systems involving multiple degrees of freedom. In particular, in the context of energy-bounding control, the contribution focuses on the implementation of a passivity layer for an existing time-domain scheme, ensuring optimal transparency of the interaction along subsets of the environment space which are preponderant for the given task, while preserving the energy bounds required for passivity. The involved optimization problem is convex and amenable to real-time implementation. The effectiveness of the proposed design is validated via an experiment performed on a virtual teleoperated environment. The interplay between transparency and stability is a critical aspect in haptic-enabled bilateral teleoperation control. While it is important to present the user with the true impedance of the environment, destabilizing factors such as time delays, stiff environments, and a relaxed grasp on the master device may compromise the stability and safety of the system. Passivity has been exploited as one of the the main tools for providing sufficient conditions for stable teleoperation in several controller design approaches, such as the scattering algorithm, timedomain passivity control, energy bounding algorithm, and passive set position modulation. In this work it is presented an innovative energy-based approach, which builds upon existing time-domain passivity controllers, improving and extending their effectiveness and functionality. The set of damping coefficients are prioritized in each degree of freedom, the resulting transparency presents a realistic force feedback in comparison to the other directions. Thus, the prioritization takes effect using a quadratic programming algorithm to find the optimal values for the damping. Finally, the energy tanks approach on passivity control is a solution used to ensure stability in a system for robotics bilateral manipulation. The bilateral telemanipulation must maintain the principle of passivity in all moments to preserve the system\u2019s stability. This work presents a brief introduction to haptic devices as a master component on the telemanipulation chain; the end effector in the slave side is a representation of an interactive object within an environment having a force sensor as feedback signal. The whole interface is designed into a cross-platform framework named ROS, where the user interacts with the system. Experimental results are presented

    A Real-Time Bilateral Teleoperation Control System over Imperfect Network

    Get PDF
    Functionality and performance of modern machines are directly affected by the implementation of real-time control systems. Especially in networked teleoperation applications, force feedback control and networked control are two of the most important factors, which determine the performance of the whole system. In force feedback control, generally it is necessary but difficult and expensive to attach sensors (force/torque/pressure sensors) to detect the environment information in order to drive properly the feedback force. In networked control, there always exist inevitable random time-varying delays and packet dropouts, which may degrade the system performance and, even worse, cause the system instability. Therefore in this chapter, a study on a real-time bilateral teleoperation control system (BTCS) over an imperfect network is discussed. First, current technologies for teleoperation as well as BTCSs are briefly reviewed. Second, an advanced concept for designing a bilateral teleoperation networked control (BTNCS) system is proposed, and the working principle is clearly explained. Third, an approach to develop a force-sensorless feedback control (FSFC) is proposed to simplify the sensor requirement in designing the BTNCS, while the correct sense of interaction between the slave and the environment can be ensured. Fourth, a robust-adaptive networked control (RANC)-based master controller is introduced to deal with control of the slave over the network containing both time delays and information loss. Case studies are carried out to evaluate the applicability of the suggested methodology

    A real-time bilateral teleoperation control system over imperfect network

    Get PDF
    Functionality and performance of modern machines are directly affected by the implementation of real-time control systems. Especially in networked teleoperation applications, force feedback control and networked control are two of the most important factors and determine the performance of the whole system. In force feedback control, generally it is necessary but difficult and expensive to attach sensors (force/torque/pressure sensors) to detect the environment information in order to drive properly the feedback force. In networked control, there always exist inevitable random time-varying delays and packet losses, which may degrade the system performance and, even worse, cause the system instability. Therefore in this chapter, a study on a real-time bilateral teleoperation control system (BTCS) over an imperfect network is discussed. First, current technologies for teleoperation as well as bilateral teleoperation control systems are briefly reviewed. Second, an advanced concept for designing a bilateral teleoperation networked control (BTNCS) system is proposed and the working principle is clearly explained. Third, an approach to develop a force-sensorless feedback control (FSFC) is proposed to simplify the sensor requirement in designing the BTNCS while the correct sense of interaction between the slave and environment can be ensured. Forth, a robust adaptive networked control (RANC) -based master controller is introduced to deal with control of the slave over the network containing both time delays and information loss. Case studies are carried out to evaluate the applicability of the suggested methodology

    Passivity-Based adaptive bilateral teleoperation control for uncertain manipulators without jerk measurements

    Get PDF
    In this work, we consider the bilateral teleoperation problem of cooperative robotic systems in a Single-Master Multi-Slave (SM/MS) configuration, which is able to perform load transportation tasks in the presence of parametric uncertainty in the robot kinematic and dynamic models. The teleoperation architecture is based on the two-layer approach placed in a hierarchical structure, whose top and bottom layers are responsible for ensuring the transparency and stability properties respectively. The load transportation problem is tackled by using the formation control approach wherein the desired translational velocity and interaction force are provided to the master robot by the user, while the object is manipulated with a bounded constant force by the slave robots. Firstly, we develop an adaptive kinematic-based control scheme based on a composite adaptation law to solve the cooperative control problem for robots with uncertain kinematics. Secondly, the dynamic adaptive control for cooperative robots is implemented by means of a cascade control strategy, which does not require the measurement of the time derivative of force (which requires jerk measurements). The combination of the Lyapunov stability theory and the passivity formalism are used to establish the stability and convergence property of the closed-loop control system. Simulations and experimental results illustrate the performance and feasibility of the proposed control scheme.No presente trabalho, considera-se o problema de teleoperação bilateral de um sistema robótico cooperativo do tipo single-master e multiple-slaves (SM/MS) capaz de realizar tarefas de transporte de carga na presença de incertezas paramétricas no modelo cinemático e dinâmico dos robôs. A arquitetura de teleoperação está baseada na abordagem de duas camadas em estrutura hierárquica, onde as camadas superior e inferior são responsáveis por assegurar as propriedades de transparência e estabilidade respectivamente. O problema de transporte de carga é formulado usando a abordagem de controle de formação onde a velocidade de translação desejada e a força de interação são fornecidas ao robô mestre pelo operador, enquanto o objeto é manipulado pelos robôs escravos com uma força constante limitada. Primeiramente, desenvolve-se um esquema de controle adaptativo cinemático baseado em uma lei de adaptação composta para solucionar o problema de controle cooperativo de robôs com cinemática incerta. Em seguida, o controle adaptativo dinâmico de robôs cooperativos é implementado por meio de uma estratégia de controle em cascata, que não requer a medição da derivada da força (o qual requer a derivada da aceleração ou jerk). A teoria de estabilidade de Lyapunov e o formalismo de passividade são usados para estabelecer as propriedades de estabilidade e a convergência do sistema de controle em malha-fechada. Resultados de simulações numéricas ilustram o desempenho e viabilidade da estratégia de controle proposta

    Efficient Transport Protocol for Networked Haptics Applications

    Get PDF
    The performance of haptic application is highly sensitive to communication delays and losses of data. It implies several constraints in developing networked haptic applications. This paper describes a new internet protocol called Efficient Transport Protocol (ETP), which aims at developing distributed interactive applications. TCP and UDP are transport protocols commonly used in any kind of networked communication, but they are not focused on real time application. This new protocol is focused on reducing roundtrip time (RTT) and inter packet gap (IPG). ETP is, therefore, optimized for interactive applications which are based on processes that are continuously exchanging data.ETP protocol is based on a state machine that decides the best strategies for optimizing RTT and IPG. Experiments have been carried out in order to compare this new protocol and UDP

    Sensorless force feedback joystick control for teleoperation of construction equipment

    Get PDF
    This paper aims to develop an innovative approach named sensorless force feedback joystick control for teleoperation of construction equipment. First, a force sensorless supervisory controller is designed with two advanced modules: a neural network-based environment classifier to estimate environment characteristics without requiring a force sensor and, a fuzzy-based force feedback tuner to generate properly a force reflection to the joystick. Second, two local robust adaptive controllers are simply built using neural network and Lyapunov stability condition to ensure desired task performances at both master and slave sites. A teleoperation system is setup to demonstrate the applicability of the proposed approach

    Control of Cooperative Haptics-Enabled Teleoperation Systems with Application to Minimally Invasive Surgery

    Get PDF
    Robot-Assisted Minimally Invasive Surgical (RAMIS) systems frequently have a structure of cooperative teleoperator systems where multiple master-slave pairs are used to collaboratively execute a task. Although multiple studies indicate that haptic feedback improves the realism of tool-tissue interaction to the surgeon and leads to better performance for surgical procedures, current telesurgical systems typically do not provide force feedback, mainly because of the inherent stability issues. The research presented in this thesis is directed towards the development of control algorithms for force reflecting cooperative surgical teleoperator systems with improved stability and transparency characteristics. In the case of cooperative force reflecting teleoperation over networks, conventional passivity based approaches may have limited applicability due to potentially non-passive slave-slave interactions and irregular communication delays imposed by the network. In this thesis, an alternative small gain framework for the design of cooperative network-based force reflecting teleoperator systems is developed. Using the small gain framework, control algorithms for cooperative force-reflecting teleoperator systems are designed that guarantee stability in the presence of multiple network-induced communication constraints. Furthermore, the design conservatism typically associated with the small-gain approach is eliminated by using the Projection-Based Force Reflection (PBFR) algorithms. Stability results are established for networked cooperative teleoperator systems under different types of force reflection algorithms in the presence of irregular communication delays. The proposed control approach is consequently implemented on a dual-arm (two masters/two slaves) robotic MIS testbed. The testbed consists of two Haptic Wand devices as masters and two PA10-7C robots as the slave manipulators equipped with da Vinci laparoscopic surgical instruments. The performance of the proposed control approach is evaluated in three different cooperative surgical tasks, which are knot tightening, pegboard transfer, and object manipulation. The experimental results obtained indicate that the PBFR algorithms demonstrate statistically significant performance improvement in comparison with the conventional direct force reflection algorithms. One possible shortcoming of using PBFR algorithms is that implementation of these algorithms may lead to attenuation of the high-frequency component of the contact force which is important, in particular, for haptic perception of stiff surfaces. In this thesis, a solution to this problem is proposed which is based on the idea of separating the different frequency bands in the force reflection signal and consequently applying the projection-based principle to the low-frequency component, while reflecting the high-frequency component directly. The experimental results demonstrate that substantial improvement in transient fidelity of the force feedback is achieved using the proposed method without negative effects on the stability of the system

    Output Feedback Bilateral Teleoperation with Force Estimation in the Presence of Time Delays

    Get PDF
    This thesis presents a novel bilateral teleoperation algorithm for n degree of freedom nonlinear manipulators connected through time delays. Teleoperation has many practical uses, as there are many benefits that come from being able to operate machines from a distance. For instance, the ability to send a remote controlled robotic vehicle into a hazardous environment can be a great asset in many industrial applications. As well, the field of remote medicine can benefit from these technologies. A highly skilled surgeon could perform surgery on a patient who is located in another city, or even country. Earth to space operations and deep sea exploration are other areas where teleoperation is quite useful. Central to the approach presented in this work is the use of second order sliding mode unknown input observers for estimating the external forces acting on the manipulators. The use of these observers removes the need for both velocity and force sensors, leading to a lower cost hardware setup that provides all of the advantages of a position-force teleoperation algorithm. Stability results for this new algorithm are presented for several cases. Stability of each of the master and slave sides of the teleoperation system is demonstrated, showing that the master and slave are both stabilized by their respective controllers when the unknown input observers are used for state and force estimation. Additionally, closed loop stability results for the teleoperation system connected to a variety of slave side environments are presented. Delay-independent stability results for a linear spring-damper environment as well as a general finite-gain stable nonlinear environment are given. Delay-dependent stability results for the case where the slave environment is a liner spring-damper and the delays are commensurate are also presented. As well, stability results for the closed loop under the assumption that the human operator is modeled as a finite-gain stable nonlinear environment are given. Following the theoretical presentation, numerical simulations illustrating the algorithm are presented, and experimental results verifying the practical application of the approach are given
    corecore