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This paper aims to develop an innovative approach named sensorless force feedback joystick control for teleoperation of construction

equipment. First, a force sensorless supervisory controller is designed with two advanced modules: a neural network-based

environment classifier to estimate environment characteristics without requiring a force sensor and, a fuzzy-based force feedback

tuner to generate properly a force reflection to the joystick. Second, two local robust adaptive controllers are simply built using neural

network and Lyapunov stability condition to ensure desired task performances at both master and slave sites. A teleoperation system

is setup to demonstrate the applicability of the proposed approach.
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1. Introduction

Nowadays, teleoperation takes a key role in remote manipulation

that allows users ability to perform naturally manual tasks at

environments away from the normal human reach, such as undersea

applications, hazardous assignments, minimally invasive surgical

systems. In common, control schemes for teleoperation systems can be

classified as either compliance control or bilateral control. In the

compliance control,1-4 the contact force sensed by the slave device is

not reflected back to the operator, but is used for the compliance

control of the slave device. On the contrary, in the bilateral control,5-12

the contact force is reflected back to the operator. The operator is able

to achieve physical perception of interactions at the remote site similar

as directly working at this site. Consequently, it improves the accuracy

and safety in the tele-operated manipulation. In addition, the force

reflection can enhance the human operator’s task performance, for

example in terms of task completion time, total contact time. Thus, the

bilateral control has drawn a lot of attention.13,14

Two common architectures for a bilateral teleoperation system are

known as: position-position and force-position architectures.7,13 In the

first architecture, the master position is passed to the slave and the slave

position is passed again to the master. Then, the reflected force applied

to the operator is derived from the position difference between the two

NOMENCLATURE

Fh = operator command

Fdr = desired reflected force

Pdr = desired reflected pressure

Xm = joystick shaft rotation

Xds = slave desired movement

λp = conversion ratio between joystick and slave commands

us = slave controller output

Xs= slave actuation

Fe = loading force from environment

ke = environment stiffness

ce = environment damping coefficient

gk = scaling factor of environment stiffness

gc = scaling factor of environment damping coefficient

kf = force feedback gain

λf = conversion ratio between Fdr and Pdr

um = master controller output

ydesired = master/slave desired response

yactual = master/slave response

e = local controller control error
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devices. However, this approach is not desirable in cases of free motion.

In contrast, the force-position architecture uses directly the contact

force measured at the remote site (using a force/torque/pressure sensor)

to create an impact on the operator via a force feedback mechanism

(FFM) with a force feedback gain (FFG). This method then provides

the operator a better perception of tasks execution at the remote site.

In the force-position architecture, besides precisely tracking control

requirement, the selection of FFG greatly affects the task performance8.

A large FFG results in a large reflected force and subsequently, could

ensure a good task performance. However, this may cause the system

to be unstable. Conversely, small reflected force leads to a poor sense

for the operator. Many researches have been carried out to optimize the

FFG. Raju proposed a two-port network model of a single degree of

freedom remote manipulation system and applied it to design a force

controller for transmitting the contact force information from a remote

port to a local port. Kim15 suggested a control method as a combination

of the bilateral control and compliance control to enlarge the FFG.

However, these methods determined the FFG without considering

dissimilar characteristics between different remote environments. To

overcome that problem, several solutions were introduced. Kuchenbecker

and Niemeyer9 introduced a force reflecting teleoperation with the use

of model-based cancellation. Polushin and Lung10 proposed a projection-

based force reflection algorithm for stable bilateral teleoperation. By

using a high-gain input observer, the proposed algorithm eliminated the

master motion induced by the reflected force without changing the

human perception of the environment interactions. However, the authors

did not consider the dynamic behaviors of the operator hand. Recently,

Polushin and his colleagues11 developed a method named as generalized

projection-based force reflection algorithm to solve the remained

limitations in their previous studies. However, these suggested solutions

were not proven in practical tests. Although the reported algorithms

bring some remarkable results, there still remain some drawbacks such

as: how to determine the FFG appropriately with environments containing

unknown and uncertain characteristics and, it is difficult and expensive

to attach proper sensors (force, torque or pressure sensors) to detect the

environment conditions. Additionally, the sensors are easy to be

damaged when the system operate in hazard conditions, especially for

construction activities.

In order to deal with the above mentioned problems, the paper aims

to develop a novel approach named sensorless force feedback joystick

control (SFFJC) for force-position bilateral teleoperation systems,

specifically paying attention to construction equipment. This SFFJC is

an advanced combination of a supervisory controller and two local

master and slave controllers. First to drive sufficiently the force

reflection, the force sensorless supervisory controller (FSSC) is designed

with two main advanced modules: a neural network-based environment

classifier (NNEC) and a fuzzy-based force feedback tuner (FFFT). Here,

the NNEC takes part in estimating the environment characteristics

without requiring a force (or torque or pressure) sensor and, the FFFT

bases on the NNEC output and operator commands to generate a

correspondingly FFG. Second, two local master and slave robust

adaptive controllers (MRAC and SRAC, respectively) are simply built

using neural network and Lyapunov stability condition to ensure that

the manipulator tracks accurately any given trajectory while the FFM

regulates exactly the desired force to provide the operator a better

perception of task execution at the slave site. An experimental

teleoperation system is setup to demonstrate the applicability of the

proposed SFFJC approach.

The rest of this paper is organized as follows: Section 2 introduces

the SFFJC control system concept and a simple teleoperation test rig;

Section 3 describes procedure to design the FSSC while Section 4 shows

the structures of the local controllers (MRAC and SRAC); the control

validation process is carried out in Section 5 and, some conclusions are

drawn in Section 6.

2. SFFJC Architecture and Test Rig Setup

2.1 SFFJC architecture

Without loss of generality, a generic single-input-single-output

teleoperation system utilizing the SFFJC is suggested as in Fig. 1. The

whole system includes operator, a master device (1-DOF (degree-of-

freedom) joystick), a slave device (1-DOF manipulator), working

environment at the slave site, a force feedback mechanism and the

proposed control scheme. Here, the FFM is designed as a pneumatic

rotary actuator which is connected to the rotary shaft of the joystick.

This use brings some advantages over the traditional design with DC

electric motors. Comparing with an electric motor, a pneumatic actuator

provides a higher ratio of force-mass, and can produce larger reflected

forces without using any reduction mechanism, such as gearbox.

Fig. 1 Proposed control concept for a generic SFFJC system
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Furthermore, with the pneumatic solution, the FFM is able to work in

safe conditions without damages from the operator.

The proposed algorithm is composed of the three main routines:

force sensorless supervisory controller and two local robust adaptive

controllers. During the system operation, the human operator applies a

force, Fh, to the joystick handle to provide a command for the slave. By

this way, the joystick shaft rotation, Xm, is detected and converted into

the slave command, Xds, via a suitable ratio, λp. The SRAC attempts to

make the slave execute the given command with high accuracy

regardless any impact (unknown loading force) from the environment,

Fe. Next, the command (us) and actual response (Xs) of the slave are

acquired and input to the FSSC. This supervisory controller takes part

in classifying the environment characteristics to estimate the loading

condition at the slave site (Fe). Consequently, based on this estimated

load value, the desired reflected force, Fdr, is properly produced. This

resultant is converted approximately to a desired reflected pressure, Pdr,

for the FFM using a transformed factor, λf. Finally, the MRAC drives

the FFM (with command um) to create the desired pressure and,

successively, creates the desired reflected force on the operator hand

via the joystick handle. By this way, the operator can attain the truthful

perception of the loading condition at the slave manipulator.

2.2 Teleoperation test rig

In order to evaluate the effectiveness of the SFFJC approach, a

simple 1-DOF teleoperation test rig has been designed as Fig. 2. From

this figure, the system consists of a master box, a slave – environment

box in which a slave manipulator is connected to an environment

simulator, and the SFFJC built in a personal computer (PC). The

experimental system has been then fabricated as displayed in Fig. 3. In

this study, only wired communication method is considered to develop

the proposed control approach. To perform the wired communication

between the SFFJC and the master/slave devices, a National Instrument

(NI) multifunction data acquisition (DAQ) device with a suitable

number of digital and analog channels is chosen.

As shown in Fig. 3(a), although two joysticks are installed in the

master box, only one is used to develop the SFFJC while the other one

will be used for the future research. The selected joystick is integrated

with a FFM as described in Fig. 3(b). Rotation of the joystick handle

generated by the human interaction is detected by a potentiometer

attached at the pivot shaft of the joystick. This action is then converted

into electrical commands to send to the SFFJC to drive the slave. For

the force feedback concept as presented in the previous section, the

FFM constructed by a mini pneumatic rotary actuator and two bias

springs is attached to the opposite side of the joystick handle. Due to

the limited free space of the joystick rotating mechanism, a slider-crank

mechanism needs to be used to link the joystick rotating mechanism

with the pneumatic rotary actuator. A proportional flow control valve

(control valve 1) is used to drive the rotary actuator. And a pressure

sensor is attached to the rotary actuator to perform the closed control

loop and subsequently, to regulate any desired reflecting forces. 

The slave – environment box setup is shown in Fig. 3(c) and Fig.

3(d). The slave employs an asymmetrically pneumatic cylinder as its

manipulator. To perform the closed loop control, the cylinder is driven

by another proportional control valve (control valve 2) and the piston

displacement is measured by a linear variable displacement transducer

Fig. 2 Design layout for the teleoperation test rig

Fig. 3 Teleoperation test rig: (a) Master box, (b) FFM Design, (c)

Slave - environment box, (d) Slave - environment connection
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(LVDT). Moreover, second pressure sensor is attached to support the

FSSC design. The environment simulator is presented by a spring-

slider mechanism in which the spring stiffness and initial load can be

manually adjusted (by changing the spring and the fixed position of the

slider) to simulate different load conditions. An air compressor is

installed as the main power source to supply the pressurized air for both

the FFM and the slave cylinder. According to the design, the main

components are properly chosen as listed in Table 1.

3. Force Sensorless Supervisory Controller

3.1 Supervisory control architecture

Configuration of the supervisory controller is described in Fig. 4.

The FSSC consists of two main modules, NNEC and FFFT, with

three inputs and one output. The first two inputs, the slave command

(us) and its response (Xs), are received by the NNEC. Here, the classifier

is built as a learning vector quantitative neural network (LVQNN)

capable of detecting the working environment. Without loss of generality,

the interactive environment can be represented by two factors: damping

ce and stiffness ke. Thus, there are two outputs from the NNEC which

are the predicted values of the environment damping and stiffness, 

and , respectively. These outputs are then fed into the environment

interaction estimator to estimate the contact force between the

manipulator and environment ( ). These outputs

combined with another signal - joystick moving speed change ( )

are input to the FFFT module.

The FFFT module includes a fuzzy feedback gain tuner (FFGT) to

tune the force feedback gain (kf) based on the estimated damping and

stiffness. Additionally, the impacts of the estimated contact force and

the human-joystick dynamics represented by the joystick moving speed

change are taken into account for online refining the gain kf to ensure

the stability performance of the mechanism. To fulfill this requirement,

a fuzzy cognitive map-based decision (FCMD) tool is employed. The

final output value of kf is used to produce the desired force feedback (or

desired reflect force, Fdr) which needs to be applied to the joystick.

3.2 Neural network-based environment classifier

3.2.1 Learning vector quantitative neural network

There exist many classification techniques successfully developed

to support machine learning. Well-known techniques can be listed as

logic-based algorithm as decision tree, support vector machines, static

learning mechanism as Bayesian network, instance-based learning

scheme as learning vector quantization (LVQ) or self-organizing map

(SOM), and artificial intelligence-based method (fuzzy, genetic or neural

network).16,17 Comparing to the others, intelligence-based methods offer

higher adaptability and better performance in dealing with complex and

partial unknown/unknown systems with limited and noisy data.16,17

Among intelligent solutions, neural network (NN) is realized as the

powerful tool that provides higher flexibility and stronger capability

than fuzzy logic while requires less computational effort than generic

algorithm.17,18 Generally, neural network can be classified accordingly

to the learning process: supervised and unsupervised learning. Supervised

learning is training using desired responses for given stimuli while

unsupervised learning is classification by “clustering of stimuli, without

specified responses. However, these methods normally require a heavy

training process. An LVQNN as depicted in Fig. 5 therefore is considered

as feasible classification tool.

The LVQNN is a hybrid network which uses the advanced

behaviors of both competitive learning networks and bases on the LVQ

and Kohonen SOM to form the classification with the high speed. An

LVQNN generally contains four layers: input layer with m nodes, first

hidden layer named competitive layer with S1 nodes, second hidden

layer named linear layer with S2 nodes, and output layer with n nodes

(in this case, S2 ≡ n).

The larger the hidden layer, the more clusters the competitive layer

can learn, and the more complex mapping of input to target classes can

be made19. With proper selection of the structure and training of the

weighting factors, the LVQNN can classify any system information.

Each node, nj, in the competitive layer is computed using the so-

called nearest-neighbor method in which the Euclidean distance weight

ĉe

k̂ e

F̂e keXs ceX
·
s+=

X
··
m

Table 1 Specifications of the system components

Parts Type Characteristics

Rotary actuator CRB1BW15 90-D Max. torque: 0.9 Nm

Pressure sensors SDE1-D10-G2-W18 Pressure range: 0-10 bar

Pneumatic
cylinder

CDC-20

Stroke: 100 mm

Bore diameter: 20 mm

Rod diameter: 8 mm

Proportional
control valves

MPYE-5-1/4-010B
Control voltage range:

0-10 VDC

LVDT Novotechnik TR100
Measurement range:

0-100 mm

Springs Types: 1; 2; 3; 4; 5
Stiffness N/m: 500; 1000;

1500; 2000; 2500

Fig. 4 Configuration of supervisory controller

Fig. 5 General structure of a LVQNN
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function, D, is employed:

(1)

where X is the input vector; W1(j, i) is the weight of node jth in the

competitive layer corresponding to element ith of the input vector.

Next, the derived Euclidean distances are fed into function C which

is a competitive transfer function. This function returns an output vector

o1, with 1, where the net input vector reaches its maximum value, and

0 elsewhere. The achieved output vector is then input to the linear layer

to produce a vector o2, where each element can be computed as

(2)

where W2(k, j) is the weight of node kth in the linear layer corresponding

to element jth of the competitive output vector; kW(k) is the linearized

gain of node kth in the linear layer.

In the learning process, the weights of LVQNN are updated by the

well-known Kohonen rule as

(3)

where μ is the positive learning ratio and is decreased with respect to

the number of training iterations (niteration), μ = niteration.

3.2.2 LVQNN design for NNEC

A LVQNN is employed to construct the NNEC in order to detect the

environment characteristics in an online manner. For a LVQNN design,

it is important to determine the input vector size and how many

sequences of data use. Here, with the limited number of input

information, the NNEC is built with: an input vector consisting of

current and historical values of four signals: the slave driving command,

{us
(0), us

(-1), …, us
(-g)}, manipulator response, {Xs

(0), Xs
(-1), …, Xs

(-p)}, and

their derivatives, {dus
(0), dus

(-1), …, dus
(-n)} and {dXs

(0), dXs
(-1), …, dXs

(-q)},

respectively; an output vector containing the estimated values of the

damping and stiffness,  and , representing the environment class

eth (classe). Configuration of the proposed classifier is described in Fig.

6. Due to uncertainties of the working environment, it is necessary to

derive an algorithm to smoothly shift between different environment

classes. Thus, a so-called smooth switching algorithm is proposed to

determine the current environment based on the current class output

from the LVQNN and the last detected class as

(4)

where λ is called forgetting factor.

Additionally, to avoid influences of noises on the NNEC

performance, the forgetting factor is online tuned according to the

changing speed of the classifier outputs, vY, which is defined by the

number of sampling periods when the LVQNN outputs change

continuously. The procedure to tune this factor can be expressed as:

Step 1: set initial value for the forgetting factor, λ = 0.5; define a

small positive thresholds, 0 < γ1 < γ2, for vY.

Step 2: for each working step, check vY and update λ by comparing

vY with its thresholds using the following rule:

+ If: (vY < γ2), Then: λ(t + 1) = λ(t + 1) / 2 and reset vY = 0;

+ Else If: (vY ≥ γ1) & (vY(t) ≤ γ2), Then: λ(t + 1) = λ(t + 1) × 2 and

reset vY = 0;

+ Otherwise, λ(t + 1) = λ(t).

3.3 Fuzzy-based force feedback tuner

Although the environment characteristics are estimated using the

NNEC, it is difficult to determine properly the FFG which is normally

based on experience or prior knowledge about teleoperation systems. In

decision making, many research works have shown that fuzzy logic

which can take place of a skilled human operator is a feasible tool.20

Thus, in this research, the fuzzy-based feedback gain tuner and fuzzy

cognitive map-based decision tool are proposed to compute the FFG.

3.3.1 Fuzzy feedback gain tuner

The FFGT is designed with two inputs, denoted as ke
* , ce

* , and single

nj D X W
1

j( ),( ) X i( ) W
1

j i,( )–( )2

i=1

m

∑ ,= = j 1 … S
1

, ,=

Y k( ) o
2

k( ) kW k( )n
2

k( )= =

kW k( ) W
2

k j,( )o
1

j( ),
j=1

S
1

∑= k 1 … n,, ,= n S
2

≡( )

IF: X is classified correctly:

W
1

t 1+
j( ) W

1

t
j( ) μ X W

1

t
j( )–( )+=

Else: (X is classified inforrectly)

W
1

t 1+
j( ) W

1

t
j( ) μ X W

1

t
j( )–( )–=⎩

⎪
⎪
⎨
⎪
⎪
⎧

,  j 1 … S
1

, ,=

ĉe k̂ e

ĉe t( ) λ ĉe class
e
t 1–( )

× 1 λ–( )+ ĉe LVQNN t( )
×=

k̂ e t( ) λ k̂ e class
e
t 1–( )

× 1 λ–( )+ k̂e LVQNN t( )
×=

⎩
⎪
⎨
⎪
⎧

Fig. 6 Configuration of the NNEC

Fig. 7 FFGT MFs Design: (a) Input variables, (b) Output variables
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output, kf. The inputs are normalized values of the NNEC outputs:

(5)

where: gk and gc are the scaling factors.

The FFGT inspects the incoming system states, and transforms them

into linguistic variables. Here, the linguistic variables of the stiffness

and damping inputs are described in terms of ‘Low’, ‘Medium’, and

‘High’. Meanwhile, the gain output is described as ‘VS’ (Very Small),

‘S’ (Small), ‘M’ (Medium), ‘L’ (Large), ‘VL’ (Very Large). Triangle

membership functions (MFs) are selected to represent these variables.

These MFs are distributed over the FFGT input/output ranges as shown

in Fig. 7. Next, the rule base is utilized to interpret expert knowledge in

a useful way. It contains a set of conditional sentences in the form of

(6). Subsequently, the rule table for this FGT is established in Table 2.

(6)

where Ai, Bj and Cij are the fuzzy subsets of the variables ke
* , ce

*  and kf.

The fuzzy inference is performed using the MAX-MIN operator.

Let  be MF of a subset of the output which is the result of rule

Rij. Then, it can be obtained by

(7)

Successively, the results of the nine rules are compared together to

infer the final output MF μR(kf) using the MAX operator:

(8)

The fuzzy decoder is finally used to produce the FFG gain, kf:

(9)

where  and  are in turn the maximum and minimum values of the

FFG; Defuzzify (●) is the defuzzifier function which performs

defuzzification by using the center average method.

3.3.2 Fuzzy cognitive map-based decision tool

Fuzzy cognitive maps (FCMs) are able to deal with processes like

decision making that is based on human reasoning process21 and

therefore, have been successfully used for many applications, ranging

from medical fields, agricultural applications and environmental areas

to energy problems.21-23 In this research, a FCM-based decision tool is

developed to refine the FFG when considering the impacts of the

estimated contact force, Fe, joystick moving speed change, , and

upper limit of the gain kf. This decision tool is built with a number of

FFG decisive factors and knowledge of experts, along with the proper

selection of fuzzification and defuzzification functions.

3.3.3 Fuzzy cognitive map

An FCM designed for a system is graphically represented by a frame

of nodes and connection edges. The nodes (or concepts) stand for

different behaviours of the system. Each node can be an input/output

variable, a state, or an event of the system. In addition, these nodes also

interact with each other and therefore, are capable of representing the

system dynamics. The interactions between nodes are modelled by

connection edges of which the directions and weights indicate the

directions and degrees of the causal relationships, respectively.

Each node can be denoted as Ci with i = 1, …, N (N is the number

of FCM nodes) and characterized by a specific value, xi, which is

fuzzified from the real system behaviour value into the closed universe

[0, 1]. Between each two nodes, ith and jth, there are three possible

relationships which are known as positive, negative or neutral causality

and can be expressed by weight factors, wij, which are interpreted using

linguistic variables in a normalized range [-1, 1]. A weight set of a

generic FCM therefore can be defined as

(10)

The value, xi, of node Ci at step (k+1)th can be computed based on

the influence of the other interconnected nodes, Cj, on node Ci, as

(11)

where f is an activation function which is selected based on different

applications.

[ ] [ ]* * * *ˆ ˆ, , 0,1 , 0,1
e k e e c e e e
k g k c g c k c= × = × ∈ ∈

( )* *

Rule : if and is then , , 1,2,3ij e i e j f ijR k is A c B k isC i j =

μR
ij

kf( )

( ) ( ) ( ) ( )( )* *

min , ,Rij f Ai e Bj e Cij fk k c kµ µ µ µ=

( ) ( ) ( ) ( )( )
11 12 33

max , ,...,R f R f R f R fk k k kµ µ µ µ=

( )( ) ( )ff R f f f
k Defuzzify k k k kµ= × − +

k f k f

X
··
m

[ ]
1,1 1,

,1 ,

; 1,1 ; , 1,...,

N

ij

N N N

w w

W w i j N

w w

⎡ ⎤
⎢ ⎥

= ∈ − =⎢ ⎥
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⎣ ⎦

L

M O M

L

1

1,

N
k k k

i i j ji

j j i

x f x x w+

= ≠

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑

Table 2 Rule table design for the FFGT

FFG (kf)
Normalized estimated stiffness ke

*

Low Medium High

Normalized estimate
damping ce

*

Low VL L M

Medium L M S

High M S VS

Fig. 8 Fuzzy cognitive map design for FFG decisive factors

Fig. 9 MF design for the node influence
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3.3.4 FCMD tool design

Four nodes (C1 to C4) standing for the estimated contact force, the

joystick moving speed change, variations of the feedback gain and its

upper limit (denoted in turn as δkf, and ) are selected to design the

FCMD tool. The values of these nodes, x1 to x4, are then in turn the

normalized values of , , δkf, and .

First, the influence between the FCMD nodes are analyzed. Based

on the design experience, the interrelation between these nodes are

defined as in Fig. 8. Due to the symmetric design of weight factors, their

amplitude tagged as ‘INF’ can be represented by linguistic variables

while their signs are defined by the direction of the connection edges

in Fig. 8. These connection edge directions are determined based on

experience of the experts. Here, five triangle membership functions

tagged as ‘Z’, ‘S’, ‘M’, ‘B’, and ‘VB’, which in turn stand for zero,

small, medium, big, and very big, are uniformly distributed within the

closed universe [0, 1] to describe the influence (see Fig. 9). For decision

making, it is realized that sigmoid and tansig (hyperbolic tangent

sigmoid) functions are the two feasible choices.24 In this case, the tansig

function is selected as the FCMD activation function:

(12)

where λ is the steepness parameter and selected as 2.

Therefore, the feedback gain and its upper limit can be updated for

each working step as

(13)

Second, the definition of the FCMD weights is carried out through

an analysis on a series of teleoperation tests which were performed by

10 different operators. During the tests, each operator adjusted manually

the FFG in order to make a proper force feedback sense to his/her hand.

Through the tests, a survey on the impacts between the decisive factors

has been performed by the operators. Based on their evaluation sheets

(as summarized in columns OP1 to OP10 of Table 3), the final decision

on FCMD weights is made by the defuzzification which is based on the

centre average algorithm. By combining with the signs of the FCMD

weights based on (column WS of Table 3), their final values are derived

as the last column in Table 3.

4. Local Robust Adaptive Controller

The local robust adaptive controller (LRAC) is designed for the

implementation to the slave manipulator and the master FFM (as the

SRAC and MRAC) to ensure their accurate position and pressure

tracking performances, respectively. This LRAC is designed as a

proportional-integral-derivative (PID) -based neural network in which

the network is structured based on the well-known PID algorithm and

their weights are trained online under a Lyapunov stability constrain.

The LRAC is generally built for a system with one control input, u,

and n outputs (in this case, u is the driving command for the control

valve 1 or 2; n = 1, means one output which is the piston displacement

or the reflected pressure). The network composes of three layers: an

input layer as a control error sequence, a hidden layer with three nodes,

tagged as P, I, and D, and an output layer, which is the system control

input. The error sequence is defined as , where 

= ;  and  are in turn the desired

system response and the actual response. Define { , , } is a

weight vector of the hidden nodes with respect to input ith, and { ,

, } is the weight vector of the output layer. By applying the PID

algorithm, the weights of the output layer are selected as unit while the

output from each hidden node is derived as

(14)

Then, the output from the network is obtained using a linear function:

(15)

To ensure the adaptability of the LRAC, the back-propagation and

gradient descent method is employed to tune the network weights.

Additionally, a Lyapunov stability condition is integrated with the

learning algorithm to guarantee the system robustness.

Learning algorithm: define a prediction error function as

(16)

The hidden weights can be online tuned for each step, (k+1)th, as:

(17)

where , ,  are the learning rates within [0,1]; the other factors

in Eq. (17) are derived using partial derivative of the error function Eq.

(16) with respect to each decisive parameter and chain rule method.25

Theorem 1: by selecting properly the learning rates in Eq. (17)

 for step (k+1)th to satisfy Eq. (18), then the stability
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Table 3 Weight evaluation performed by different operators

W S OP1 OP2 OP3 OP4 OP5 OP6 OP7 OP8 OP9 OP10 FW
w1,3 + S Z Z Z S Z S Z Z S 0.100
w1,4 + S M Z S M M S Z M Z 0.275
w2,3 − VB B VB VB VB VB VB B VB B -0.925
w2,4 − B M M M M M M M M M -0.525
w4,3 + Z S S M Z M Z Z S Z 0.175

(S - Sign of weights; FW - Final weight values evaluated based on operator evaluation OP1-OP10 and WS)
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of the LRAC is guaranteed.

(18)

where .

Proof: by defining a Lyapunov function as Eq. (19), the change of

this function is derived as Eq. (20)

(19)

(20)

From the controller structure, one has:

(21)

here, the terms , , and  are obtained from Eq. (17). By

using partial derivative and selecting , Eq. (21)

becomes:

(22)

From Eqs. (22), (20) is rewritten as

(23)

The tracking performance is guaranteed to be stable only if 

≤ 0, . It is clear that except ηk, the other factors in Eq. (23) can be

determined online based on the prediction error and the chain rule

method.25 Hence for each working step, it is easy to select a proper

value of ηk to make Eq. (18) satisfy. Therefore, the proof is completed.

5. Experimental Results and Discussions

5.1 NNEC training and validation

5.1.1 Data acquisition

In order to utilize the NNEC supporting the SFFJC design, it is

necessary to acquire data of the slave manipulator of the teleoperation

test rig (see Fig. 3(d)) to characterize the environments as well as to

train the NNEC. Open loop teleoperation experiments in which the

input was the manipulator open loop driving command and the output

was the manipulator displacement were performed on the test rig

without activating the FFM and FSSC. Furthermore, to identify offline

the environment characteristics, the pressure sensor attached to the salve

cylinder was only employed for these tests to compute the interaction

force between the slave and environment (Fig. 3(d)).

For each test, a trajectory was randomly given to the slave

manipulator by the PC and the sampling period was set to 0.01 s.

Besides the test in the free load condition (without attaching a spring),

three among the five spring types in Table 1, type 1, 3 and 5, were

selected to generate the three different environment classes for the

other three tests. The remained spring, types 2 and 4, were kept for the

SFFJC validation to show the capability of this approach. Subsequently,

the four sets of the slave input-output training data were observed. Fig.

10 displays a sample of open loop test result with respect to the spring

type 1.

5.1.2 Environment characterization

Next, the acquired data sets were used to characterize the

corresponding environments. In this case, the recursive least square

method (RLSM) was applied to identify the stiffness of the selected

spring types (assumed to be unknown as the practical applications). The

environment model could be represented as

(24)

where Fe0 was the nonzero amount of the loading force at the initial

position of the slave.

For each environment, by replacing P sets of input-output data points

of the slave positions and loading forces observed at P sampling intervals

into Eq. (24), a matrix relation was obtained:

(25)

where: X was an unknown column vector including the parameters, k

and F0; B was the loading force vector; A was a Px2 matrix of which

each row was described as  (the superscript p denotes pth sample

of the slave position).

Let define row ith of matrix A in Eq. (25) as ai and element ith of

vector B as bi, by using the RLSM,26 X could be calculated iteratively as:

(26)

where Ti was the covariance matrix.

The initial conditions to launch the algorithm Eq. (26) were X0 = 0
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Fig. 10 Data acquisition result with respect to spring type 1
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and T0 = γI, where γ was a positive large number and I was the identity

matrix of dimension 2 × 2. Subsequently, the environment was

characterized for each test case as shown in Table 4. By comparing

with the actual spring stiffness, the results pointed out that the RLSM

could identify precisely the environment characteristics. The results in

Table 4 were then used to combine with the output from the NNEC (the

detected environment class) to estimate the interaction between the

slave and environment.

5.1.3 NNEC optimization

Next, the training progress was carried out for the NNEC by using

the data sets obtained in Section 5.1.1 and the environment identification

results derived in Section 5.1.2. The determination of suitable size of

the input vector and number of hidden neurons in the competitive layer

is one of the essential issues in practical implementation of the neural

network-based classifier (Section 3.2). Here, the input vector size was

defined based on the numbers of time-based data points of the available

signals, us and Xs. The training was performed with the different

settings of the input layer and hidden layer, in which the number of

inputs was changed from 20 to 40 and the number of hidden neurons

was varied from 10 to 40. The correlation between the network output

and target output (the environment class) was used to describe the

training success. The training result (goodness of fit [%]) of the NNEC

was then analyzed in Table 5 and Fig. 11.

Table 4 Environment characterization results

Environment class (Spring type) Actual Stiffness N/m RLSM-based Stiffness N/m Identification Accuracy [%]

Class 0 (Free Load) 0 - -

Class 1 (Spring type 1) 500 509.649 98.070

Class 2 (Spring type 3) 1500 1531.047 97.930

Class 3 (Spring type 5) 2500 2550.731 97.978

Table 5 Learning success rate of NNEC [%]

Number
of inputs

Number of nodes in hidden layer

10 15 20 25 30 35 40

20 84.43 84.66 83.71 84.67 84.82 87.12 85.71

24 86.44 84.91 87.24 93.57 94.54 90.33 85.96

28 86.25 83.82 88.04 88.35 95.49 91.57 85.77

32 85.44 84.90 88.32 90.07 92.83 91.92 86.34

36 84.15 85.88 89.82 91.58 91.32 92.83 85.41

40 84.16 85.40 82.25 84.08 83.32 83.68 83.37

Goodness of fit [%]

Fig. 11 Goodness of fit - 3D map

Fig. 12 Classification result using the optimized NNEC: (a)

Environment class 0, (b) Environment class 2
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From these results, it can be found that the most suitable NNEC

structure was realized with 28 nodes in the input vector and 30 nodes

in the competitive layer. The learning success rate in this case was

highest with 95.49 [%]. The result implies that the designed NNEC

could estimate well the working environment at the slave site.

5.1.4 NNEC validation

To validate the applicability of the optimized NNEC, real-time open

loop experiments on the test rig were performed. During these

experiments, the cylinder was randomly driven by the PC and, the

NNEC was employed to detect the environment conditions. Here, the

environment was set to the class 0 (free load) and class 2 (using the

spring type 3). Subsequently, the NNEC detection performances were

obtained as plotted in Fig. 12(a) and 12(b). These results show that the

classifier could detect the loading conditions and the outputs reached

stably and accurately to the true classes in a short time. This confirm

convincingly that the proposed classifier could identify online correctly

the environment class. By combining with the environment

characterization results (as presented in Section 5.1.2), it is therefore

capable of producing precisely the environment characteristics which

take an important task in setting the desired reflection force.

5.2 LRAC Verification

Experiments with the FFM pressure tracking control and cylinder

position tracking control were done separately to investigate the

capability of the local controllers, MRAC and SRAC, respectively. For

each control objective, a comparative study of the designed controller

and a conventional PID controller was carried out. Due to the fixed

gain use, the PID control gains were manually tuned for each given

trajectory by using the following steps:

Step 1: the control objective was approximated by a transfer

function derived from its data using system identification toolbox of

Matlab27;

Step 2: for each tracking trajectory, the PID gains were tuned for the

derived system transfer function using PID tuner of Matlab/Simulink;

Step 3: the PID gains obtained from Step 2 were refined through

control tests with the real system.

Sinusoidal and multi-step signals were used to generate tracking

profiles for the tests. Based on the test rig specifications, the parameters

of these profiles were properly determined. Consequently, the PID

gains were derived for each test case as shown in Table 6. It is note that

in Table 6 with the position tracking, the PID gains were tuned for the

case that the environment was the class 1 (using the spring type 1).

5.2.1 Rotary actuator pressure tracking control

First, experiments were carried out with the rotary actuator pressure

control using the two controllers, PID and MRAC. The comparison

results with respect to the multi-step and sinusoidal references were

obtained and in turn plotted in Figs. 13 and 14. When dealing with the

multi-step reference, the performances of both the controllers were

quite similar with acceptable control error. However, by using the PID

controller, of which the gains were tuned for the small jumping step

(1.5 bar), the responses of the actuator to the larger jumping steps were

slower than those of using the MRAC. The differences between these

control performances were bigger in case of sinusoidal tracking.

Although the tuned PID controller could drive the system to follow the

desired goal quickly with acceptable error, this steady state error (SSE)

was larger than that of the MRAC controller (± 0.2 bar compared to

± 0.05 bar in case of the 1 Hz reference). The PID performance was

continuously degraded at the higher frequency, 2 Hz with larger SSE.

Meanwhile, the MRAC could always ensure the fast response and

small SSE in both the test cases (less than ± 0.075 bar, equivalent to

± 3% of the sinusoidal trajectory amplitude). The reason was that the

MRAC was the advanced combination between the adaptive neural

network and robust learning technique to compensate the system

nonlinearities and uncertainties and therefore, minimize the control error.

5.2.2 Cylinder position tracking control

Next, experiments were carried out with the cylinder position control

Table 6 Setting parameters for test profiles and PID controllers

Plant Reference / PID gains
Multi-step reference:
Step for PID Tuning

Sinusoidal reference: (amplitude - A, frequency - F)

(A1, F1) (A2, F2)

Master FFM
(Pressure control)

Reference Step 1.5 bar (2.5 bar, 1 Hz) (2.5 bar, 2 Hz)

KP 0.3037 0.3195 0.5709

KI 0.0029 0.4305 0.4417

KD 0.0744 0.0180 0.0243

Slave Cylinder
(Position control)

(Environment class 1)

Reference Step 20 mm (20 mm, 1 Hz) (20 mm, 2 Hz)

KP 0.1285 0.1606 0.3990

KI 0.0316 0.0240 0.0379

KD 0.0494 0.0593 0.0689

Fig. 13 Pressure tracking results: multi-step trajectory
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using the two controllers, SRAC and PID (Table 6). Similar to the

pressure tracking control tests, the two controllers were in turn applied

to drive the cylinder to follow the trajectories defined in Table 6 in

different load conditions. Herein, the environment classes 1 and 3 in

Table 4 were employed for the tracking control tests. The comparison

results were obtained as plotted in Figs. 15 to 17. As denoted in Table

6, the PID control gains were derived for the system working in the

environment class 1. Hence, when the environment class 1 was selected,

the tracking results using the compared controllers were both acceptable

as shown in Fig. 15. The PID controller, with the gains optimized

manually for the working step 20 mm and environment class 1, could

achieved the small SSE in the small working steps. This SSE was

increased together with the rise of undershoots when the system faced

with the large step changes. Similarly, the control performance was

degraded when the external environment was varied from the class 1 to

class 3. This phenomenon is clearly shown through the PID control

results with respect to the sinusoidal references.

Without changing the environment condition, compared to the

condition to derive the PID gains, the controller could drive the system

to reach the goals with small SSE (within ± 1.2 mm, corresponding to

6% of the reference amplitude) in both the two working frequencies

(Figs. 16 and 17). Once the environment was changed, the performance

was significantly deteriorated with large SEE (around ± 3.8 mm,

corresponding to ± 19% of the reference amplitude). On the contrary,

Fig. 14 Pressure tracking results: (a) Sine 1 Hz, (b) Sine 2 Hz

Fig. 15 Position tracking results: multi-step trajectory (a) Environment

class 1; (b) Environment class 3

Fig. 16 Position tracking results - Environment class 1: (a) Sine 1 Hz,

(b) Sine 2 Hz



12 / JULY 2017 INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING  Vol. 18, No. 7

by using the SRAC with the same advanced functionalities as the

MRAC, the best tracking results with small overshoot, fast rising time

and small SSE were achieved in both the cases (Figs. 15 to 17). The

tracking accuracy using the SRAC was always guaranteed to be less

than ± 0.5 mm (± 2.5% of the trajectories’ amplitudes).

From the comparative studies with both the local controllers, SRAC

and MRAC, it can be concluded that these designed controllers are

powerful for the teleoperation control application.

5.3 SFFJC verification

In this section, the full control system, SFFJC, has been applied to

the test rig (Fig. 3) in order to evaluate its applicability to teleoperation

applications. A series of experiments on the testing system was conducted

under the three different environment classes. Here, to investigate the

adaptability of the SFFJC, the spring types 1, 2, and 4 from Table 1

were chosen to represent the environment. Additionally, in order to

create challenges for the control system in detecting the environment

changes as well as keeping the stability of the FFM rotary actuator and

slave manipulator, these springs were installed so that they were initially

in the free lengths (by adjusting the lock position of the slider in Fig.

3(d)). The springs were only compressed when the cylinder rod moves

forward a pre-defined distance. In this study, this distance was set to 7

mm. The joystick commands were randomly given by the operator to

drive the slave manipulator. Based on an analysis of the operator-

joystick and slave dynamics and using the trial-and-error method, the

transformed factor was properly assigned by 1/4.5, which means a 4.5

N reflected force was equivalent with a 1 bar reflected pressure.

The closed loop teleoperation experiments were then performed and

the results are plotted in Figs. 18 to 20. From these figures, it can be

seen that the proposed SFFJC behaved well with high accuracy. This

comes as no surprise because the SFFJC possesses the three advanced

modules: FSSC, MRAC and SRAC. With the FSSC implementation,

the environment characteristics in either free-load or load condition

could be estimated accurately by the NNEC. As shown in the third and

second sub-plots from the bottom of Figs. 18-20, the environment

classes were determined correctly as 1, 1.5 and 2.5 which were

correspond with the actual spring selection, type 1, type 2 and type 4.

Moreover, the NNEC could detect immediately the change of external

environment, from free load (indicated by the free load region in the

top sub-plots) to load and vice versa. Based on this estimation, the

FFFT was capable of producing properly the desired reflected pressure

by regulating smoothly the FFG in order to make the similar load

feeling to the master site (see the first sub-plots from the bottom of

Figs. 18-20). Next, the two local controllers took parts in executing

precisely the tasks given to the slave manipulator and the master FFM

(cylinder position control and rotary actuator pressure control). The

control results, which are in turn depicted in the fourth and fifth sub-

plots of Figs. 18-20 (from the bottom), proved remarkably the capability

of these controllers. As a result, the proposed SFFJC could ensure the

stable performance for the teleoperation system in which the slave

Fig. 17 Position tracking results - Environment class 3: (a) Sine 1 Hz

frequency, (b) Sine 2 Hz Fig. 18 Teleoperation performance in environment class 1
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performed accurately the desired task while the operator was able to

realize truthfully the interaction between the slave manipulator and the

environment.

6. Conclusions

This paper presents the simple, safe and cost-effective approach

named sensorless force feedback joystick control for teleoperation

applications, especially in construction sector. The main contributions

of this study can be summarized as follows:

+ The force sensorless supervisory controller is designed as the

combination of the neural network-based environment classifier and the

fuzzy-based force feedback tuner. The NNEC is capable of detecting

the environment characteristics at the slave site without requiring any

sensor to estimate the interaction between the slave and environment.

Meanwhile, the FFFT with the fuzzy-based cognitive map decision tool

is capable of deriving appropriately the target reflecting pressure for the

FFM based on the NNEC outputs.

+ The two robust adaptive controllers, SRAC and MRAC, are

implemented to ensure the adaptability and stability of the position and

pressure tracking of the closed loop slave and master systems.

+ By integrating both the advanced characteristics of the FSSC,

SRAC and MRAC into the SFFJC, the acceptable teleoperation

performance could be always achieved disregarding the system

nonlinearities and uncertainties. The experimental results then prove

convincingly the effectiveness of the proposed control approach.

It should be noted that the focus of this paper is to develop the

SFFJC approach over wired communication. Therefore, the presence of

time delays over communication channels of a teleoperation system is

not considered here. The delay problems and/or data packet losses

normally existing in wireless or network-based control systems have

been carefully addressed and separately resolved by the authors as

presented in our recent publications.28-30 As an area of the future work,

the development of a SFFJC-based teleoperation control system with

imperfect communication using the results of our current studies is

carrying out in order to widen its applicability. Another aspect of the

future work is to investigate the capability of the proposed control

approach when dealing with multi-DOF teleoperation systems.
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