14,675 research outputs found

    Two-dimensional Nanolithography Using Atom Interferometry

    Full text link
    We propose a novel scheme for the lithography of arbitrary, two-dimensional nanostructures via matter-wave interference. The required quantum control is provided by a pi/2-pi-pi/2 atom interferometer with an integrated atom lens system. The lens system is developed such that it allows simultaneous control over atomic wave-packet spatial extent, trajectory, and phase signature. We demonstrate arbitrary pattern formations with two-dimensional 87Rb wavepackets through numerical simulations of the scheme in a practical parameter space. Prospects for experimental realizations of the lithography scheme are also discussed.Comment: 36 pages, 4 figure

    Optical Supersymmetry in the Time Domain

    Full text link
    Originally emerged within the context of string and quantum field theory, and later fruitfully extrapolated to photonics, the algebraic transformations of quantum-mechanical supersymmetry were conceived in the space realm. Here, we introduce a paradigm shift, demonstrating that Maxwell's equations also possess an underlying supersymmetry in the time domain. As a result, we obtain a simple analytic relation between the scattering coefficients of a large variety of time-varying optical systems and uncover a wide new class of reflectionless, three dimensional, all-dielectric, isotropic, omnidirectional, polarization-independent, non-complex media. Temporal supersymmetry is also shown to arise in dispersive media supporting temporal bound states, which allows engineering their momentum spectra and dispersive properties. These unprecedented features define a promising design platform for free-space and integrated photonics, enabling the creation of a number of novel reconfigurable reflectionless devices, such as frequency-selective, polarization-independent and omnidirectional invisible materials, compact frequency-independent phase shifters, broadband isolators, and versatile pulse-shape transformers

    Engineering quantum operations on traveling light beams by multiple photon addition and subtraction

    Full text link
    We propose and investigate an optical scheme for probabilistic implementation of an arbitrary single-mode quantum operation that can be expressed as a function of photon number operator. The scheme coherently combines multiple photon addition and subtraction and is feasible with current technology. As concrete examples, we demonstrate that the device can perform approximate noiseless linear amplification of light and can emulate Kerr nonlinearity.Comment: 7 pages, 7 figures, accepted for publication in Phys. Rev.

    Index to NASA Tech Briefs, 1975

    Get PDF
    This index contains abstracts and four indexes--subject, personal author, originating Center, and Tech Brief number--for 1975 Tech Briefs

    An investigation of potential applications of OP-SAPS: Operational Sampled Analog Processors

    Get PDF
    The application of OP-SAP's (operational sampled analog processors) in pattern recognition system is summarized. Areas investigated include: (1) human face recognition; (2) a high-speed programmable transversal filter system; (3) discrete word (speech) recognition; and (4) a resolution enhancement system
    corecore