6,654 research outputs found

    A Trust Model for Vehicular Network-Based Incident Reports

    Get PDF
    Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) networks are ephemeral, short-duration wireless networks that have the potential to improve the overall driving experience through the exchange of information between vehicles. V2V and V2I networks operate primarily by distributing real-time incident reports regarding potential traffic problems such as traffic jams, accidents, bad roads and so on to other vehicles in their vicinity over a multi-hop network. However, given the presence of malicious entities, blindly trusting such incident reports (even the one received through a cryptographically secure channel) can lead to undesirable consequences. In this paper, we propose an approach to determine the likelihood of the accuracy of V2V incident reports based on the trustworthiness of the report originator and those vehicles that forward it. The proposed approach takes advantage of existing road-side units (RSU) based V2I communication infrastructure deployed and managed by central traffic authorities, which can be used to collect vehicle behavior information in a crowd-sourcedfashion for constructing a more comprehensive view of vehicle trustworthiness. For validating our scheme, we implemented a V2V/V2I trust simulator by extending an existing V2V simulator with trust management capabilities. Preliminary analysis of the model shows promising results. By combining our trust modeling technique with a threshold-based decision strategy, we observed on average 85% accuracy

    Trust in Vehicle-to-Vehicle Communication

    Get PDF
    In traditional Pedestrian Automatic Emergency Braking (PAEB) system, vehicles equipped with onboard sensors such as radar, camera, and infrared detect pedestrians, alert the driver and/ or automatically take actions to prevent vehicle-pedestrian collision. In some situations, a vehicle may not be able to detect a pedestrian due to blind spots. Such a vehicle could benefit from the sensor data from neighboring vehicles in making such safety critical decisions. We propose a trust model for ensuring shared data are valid and trustworthy for use in making safety critical decisions. Simulation results of the proposed trust model show promise

    PS-Sim: A Framework for Scalable Simulation of Participatory Sensing Data

    Full text link
    Emergence of smartphone and the participatory sensing (PS) paradigm have paved the way for a new variant of pervasive computing. In PS, human user performs sensing tasks and generates notifications, typically in lieu of incentives. These notifications are real-time, large-volume, and multi-modal, which are eventually fused by the PS platform to generate a summary. One major limitation with PS is the sparsity of notifications owing to lack of active participation, thus inhibiting large scale real-life experiments for the research community. On the flip side, research community always needs ground truth to validate the efficacy of the proposed models and algorithms. Most of the PS applications involve human mobility and report generation following sensing of any event of interest in the adjacent environment. This work is an attempt to study and empirically model human participation behavior and event occurrence distributions through development of a location-sensitive data simulation framework, called PS-Sim. From extensive experiments it has been observed that the synthetic data generated by PS-Sim replicates real participation and event occurrence behaviors in PS applications, which may be considered for validation purpose in absence of the groundtruth. As a proof-of-concept, we have used real-life dataset from a vehicular traffic management application to train the models in PS-Sim and cross-validated the simulated data with other parts of the same dataset.Comment: Published and Appeared in Proceedings of IEEE International Conference on Smart Computing (SMARTCOMP-2018
    • …
    corecore