15,304 research outputs found

    A tree-based kernel for graphs with continuous attributes

    Full text link
    The availability of graph data with node attributes that can be either discrete or real-valued is constantly increasing. While existing kernel methods are effective techniques for dealing with graphs having discrete node labels, their adaptation to non-discrete or continuous node attributes has been limited, mainly for computational issues. Recently, a few kernels especially tailored for this domain, and that trade predictive performance for computational efficiency, have been proposed. In this paper, we propose a graph kernel for complex and continuous nodes' attributes, whose features are tree structures extracted from specific graph visits. The kernel manages to keep the same complexity of state-of-the-art kernels while implicitly using a larger feature space. We further present an approximated variant of the kernel which reduces its complexity significantly. Experimental results obtained on six real-world datasets show that the kernel is the best performing one on most of them. Moreover, in most cases the approximated version reaches comparable performances to current state-of-the-art kernels in terms of classification accuracy while greatly shortening the running times.Comment: This work has been submitted to the IEEE Transactions on Neural Networks and Learning Systems for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    A Survey on Graph Kernels

    Get PDF
    Graph kernels have become an established and widely-used technique for solving classification tasks on graphs. This survey gives a comprehensive overview of techniques for kernel-based graph classification developed in the past 15 years. We describe and categorize graph kernels based on properties inherent to their design, such as the nature of their extracted graph features, their method of computation and their applicability to problems in practice. In an extensive experimental evaluation, we study the classification accuracy of a large suite of graph kernels on established benchmarks as well as new datasets. We compare the performance of popular kernels with several baseline methods and study the effect of applying a Gaussian RBF kernel to the metric induced by a graph kernel. In doing so, we find that simple baselines become competitive after this transformation on some datasets. Moreover, we study the extent to which existing graph kernels agree in their predictions (and prediction errors) and obtain a data-driven categorization of kernels as result. Finally, based on our experimental results, we derive a practitioner's guide to kernel-based graph classification

    Subgraph Matching Kernels for Attributed Graphs

    Full text link
    We propose graph kernels based on subgraph matchings, i.e. structure-preserving bijections between subgraphs. While recently proposed kernels based on common subgraphs (Wale et al., 2008; Shervashidze et al., 2009) in general can not be applied to attributed graphs, our approach allows to rate mappings of subgraphs by a flexible scoring scheme comparing vertex and edge attributes by kernels. We show that subgraph matching kernels generalize several known kernels. To compute the kernel we propose a graph-theoretical algorithm inspired by a classical relation between common subgraphs of two graphs and cliques in their product graph observed by Levi (1973). Encouraging experimental results on a classification task of real-world graphs are presented.Comment: Appears in Proceedings of the 29th International Conference on Machine Learning (ICML 2012

    Propagation Kernels

    Full text link
    We introduce propagation kernels, a general graph-kernel framework for efficiently measuring the similarity of structured data. Propagation kernels are based on monitoring how information spreads through a set of given graphs. They leverage early-stage distributions from propagation schemes such as random walks to capture structural information encoded in node labels, attributes, and edge information. This has two benefits. First, off-the-shelf propagation schemes can be used to naturally construct kernels for many graph types, including labeled, partially labeled, unlabeled, directed, and attributed graphs. Second, by leveraging existing efficient and informative propagation schemes, propagation kernels can be considerably faster than state-of-the-art approaches without sacrificing predictive performance. We will also show that if the graphs at hand have a regular structure, for instance when modeling image or video data, one can exploit this regularity to scale the kernel computation to large databases of graphs with thousands of nodes. We support our contributions by exhaustive experiments on a number of real-world graphs from a variety of application domains

    Graph Classification with 2D Convolutional Neural Networks

    Full text link
    Graph learning is currently dominated by graph kernels, which, while powerful, suffer some significant limitations. Convolutional Neural Networks (CNNs) offer a very appealing alternative, but processing graphs with CNNs is not trivial. To address this challenge, many sophisticated extensions of CNNs have recently been introduced. In this paper, we reverse the problem: rather than proposing yet another graph CNN model, we introduce a novel way to represent graphs as multi-channel image-like structures that allows them to be handled by vanilla 2D CNNs. Experiments reveal that our method is more accurate than state-of-the-art graph kernels and graph CNNs on 4 out of 6 real-world datasets (with and without continuous node attributes), and close elsewhere. Our approach is also preferable to graph kernels in terms of time complexity. Code and data are publicly available.Comment: Published at ICANN 201

    Inductive queries for a drug designing robot scientist

    Get PDF
    It is increasingly clear that machine learning algorithms need to be integrated in an iterative scientific discovery loop, in which data is queried repeatedly by means of inductive queries and where the computer provides guidance to the experiments that are being performed. In this chapter, we summarise several key challenges in achieving this integration of machine learning and data mining algorithms in methods for the discovery of Quantitative Structure Activity Relationships (QSARs). We introduce the concept of a robot scientist, in which all steps of the discovery process are automated; we discuss the representation of molecular data such that knowledge discovery tools can analyse it, and we discuss the adaptation of machine learning and data mining algorithms to guide QSAR experiments
    • …
    corecore