8,026 research outputs found

    Study of Multi-Modal and Non-Gaussian Probability Density Functions in Target Tracking with Applications to Dim Target Tracking

    Get PDF
    The majority of deployed target tracking systems use some variant of the Kalman filter for their state estimation algorithm. In order for a Kalman filter to be optimal, the measurement and state equations must be linear and the process and measurement noises must be Gaussian random variables (or vectors). One problem arises when the state or measurement function becomes a multi-modal Gaussian mixture. This typically occurs with the interactive multiple model (IMM) technique and its derivatives and also with probabilistic and joint probabilistic data association (PDA/JPDA) algorithms. Another common problem in target tracking is that the target\u27s signal-to-noise ratio (SNR) at the sensor is often low. This situation is often referred to as the dim target tracking or track-before-detect (TBD) scenario. When this occurs, the probability density function (PDF) of the measurement likelihood function becomes non-Gaussian and often has a Rayleigh or Ricean distribution. In this case, a Kalman filter variant may also perform poorly. The common solution to both of these problems is the particle filter (PF). A key drawback of PF algorithms, however, is that they are computationally expensive. This dissertation, thus, concentrates on developing PF algorithms that provide comparable performance to conventional PFs but at lower particle costs and presents the following four research efforts. 1. A multirate multiple model particle filter (MRMMPF) is presented in Section-3. The MRMMPF tracks a single, high signal-to-noise-ratio, maneuvering target in clutter. It coherently accumulates measurement information over multiple scans via discrete wavelet transforms (DWT) and multirate processing. This provides the MRMMPF with a much stronger data association capability than is possible with a single scan algorithm. In addition, its particle filter nature allows it to better handle multiple modes that arise from multiple target motion models. Consequently, the MRMMPF provides substantially better root-mean-square error (RMSE) tracking performance than either a full-rate or multirate Kalman filter tracker or full-rate multiple model particle filter (MMPF) with a same particle count. 2. A full-rate multiple model particle filter for track-before-detect (MMPF-TBD) and a multirate multiple model particle filter for track-before-detect (MRMMPF-TBD) are presented in Section-4. These algorithms extend the areas mentioned above and track low SNR targets which perform small maneuvers. The MRMMPF-TBD and MMPF-TBD both use a combined probabilistic data association (PDA) and maximum likelihood (ML) approach. The MRMMPF-TBD provides equivalent RMSE performance at substantially lower particle counts than a full-rate MMPF-TBD. In addition, the MRMMPF-TBD tracks very dim constant velocity targets that the MMPF-TBD cannot. 3. An extended spatial domain multiresolutional particle filter (E-SD-MRES-PF) is developed in Section-5. The E-SD-MRES-PF modifies and extends a recently developed spatial domain multiresolutional particle filter prototype. The prototype SD-MRES-PF was only demonstrated for one update cycle. In contrast, E-SD-MRES-PF functions over multiple update cycles and provides comparable RMSE performance at a reduced particle cost under a variety of PDF scenarios. 4. Two variants of a single-target Gaussian mixture model particle filter (GMMPF) are presented in Section-6. The GMMPF models the particle cloud as a Gaussian finite mixture model (FMM). MATLAB simulations show that the GMMPF provides performance comparable to a particle filter but at a lower particle cost

    Data association and occlusion handling for vision-based people tracking by mobile robots

    Get PDF
    This paper presents an approach for tracking multiple persons on a mobile robot with a combination of colour and thermal vision sensors, using several new techniques. First, an adaptive colour model is incorporated into the measurement model of the tracker. Second, a new approach for detecting occlusions is introduced, using a machine learning classifier for pairwise comparison of persons (classifying which one is in front of the other). Third, explicit occlusion handling is incorporated into the tracker. The paper presents a comprehensive, quantitative evaluation of the whole system and its different components using several real world data sets

    Tracking interacting targets in multi-modal sensors

    Get PDF
    PhDObject tracking is one of the fundamental tasks in various applications such as surveillance, sports, video conferencing and activity recognition. Factors such as occlusions, illumination changes and limited field of observance of the sensor make tracking a challenging task. To overcome these challenges the focus of this thesis is on using multiple modalities such as audio and video for multi-target, multi-modal tracking. Particularly, this thesis presents contributions to four related research topics, namely, pre-processing of input signals to reduce noise, multi-modal tracking, simultaneous detection and tracking, and interaction recognition. To improve the performance of detection algorithms, especially in the presence of noise, this thesis investigate filtering of the input data through spatio-temporal feature analysis as well as through frequency band analysis. The pre-processed data from multiple modalities is then fused within Particle filtering (PF). To further minimise the discrepancy between the real and the estimated positions, we propose a strategy that associates the hypotheses and the measurements with a real target, using a Weighted Probabilistic Data Association (WPDA). Since the filtering involved in the detection process reduces the available information and is inapplicable on low signal-to-noise ratio data, we investigate simultaneous detection and tracking approaches and propose a multi-target track-beforedetect Particle filtering (MT-TBD-PF). The proposed MT-TBD-PF algorithm bypasses the detection step and performs tracking in the raw signal. Finally, we apply the proposed multi-modal tracking to recognise interactions between targets in regions within, as well as outside the cameras’ fields of view. The efficiency of the proposed approaches are demonstrated on large uni-modal, multi-modal and multi-sensor scenarios from real world detections, tracking and event recognition datasets and through participation in evaluation campaigns

    Parallel Tracking Systems

    No full text
    Tracking Systems provide an important analysis technique that can be used in many different areas of science. A Tracking System can be defined as the estimation of the dynamic state of moving objects based on 'inaccurate’ measurements taken by sensors. The area encompasses a wide range of subjects, although the two most essential elements are estimation and data association. Tracking systems are applicable to relatively simple as well as more complex applications. These include air traffic control, ocean surveillance and control sonar tracking, military surveillance, missile guidance, physics particle experiments, global positioning systems and aerospace. This thesis describes an investigation into state-of-the-art tracking algorithms and distributed memory architectures (Multiple Instructions Multiple Data systems - “MIMD”) for parallel processing of tracking systems. The first algorithm investigated is the Interacting Multiple Model (IMM) which has been shown recently to be one of the most cost-effective in its class. IMM scalability is investigated for tracking single targets in a clean environment. Next, the IMM is coupled with a well-established Bayesian data association technique known as Probabilistic Data Association (PDA) to permit the tracking of a target in different clutter environments (IMMPDA). As in the previous case, IMMPDA scalability is investigated for tracking a single target in different clutter environments. In order to evaluate the effectiveness of these new parallel techniques, standard languages and parallel software systems (to provide message-passing facilities) have been used. The main objective is to demonstrate how these complex algorithms can benefit in the general case from being implemented using parallel architectures

    Robust Multi-Object Tracking: A Labeled Random Finite Set Approach

    Get PDF
    The labeled random finite set based generalized multi-Bernoulli filter is a tractable analytic solution for the multi-object tracking problem. The robustness of this filter is dependent on certain knowledge regarding the multi-object system being available to the filter. This dissertation presents techniques for robust tracking, constructed upon the labeled random finite set framework, where complete information regarding the system is unavailable

    Multi-Object Tracking with Interacting Vehicles and Road Map Information

    Full text link
    In many applications, tracking of multiple objects is crucial for a perception of the current environment. Most of the present multi-object tracking algorithms assume that objects move independently regarding other dynamic objects as well as the static environment. Since in many traffic situations objects interact with each other and in addition there are restrictions due to drivable areas, the assumption of an independent object motion is not fulfilled. This paper proposes an approach adapting a multi-object tracking system to model interaction between vehicles, and the current road geometry. Therefore, the prediction step of a Labeled Multi-Bernoulli filter is extended to facilitate modeling interaction between objects using the Intelligent Driver Model. Furthermore, to consider road map information, an approximation of a highly precise road map is used. The results show that in scenarios where the assumption of a standard motion model is violated, the tracking system adapted with the proposed method achieves higher accuracy and robustness in its track estimations

    Multisensor data fusion for joint people tracking and identification with a service robot

    Get PDF
    Tracking and recognizing people are essential skills modern service robots have to be provided with. The two tasks are generally performed independently, using ad-hoc solutions that first estimate the location of humans and then proceed with their identification. The solution presented in this paper, instead, is a general framework for tracking and recognizing people simultaneously with a mobile robot, where the estimates of the human location and identity are fused using probabilistic techniques. Our approach takes inspiration from recent implementations of joint tracking and classification, where the considered targets are mainly vehicles and aircrafts in military and civilian applications. We illustrate how people can be robustly tracked and recognized with a service robot using an improved histogram-based detection and multisensor data fusion. Some experiments in real challenging scenarios show the good performance of our solution
    corecore