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ABSTRACT

Hlinomaz, Peter Vladimir, Ph.D., Engineering Ph.D. Program, Wright State University, 2008,
Study of Multi-Modal and Non-Gaussian Probability Density Functions in Target Tracking with

Applications to Dim Target Tracking

The majority of deployed target tracking systems use some variant of the Kalman filter for
their state estimation algorithm. In order for a Kalman filter to be optimal, the measurement and
state equations must be linear and the process and measurement noises must be Gaussian
random variables (or vectors). One problem arises when the state or measurement function
becomes a multi-modal Gaussian mixture. This typically occurs with the interactive multiple model
(IMM) technique and its derivatives and also with probabilistic and joint probabilistic data
association (PDA/JPDA) algorithms. Another common problem in target tracking is that the
target’s signal-to-noise ratio (SNR) at the sensor is often low. This situation is often referred to as
the dim target tracking or track-before-detect (TBD) scenario. When this occurs, the probability
density function (PDF) of the measurement likelihood function becomes non-Gaussian and often
has a Rayleigh or Ricean distribution. In this case, a Kalman filter variant may also perform
poorly. The common solution to both of these problems is the patrticle filter (PF). A key drawback
of PF algorithms, however, is that they are computationally expensive. This dissertation, thus,
concentrates on developing PF algorithms that provide comparable performance to conventional
PFs but at lower particle costs and presents the following four research efforts.

1. A multirate multiple model particle filter (MRMMPF) is presented in Section-3. The MRMMPF
tracks a single, high signal-to-noise-ratio, maneuvering target in clutter. It coherently
accumulates measurement information over multiple scans via discrete wavelet transforms
(DWT) and multirate processing. This provides the MRMMPF with a much stronger data
association capability than is possible with a single scan algorithm. In addition, its particle
filter nature allows it to better handle multiple modes that arise from multiple target motion

models. Consequently, the MRMMPF provides substantially better root-mean-square error



(RMSE) tracking performance than either a full-rate or multirate Kalman filter tracker or full-
rate multiple model particle filter (MMPF) with a same particle count.

A full-rate multiple model particle filter for track-before-detect (MMPF-TBD) and a multirate
multiple model particle filter for track-before-detect (MRMMPF-TBD) are presented in
Section-4. These algorithms extend the areas mentioned above and track low SNR targets
which perform small maneuvers. The MRMMPF-TBD and MMPF-TBD both use a combined
probabilistic data association (PDA) and maximum likelihood (ML) approach. The MRMMPF-
TBD provides equivalent RMSE performance at substantially lower particle counts than a full-
rate MMPF-TBD. In addition, the MRMMPF-TBD tracks very dim constant velocity targets
that the MMPF-TBD cannot.

An extended spatial domain multiresolutional particle filter (E-SD-MRES-PF) is developed in
Section-5. The E-SD-MRES-PF modifies and extends a recently developed spatial domain
multiresolutional particle filter prototype. The prototype SD-MRES-PF was only
demonstrated for one update cycle. In contrast, E-SD-MRES-PF functions over multiple
update cycles and provides comparable RMSE performance at a reduced particle cost under
a variety of PDF scenarios.

Two variants of a single-target Gaussian mixture model particle filter (GMMPF) are presented
in Section-6. The GMMPF models the particle cloud as a Gaussian finite mixture model
(FMM). MATLAB simulations show that the GMMPF provides performance comparable to a

particle filter but at a lower particle cost.



ACKNOWLEDGEMENTS

There are many people who have helped me complete the long road toward my Ph.D. It
would be impossible to mention them all in the brief space allotted. First and foremost, | wish to
thank my parents who sacrificed so much time, money, and energy in my upbringing and who

strived to instill in me a spirit of lifelong learning.

I would especially like to thank my adviser, Dr. Lang Hong, for his mentoring and wise
counsel. Without his patient help it would have been impossible for me to reach my academic
goals. | wish to also thank my other committee members, including Dr. Fred Garber, Dr. Arnab

Shaw, Dr. Ardeshir Goshtasby, and Dr. Raj K. Bhatnagar, for their time and their sage advice.

I would also like to thank my colleagues and my managers at the MITRE Corporation for
their support. Without their encouragement and the continued support of the MITRE Corporation

| would not have made it to the finish line.

Finally, I would like to thank my long suffering wife, Joan. She has put up with nine years
of my doctoral studies. During this time, she has artfully juggled the role of wife, mother, and
registered nurse and has carried much of the load that was rightfully mine. From now on Joan, |

promise to do my chores.



TABLE OF CONTENTS

1 INTRODUCTION Lottt e e e e e et e e e e e e eaa e e eaneeees 1
11 Problem Definition .........oooiiiiiiii 3
1.2 Summary of CONtrBULIONS .......ooueei e e 4

2 PREVIOUS WORK ...ttt e e e e e e e eaaas 6
21 Kinematic State ESUMALiON ..........cooviiiiiiiiii 6
2.2 Kalman Filter: Linear/Gaussian Special Case..........ccuuuuuuiiiiiiiiiiiiiiiiie e 7
2.3 Causes Of MUIIMOGAIITY ........coiiiiii e e e e e eeees 9

2.3.1 Multiple Modeling (MM) APPrOaCh.........coiiiiiiiiiii e 9
2.3.2 Interacting Multi-Pattern Probabilistic Data Association (IMPDA)............cc.uuuueeee... 13
2.3.3  Joint Probabilistic Data ASSOCIation (JPDA) ......cooiiiiiiiiiiieee e 18
2.4 Estimation Techniques to Address Multimodality...............coooiiiiiiiiiiiien 21
2.4.1 Approximate Grid-Based Methods ... 22
2.4.2  Gaussian SUM Filter (GSF).....coouuiiii e 23
2.4.3  PartiCle FITEr (PF) ..ottt e et e e e e raa s 25
2.5 Multiple Model Particle Filter (MMPE). ... 30
2.6 Initial Multirate Particle Filter EffOrtS ... 32
2.7 Maintaining Multi-Modality in Particle Filters............oooiii e 32
2.8 Measurement Gating With Multi-Modal Likelihood Functions.................cccooeviiiiiinnnen. 33
2.9 Particle Filter Track Before Detect (TBD-PF)......ccoooiiiiiiiiiii e 33
2.10  Spatial-Domain Multi-Resolution Particle Filtering (SD-MRES-PF) ........cccooooiiiiiiinnnnn. 34

3 MULTIRATE - MULTIPLE MODEL PARTICLE FILTER (MRMMPF) ......... 37

3.1 MRMMPF Theoretical Description and DeSIgN .........ccoeuuuuuiiiieiiieiiiiiee e 38
3.1.1 1/3-Rate MMPF INItIaliZAtION..........ccoviiiiiiiiiiiiii 39
3.1.2 Full-Rate MMPF INItIaliZatioN ...........ccovviiiiiiiiiiiiii 41



31,3 1/3-RALE IMIXING - ettt ettt e e et et e e e e et as 42

.14 L/3-RAte MIMPFE ...t e e e e e aaeas 43
3.15  FUIFRAIE MMPF ...t e e e e e e e eeeaaeas 51
4 MULTIRATE MULTIPLE MODEL PARTICLE FILTER TRACK BEFORE
DETECT (MRMMPFEF-TBD).....ouiiiiiiiiie e 54
4.1 MRMMPFE-TBD AlgOrithm OVEIVIEW........ccciiiiiiiiiii e 54
4.2 Full-Rate Target MOGEIS .......coooiiiii e 57
4.3 Third-Rate Target MOUEIS ......... e 58
4.4 Full-Rate Measurement MOGEl ... 60
4.5 Third-Rate Measurement MOGEI............uuuuuiiiiiiiiiiiiiiiiiieie e 61
4.6 Particle Weight Computation (FUl-RALE) .........ueeiiiiiiiiiiiii e 62
4.7 Particle Weight Computation (1/3-Rate) ...........uiiiiiiiiiiiiiii e 66
4.8 MEASUIEMENT GALING ....vvveei ettt e e e e et e e e e e e eeabba e e e e e e eebbaa e e eaas 68
5 EXTENDED SPATIAL DOMAIN MULTI-RESOLUTION PARTICLE
FILTERING (E-SD-MRES-PF)....ccoiiiiiiiiiee e 72
6 GAUSSIAN FINITE MIXTURE MODEL PARTICLE FILTERS (GMMPF) ...76
6.1 Gaussian Finite Mixture Models (FMM).........ccouiiiiiiiiiiii 76
6.2 GMMPF and K-GMMPF AlgOrithms .......coouuuii e 77
7 SCENARIOS AND SIMULATION RESULTS.....oiiiiiiiieee e 82
7.1 MRMMPF vs. MMPF, IMPDA, and IMMPDAF ... 82
7.1.1  SCENArIO DESCHPIION ..uvuei ettt e e e e e et e e e e e e eeeaa e as 82
7.1.2  Scenario-1 (8= +- 5 M/SZ) RESUILS .......ooveveeeeieeeeeeee oo, 84
7.1.3  Scenario-2 (2= +- 15 M/SZ) RESUILS ........cvevieeeeeieeeeeeeeeeeeee et 93
7.1.4  Scenario-3 (2= +- 25 M/SZ) RESUILS .........oveveeieeeeeeeeeeeeeeeeeeeeeeee e, 96

vii



7.1.5  Scenario-4 (&= +- 40 M/SZ) RESUILS .........cvevieeeeeeeeeeeeeeeeeeeeeeeee e, 99

7.2 MRMMPFE-TBD and MMPF-TBD. ......ccitiiiiiiiiiiiiiae e 102
7.2.1 Scenario-1 Description: Mildly Maneuvering Target.............oooeevieeiiiiiineeeeeeeeninnnn. 102
7.2.2  Scenario-2: Non-Maneuvering Target ........c.uuuuiiieeaiieiiiiiiaae e eeeiiiie e e e eeeeenen 104
7.2.3  SCENAIMO-1 TESUILS .eeiiiiiiiiiiiiiiiiiie e 104
7.2.4  SCENAMOD-2 RESUIES ....oiiiiiiiiiiiiiiiiiii 105

7.3 E-SD-MRES-PF vs. Standard Uni-Resolutional Bootstrap Filter (BPF).................... 110
7.3.1 E-SD-MRES-PF Scenario DeSCIPLON .......ccuuuuuiiiiiaiiiiiiiiiiiee e e e e e 111
7.3.2  RESUIS...coiiiiiiiiiiiiiiii 111

7.4 GMMPFE AND K-GMMPEF ... et e e e eeeas 116
7.41 GMMPF AND K-GMMPF SCENANO ... .ieeiiiiiiiiiiiaa e e ettt eeeeeeeeeneas 116
7.4.2 GMMPF and K-GMMPFE RESUILS........oiiiiiiiiiiiiiiii et 117

7.5 Summary and DiscusSion Of RESUILS ..........uuiiiiiiiiiii e 117
7.5.1 MMPF and MRMMPFEF SUMMAIY .....uuiiiiiiiiiiiiiia et eeeeeeeennas 118
7.5.2 MMPF-TBD and MRMMPF-TBD SUMMAIY .......oiiiiaiiiiiiiiiiaaae e eeeiiiia e e e e eeeeeennns 118
7.5.3 E-SD-MRES-PF SUMMAIY.... ittt ettt e e e e eaa e eeees 118
7.5.4 GMMPF AND K-GMMPF SUMMANY .....uiiiiiiiiieiiieee et e e e e eeee 119

8  CONCLUSIONS ... e e eeaa s 120
O FUTURE WORK ...t e e a e e e e e e eaa s 121

9.1 MMPF-TBD and MRMMPFE-TBD........ciiiiiiiiiiiiiaa e 121

9.2 E-SD-MRES- P ... et 122

9.3 GMMPF and K-GIMMPEF ... ..ot e e e eeeba e e e aeeaes 122

10 REFERENCES ..o e eeaans 123
APPENDIX-A: LIST OF ABBREVIATIONS ... 131

viii



LIST OF FIGURES

Figure 1.1 Actual Gaussian Mixture PDF of Target State .............uuuiiiiiiiiiiiiiii e 2
Figure 1.2 Moment-Matched Gaussian Representation of PDF Target State............cceeiieeeeiees 2
Figure 2.1 IMM Algorithm BIOCK DIiagram ............oii et eeaa s 11
Figure 2.2 Extraction of Patterns from a SEQUENCE ..........uuiiiiiiiiiiiiiiiie e 15
Figure 2.3 Pattern Mapping From One Window t0 NeXt ..........cccoiiiiiiiiiiiiiiiiiiiiii e 15
Figure 2.4 IMPDA Algorithm BIOCK DIiagram..........ccouiiiiiiiiiiiee et eeeai s 18
Figure 2.5 Moment-Matched Gaussian Representation of PDF in JPDA ..........ccoooiiiiiiiiiiiiiinnnn. 22
Figure 3.1 MRMMPF Algorithm BIOCK Diagram.......cccooeuuiuuiiieeeie ettt 39
Figure 4.1 MRMMPF-TBD BIOCK DIGQIAIM ...ccuvuuiiiiieiieiiiiiiee ettt e et e e e e e 56
Figure 4.2 1-R Coarse and Fine Gating EXample............uuiiiiiiiiiiiii e 71
Figure 5.1 Multiresolutional Decomposition via DWT Filter Bank.............ccoooouiiiiiiiiiiiiiiiiie, 73
Figure 5.2 Thresholding Example via the Explicit Method ..., 75
Figure 6.1 Gaussian Finite Mixture Model Particle Filter (GMMPF) ..., 81
Figure 7.1 True Track vs. NOiSy Measurements + FA . ... 85
Figure 7.2 IMMPDAF RMS PoSition Errors (a=+/-5) ....c.uuuuiiiiiiiiieiiiiii e 86
Figure 7.3 IMPDA RMS PoSition Errors (8=+/-5) .....cccuiiiiiiiieeeeeeee e 86
Figure 7.4 MMPF RMS PosSition Error (8=+/-5) .....ccoiiiiiiiiie e 87
Figure 7.5 MRMMPFE RMS POSItion ErrOr (8=+/-5) ....ccceuuieiiiiieeeii e 87
Figure 7.6 IMMPDAF RMS VeloCity Errors (8==+/-5) ....c.uuuuiiiiiiiiiiiiiiiie e 88
Figure 7.7 IMPDA RMS Velocity Errors (a=+/-5) .....coiiiiiiiieie e 88
Figure 7.8 MMPF RMS VelocCity Errors (=+/-5) .....cccuiiiuiiiieeeieeeei e 89
Figure 7.9 MRMMPF RMS Velocity Errors (a=+/-5).....cccuuuuiiiiiiiiiiiiiiii e 89
Figure 7.10 IMPDA Pattern Probabilities (a=+/-5) ......coouuriniiiiaiii e 20
Figure 7.11 MRMMPF Pattern Probabilities (8=+/-5)........uuiiiiiiiiiiiiiii e 90
Figure 7.12 IMMPDAF Model ProbabilitieS (8=+/-5) .....ccuuuuiiiiiiiiiiiiiii e 91
Figure 7.13 IMPDA Model Probabilities (a=+/-5) .......cooiiiiiiiee e 91



Figure 7.14 MMPF Model Probabilities (8=+/-5) ......ccouiiiiiiiiie e 92

Figure 7.15 MRMMPF Model ProbabilitieS (8=4/5)......ccuuuuuiiiiaiaiieiiii e 92
Figure 7.16 IMMPDAF RMS PoOSition Errors (8=+/-15) .....uuiiiiiiiieiiiiiiiie e 94
Figure 7.17 IMPDA RMS PoSItion Errors (8=+/-15) .....ccuuuuuiiiieaiieiiiiiiiie e 94
Figure 7.18 MMPF RMS Position Errors(a==+/-15) ......ccouuuuuiiiieiiiieeiiiie e 95
Figure 7.19 MRMMPF RMS PoSItion Errors (8=+/-15) ....uuuiiiiiiiiiiiiiiiie e 95
Figure 7.20 IMMPDAF RMS POSition Errors (8=+/-25) ...uuuuiiiiieiieiiiiiei e 97
Figure 7.21 IMPDA RMS PoSItion Errors (8=+/-25) .....ccuuuuuiiiieaiieeiiiiiee et 97
Figure 7.22 MMPF RMS PoSition Errors (8=+/-25) ......ccuuuuuiiiieeeieeeeii e 98
Figure 7.23 MRMMPF RMS POSItion Error (8=+/-25) .....uuuuiiiiiiiiieeiiiiii e 98
Figure 7.24 IMMPDAF RMS Position Error (8=+/-40) ........ooii oo 100
Figure 7.25 IMPDA RMS Position Errors (=+/-40) ........uuuiiiiiaiiieiiiiaaee e 100
Figure 7.26 MMPF RMS Position Errors (a=+/-40) ......c.uuuuiiiiiaiiiiiiiie e 101
Figure 7.27 MRMMPF RMS Position Errors (8=+/-40) ......ooii oo 101
Figure 7.28 X-Position RMS Error Summary for All SCENarios...........coooeeiiieiiiiiiiie e 102
Figure 7.29 MMPF-TBD vs. MRMMPF-TBD Position RMSE (2000 Particles, SNR = 10dB).....107
Figure 7.30 MMPF-TBD vs. MRMMPF-TBD Velocity RMSE (2000 Particles, SNR = 10dB)...... 107
Figure 7.31 MMPF-TBD Model Probabilities (2000 Particles, SNR = 10dB)...........cccccevvvrunnnnnnn. 108
Figure 7.32 MRMMPF-TBD Model Probabilities (2000 Particles, SNR = 10dB) ...............ceen.... 108
Figure 7.33 MRMMPF-TBD Mean Particle Count vs. Time (2000 Particles, SNR = 10dB)........ 109
Figure 7.34 MMPF-TBD Position RMSE vs. Particle Count Sensitivity .............coooeeeiieiiiiiinnnnnn. 109
Figure 7.35 MRMMPF-TBD Position RMSE vs. Particle Count Sensitivity .............cccccevvvvunnnnn. 110
Figure 7.36 Uni-Res vs. Multi-Res Performance (Scenario-1) ..........ccooveeeiiieiiiiiiiineeeeeeeeiii e 112
Figure 7.37 Uni-Res vs. Multi-Res Performance (SCenario-2) ..........ccoooeeeiiieiiiiiiiiieeeeeeceiiien 114
Figure 7.38 Uni-Res vs. Multi-Res Performance (Scenario-3) ..........coovveeiiieiiiiiiiiieeeeeeeeeii e 115
Figure 7.39 Particle Efficiency Ratio SUMMAIY .........ooouiiiiiiiiiiiiii e 115



LIST OF TABLES

Table 6-1 Filter Run Times (Rounded to Nearest MiNULE) ..........coooeiiiiiiiiiiiiieeeieeieiiie e 76
Table 7-1 Tracking SCENAIIOS ... ..ceiiieieiiie et e e e ettt e e e e e e e abba e e e e aaeeesnennns 83
Table 7-2 RMS Position and Velocity Errors (8=+/-5) .....ccooeuuiuuiiiiiieiieiei e 85
Table 7-3 RMS Position and Velocity Errors (8=+/-15) .....ccouuuuuiiiieeiiiiiiiiiae e 93
Table 7-4 RMS Position and Velocity Errors (8=+/-25) .....ccouuuueiiiiiiiiieiiic e 96
Table 7-5 RMS Position and Velocity Errors (8=+/-40) ......ccouuuuiiiioeiiiiiiiiie e 99
Table 7-6 X-Position RMS Error Summary for All SCENArios ..........coouuuiuiiiiiieiiiiiiiiiiee e, 102
Table 7-7 MRMMPF-TBD vs. MMPF-TBD Performance Summary: Scenario-1..............cc........ 106
Table 7-8 MRMMPF-TBD vs. MMPF-TBD Performance Summary: Scenario-2..............ccc..uu.... 106
Table 7-9 Uni-Res vs. Multi-Res RMSE (SCENAIO-1) .......ccuuuuuiiiiaaiiiiiiiiiia et 112
Table 7-10 Uni-Res vs. Multi-Res RMSE (SCENAI0-2) ......ccuuuuiiiiiiiiiiiiiiiiie e 113
Table 7-11 Uni-Res vs. Multi-Res RMSE (SCENArio-3) ......ccuuuuiiiiiiiiiiiiiiiiie e 114
Table 7-12 GMMPF/K-GMMPFE RESUILS.......ccoiiiiiiiiiii e 117

Xi



1 INTRODUCTION

This dissertation studies the impact of hon-Gaussian and multi-modal probability density
functions in target tracking. The majority of currently deployed target tracking systems use some
variant of the Kalman filter for their state estimation algorithm [2,3,4,5,7,8,9,10]. In order for a
Kalman filter to be optimal, the measurement and state equations must be linear and the process
and measurement noises must be Gaussian random variables (or vectors). In reality, the linearity
assumptions often do not hold. When this occurs, standard Kalman filter variants such as the
extended Kalman filter (EKF) and unscented Kalman filter (UKF) generally perform well. One
problem area arises when the state or measurement function becomes a multi-modal Gaussian

mixture. This situation commonly occurs in the following tracking scenarios:

* Interacting Multiple Models (IMM);

* Interacting multi-pattern data association (IMPDA);

» Joint probabilistic data association (JPDA).

In all of these cases, a standard Kalman-filter variant attempts to represent a Gaussian mixture
as a single, moment-matched, Gaussian probability density function (PDF). An example of this
phenomenon is illustrated in Figure 1.1 and Figure 1.2 below. The PDF in Figure 1.1 is a Parzen
estimate [10] of the X-position target state component in a multiple model particle filter (MMPF)
while Figure 1.2 is a moment-matched approximation of that PDF. It is evident from the two
figures that the single Gaussian poorly represents the actual mixture PDF. For a target tracking

algorithm, the end result of this oversimplification is less accurate tracking.

Another common problem in target tracking is that the target’s signal-to-noise ratio (SNR)

at the sensor is often low. This situation is often referred to as the dim target tracking or track-



before-detect (TBD) scenario. When this occurs, the PDF of the measurement likelihood function
becomes non-Gaussian and often has a Rayleigh or Ricean distribution. In this case, Kalman

filter derivatives often perform poorly.

1-Dimensional PDF of X-Coordinate

T T T T T
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Figure 1.1 Actual Gaussian Mixture PDF of Target State
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Figure 1.2 Moment-Matched Gaussian Representation of PDF Target State



1.1 Problem Definition

The standard technique that has been used in recent years to attack both the multi-modal
and dim-target problems is particle filtering. Although standard particle filters perform better in
multi-modal/non-Gaussian scenarios than other algorithms, they suffer from several key
drawbacks. They do not coherently accumulate information over multiple scans (i.e. all data
association hypotheses resolved at each measurement update). Particle filters are also
computationally costly with run times that are 2-3 orders of magnitude longer than Kalman filter-

based estimators.

In addition, current particle filter TBD algorithms assume constant velocity (CV) motion
and full-rate filter updates (i.e. at every measurement scan). Previous work in multirate
processing has shown that multirate tracking algorithms can provide comparable performance at
a lower computational cost. To date these multirate approaches have not yet been applied to low

SNR targets.

Thus, the main goal of this research is to combine:

*  Multiple model patrticle filtering (MMPF);

» Track-before-detect (TBD) techniques;

» Multirate processing in order to track low-SNR targets at a reduced particle cost.

Secondary goals are to:

» Extend current multiresolutional particle filtering techniques in order to provide

equivalent RMSE performance at reduced particle counts;

* Investigate the feasibility of combining finite mixture models (FMM) and patrticle

filtering in order to reduce computational costs.



1.2 Summary of Contributions

This dissertation presents four original research efforts that focus on each of the

preceding particle filter issues.

1.

2.

3.

A multirate multiple model particle filter (MRMMPF) is presented in Section-3. The MRMMPF
tracks a single, high signal-to-noise-ratio, maneuvering target in clutter. It coherently
accumulates measurement information over multiple scans via discrete wavelet transforms
(DWT) and multirate processing. This provides the MRMMPF with a much stronger data
association capability than is possible with a single scan algorithm. In addition, its particle
filter nature allows it to better handle multiple modes that arise from multiple target motion
models. As a consequence, the MRMMPF provides much better root-mean-square error
(RMSE) tracking performance than either a full-rate or multirate Kalman filter tracker or full-
rate MMPF with a same particle count. Note: Due to the large runtimes encountered with the
MMPF and the MRMMPF, subsequent efforts were re-focused on reducing runtimes while

maintaining RMSE performance rather simply reducing RMSE.

A full-rate multiple model particle filter for track before detect (MMPF-TBD) and a multirate
multiple model particle filter for track-before-detect (MRMMPF-TBD) are presented in
Section-4. These algorithms extend the MMPF and MRMMPF so that they can track low
SNR targets which perform small maneuvers. The MRMMPF-TBD and MMPF-TBD both use
a combined probabilistic data association (PDA) and maximum likelihood (ML) approach.
The MRMMPF-TBD provides equivalent RMSE performance at substantially lower particle
counts than a full-rate MMPF-TBD. In addition, the MRMMPF-TBD also tracked very dim

constant velocity targets that the MMPF-TBD could not.

An extended spatial domain multiresolutional particle filter (E-SD-MRES-PF) is developed in
Section-5. The E-SD-MRES-PF modifies and extends a recently developed spatial domain

multiresolutional particle filter prototype [71]. The prototype SD-MRES-PF was only

4



demonstrated for one update cycle. In contrast, the E-SD-MRES-PF functions over multiple

update cycles and provides comparable RMSE performance at a reduced particle cost.

Two variants of a single-target Gaussian mixture model particle filter (GMMPF) are presented
in Section-6. The GMMPF models the particle cloud as a Gaussian finite mixture model.
MATLAB simulations show that the GMMPF provides performance comparable to a standard

particle filter but at substantially less particle cost.



2 PREVIOUS WORK

2.1 Kinematic State Estimation

In order to understand the role of particle filter-based estimation it is first useful to briefly
overview basic estimation concepts and summarize relevant work done to date. All kinematic
state estimation algorithms seek to estimate the kinematic state (i.e. position, velocity, and
possibly acceleration) of a target from a sequence of measurements that have been corrupted by
noise. The target kinematic state at time instant k, X,, can be described by the following

difference equation:
X = fk—l(xk—l) Wy (2.1)

where: f, (X, ) is a target kinematic model and W, is an additive process noise term.

The target measurement at time instant k, z,, can likewise be defined by an analogous

difference equation:
Z = h (%) + v (2.2)

where: h, (x,) defines the measurement model and V) is an additive measurement noise term.

The probability density function (PDF) of the target state conditioned on the measurement set,

pP(X|z, ). can be described via the following recursive Bayesian relationship below:



) = P(Z | X Zies) POX | Zia)
P(z| Zy)
_ P(Z | X Zier) P& Ziges) _ P(z | %) P(X | Ziys)
[ P2 1% Zues) POS D Zues) B [ P(Z %) PO | ) O

P(X | 2) = P(X | Z 2 Zy s

(2.3)

The prior probability, P(X, |Z,.). is defined by the Chapman-Kolmogorov equation as
described by Bar Shalom and Li. [6] and can also be derived via the total probability theorem:
PO% | Zus) = [ POX Xt Zuea) POy | 20 )Xy =

(2.4)
[ PO 1X2) PO | 22y )OX

The fact that the process evolution is first order Markov allows the conditioning on Z,,_, to be

removed from both the transition prior probability, p(X, | X._,), and the likelihood function,

P(Z [ X,-a) -

2.2 Kalman Filter: Linear/Gaussian Special Case

Although (2.3) defines the solution to the optimum estimation problem, it is generally
impossible to solve analytically. An exact analytical solution is possible only when (2.1-2.2)
describe linear systems and when both the process noise (whose covariance matrix denoted as
Qx) and the measurement noise (covariance matrix denoted as Ry) are Gaussian. When this
occurs, the target state PDF, p(Xx+1 |Zk+1), can be computed via the standard linear Kalman filter
(LKF) equations shown below in (2.5-2.12). Note: since the process is assumed to be Markov,

the dependency on measurements prior to time k is dropped in the LKF equations.

Xeae = Fe X (State Mean Prediction) (2.5)

Peax = Fe Pk Fe +Q (State Covariance Prediction)  (2.6)



Sca = Hiwr Bage His + R
Ky = Pk Hia S

zk+:uk = Hyy X

Virn = &1 — 2k+]4k

Xeagrr = Xk T Kiar Vien

P = B = Kiar Sen Ky

where:
Fy is the linear state transition matrix

Hy is the linear measurement matrix

(Innovation Covariance)

(Filter Gain)

(Measurement Prediction)

(Innovation)

(State Mean Update)

(State Covariance Update)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

Note: Deterministic control inputs, I'uy, are assumed to be zero without loss of generality.

In realistic target tracking scenarios, the Gaussian and linear assumptions often are not

valid because either the system dynamics are nonlinear (due to target maneuvers) or the

measurement prediction equation is a non-linear function of the state (i.e. state equations are in

Cartesian coordinates while measurements are in polar coordinates). A variety of filters have

been developed to deal with these non-linear situations. These include:

» Converted measurements Kalman filter (CMKF); [4]

» Extended Kalman filter (EKF) [7];

* Unscented Kalman filter (UKF) [23,24,25];



» Biscay distribution filter (BDF) [22];
* Gauss-Hermite filter (GHF) [19,20].

Analysis by Cui, Hong, and Layne [46] and Farina et al. [40] indicates that when the only
issue is a small-to-moderate nonlinearity, all of these filters provide very similar performance.
The real difficulties arise when either the process and/or measurement noises are non-Gaussian
or when the state PDF is a multi-modal.

2.3 Causes of Multimodality

The three situations that give rise to multimodality are:

1. Multiple modeling (MM) approach [6];
2. Interacting multi-pattern data association (IMPDA) [45];
3. Joint probabilistic data association (JPDA) [2].

2.3.1 Multiple Modeling (MM) Approach

In the multiple modeling approach with switching models, the state and measurement

equations are described via (2.13-2.14).

% = fea (X M) + W, (M) (2.13)

Z, =" (%,M,) +v(M,) 2.14)

The variable M is the model index parameter that can take on values of M = 1,...r. By applying
the total probability theorem, the PDF of the target state at time index k can be expressed via

(2.15).



p(Xklzrk):Zr: p(Xklej ’ztk)Ep(Miklztk) (2.15)

=

If one assumes that the model index depends on a Markov process, the mode transition

probability of mode i into mode j can be defined as:

h'=pM! M) (2.16)
and mechanized as a pre-defined model transition matrix. As the time index k increases the
number of possible model histories increases exponentially with r k.

Thus, if each one of the model paths is modeled via a Kalman filter, the target state PDF

shown below in (2.17) is a Gaussian mixture with an exponentially increasing number of terms.

rk

p(xklzﬂ;k):z p(xkle,l ’ZLk)q)(MkJ | ) (2.17)
1=1

where: | = model history throughout the trajectory

Although the approach above generates the optimal minimum variance estimate, it is evident that

this technique is impractical even for small values of r.

2.3.1.1 Interactive Multiple Model (IMM) Algorithm

The most common sub-optimal approach is the Interactive Multiple Model (IMM) [6]. A

functional diagram of a two-model IMM is depicted below in Figure 2.1.
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Figure 2.1 IMM Algorithm Block Diagram

The mixing probabilities are defined as:
PV Mt Zues ) P(Mis | Zues)
pP(M{ ] 24 )
_ PMMy My, 24 ) P(M | Z4) (2.18)
2 P(M{ M, Z4) (M | i)
i=1

uwllk—l =p(M,,IM/,z,,)=

p(M} M, ;) p(M 4| Zyey) _
> (M} ML) P(M | 2y y)

i=1

The mixing probabilities can now be expressed more compactly via (2.19).

hu, ..

Wlpa= 2 i j=Loer
S hiul, (2.19)
2

where: u,_, = prob.of i" modelat k -1
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In the optimal MM, each mixing operation results in a new set of Gaussian mixtures. The

IMM, however, simplifies the PDF by approximating it as a single Gaussian,

S0j 0j
N [Xkljlk_l . Pk_J]lk_l] , Where the mean is given by:

I

c0f N\ ilj L _

“k-1 § Kegat Uy ] = LeeeT (2.20)
i=1

and the covariance is expressed as:

r
0j — ilj i i _50j ci _50j '
Pk—J]Jk—l = z uluuk—l{ Pkl—]Jk—l + XL—]Jk—l inllk—l] ] XII<—1]k—l inﬂk—l] h (2.21)
i=1 )

j:l...r_

The IMM resolves the problem of exponentially increasing model history by maintaining a
constant number of model terms. If the individual means of the Gaussian mixture components
are close together then the Gaussian approximation (with its single mode) is reasonably accurate.
If, however, the means are widely separated then the single Gaussian approximation is a poor

representation of the true PDF. After the mixing process, the individual mixed

SO0j 0j . . . .
states, Xk_]lk_l ) Pk—JJk—l , are processed via a Kalman filter that generates a posterior estimate,

X|:|k ) Pkfk , for each model, and a model likelihood, /\Jk . The model likelihood is computed via

(2.22).

N=p[z M}, Z1=N{[z, -h(Xh D] S/} =11 (2.22)

The next step in the IMM algorithm is to update the mode probabilities, U,i . The mode

probabilities are defined as shown in (2.23).

12



j i

. . N\, C.
u=pM]|Z"]=—"— (2.23)

j p—
> (/\k C; )
j=1
The last step in the algorithm is to compute the model conditioned state estimate. The

PDF at this point is also a Gaussian sum. The IMM algorithm again approximates the PDF as a

single moment-matched Gaussian, N[X, , P, ], where:

r
g = gl i =
Xk|k_zxk|kuk’ J=1-r and
=1

r

— irpi QI % i % 1 i =
Pk|k - Z Uk{ Pk|k +[Xk|k Xk|k] E[Xk|k Xk|k] }’ J _:L"'r . (2.24)
i=1
In sum, we can see that there are two places (i.e. mixing and output) in the IMM

algorithm in which a single moment-matched Gaussian approximates a Gaussian mixture.
2.3.2 Interacting Multi-Pattern Probabilistic Data Association (IMPDA)

The IMPDA, that Hong et al. [45] developed, is a multirate extension of the IMMPDAF
that operates both at full rate (1R) and one-third rate (1/3-R). The discussion below briefly
summarizes the key features of the IMPDA and identifies the points within the algorithm that give

rise to a multi-modal state PDF. A detailed derivation of the algorithm is found in [45].

The IMPDA uses the discrete wavelet transform to extract coherent information from
measurements over multiple scans. This allows the IMPDA to accumulate information over
several scans and provides better data association performance than single-scan algorithms such
as IMMPDAF. While the IMMPDAF uses only distance information for data association, the

IMPDA uses multi-patterns containing distance, directional, and maneuver information.

13



In order to generate these multi-patterns, the IMPDA takes a sequence of three trajectory
points and then passes them through a series of two-tap, high-pass and low-pass discrete Haar
wavelet transform filters. The output of the filter bank (as depicted in Figure 2.2) is a set of three

patterns:

* Location pattern fp (analogous to target position);

» Pointing pattern f_ (analogous to velocity);

* Maneuvering pattern fy, (analogous to acceleration).

Since the multi-patterns are derived from target state vectors and are analogous to position,

velocity, and acceleration, it is convenient to define them via (2.25).

f L XL
fo =] X4 (2.25)
fu X, 2

For non-maneuvering targets, fp and f_ define the target pattern while for maneuvering targets fp,
f. , and fy are required to define the target’s kinematic behavior. The basic IMPDA uses two
types of multirate models to represent the target kinematics. These are the Constant High-pass
(CH) model, which is analogous to a Constant Velocity (CV) model, and the Constant High-High-
pass (CHZ), which is analogous to a Constant Acceleration (CA) target model. The task of these

models is to map target patterns from one, 3-scan wide, time window into the next (Figure 2.3).
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The CH model is defined via (2.26) below.

1/3R — 1/3R s /3R 1/3R, 1/3R _
Xk+3 - Fk Xk +rk uk -

X, (2.26)
|:Xk+3L :| = I 6l |:XkL :| + |:5\/§| 3\/§| \/§| :| 2
{0 ' } X, | [ N2l 21 2| e

Xz,
K43,

The high-high-pass components are treated as zero-mean Gaussian disturbances with the

following distributions
Xk+1H2 ~N(@ Qk+1H2 ) Xk+2H2 ~N (O1Qk+2H2 ) Xk+3H2 ~N@G Qk+3H2 )- (2.27)

The one-third-rate CH measurements are defined as:
Z, 05z,_,+z_,+ 05z Vi
L= k-2 k-1 k + L _ (2.28)
ZkH - O.52k_2 + 052k VkH

V,
The equivalent one-third-rate measurement noise is: { ke } =N(©O,R, ), where:
Vk LH
y

R - 025R_, + R, + 025R, 0 | (2.28)
g 0 025R _,+ 025R,

The CH? model is defined via (2.30) below.

1/3R — 1/3R\/ 1/3R 1/3R, 1/3R _
Xk+3 - Fk Xk +rk uk -

(2.30)
Xos, | |1 61 92U |[x | [181 8 21 ]| %,
X3, [=|0 | 321 || %, [+| 61 4 2l Xeoa
Xea, | [0 0 1 fIx.| (V21 V21 V21| X

The high-high-high-pass components are treated as zero-mean Gaussian disturbances

with the following distributions:
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Xk+1H3 ~N (0! Qk+1H3 )' Xk+2H3 ~N (0! Qk+2H3 )' Xk+3H3 ~N (0! Qk+3H3 )

The one-third-rate CH? measurement equation is:

XkL XkL
z, | 00 v |
=H Xy = Xy + ,
Z,, 1 Tlo 1o T v,

X, Xy,

Z V,
where LkL } and {VKL} are previously defined in (2.28).
ki ki

Since the patterns are only updated every three samples, the target positions at sample points

between pattern updates are calculated via a standard full-rate Kalman filter.

(2.31)

(2.32)

The IMPDA (Figure 2.4) runs multiple parallel models and has a structure analogous to

that of an IMMPDAF. Thus, like the IMM, the IMPDA results in target states that are Gaussian

sums both after the mixing process and in the final output state. The IMPDA also models these

Gaussian sums via a single moment-matched Gaussian.
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2.3.3 Joint Probabilistic Data Association (JPDA)

The JPDA algorithm [2] is a multi-target extension of the well known probabilistic data
association filter (PDAF) [3]. In both the PDAF and the JPDA, the posterior state PDF is a
Gaussian mixture that is modeled via a single Gaussian. In the single-target PDAF the multi-
modality is caused by non-persistent clutter. This clutter is generally modeled as uniformly
distributed throughout the surveillance volume. JPDA, however, assumes multiple targets are
present. If two (or more) targets are closely spaced then target measurements from one target

may fall within the validation gate of its neighbor, resulting in persistent clutter. Since the JPDA
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models multiple modes via a single Gaussian, the individual targets may coalesce into a single

target.

The discussion below briefly summarizes key elements of JPDA and identifies where and

how multimodality occurs. A detailed JPDA derivation is available in [2, 3, and 4].

JPDA operates under the following set of assumptions:
» There is a known number established targets that are being tracked;
» Tracking occurs in the presence of clutter;
* Measurements from one target may fall into the validation gate of another target over
multiple scans and act as persistent interference;
 The targets follow a Markov process, which can be sufficiently described by an
approximate conditional mean and covariance for each target;
» Each target has a state and measurement model.
JPDA thus takes the following basic approach to the multi-target tracking problem:
» Measurement to target track probabilities are calculated jointly across the targets;
» The association probabilities are calculated only for the current set of measurements and
previous association hypotheses are not considered;

* The state estimates are computed separately for each target.

The key task in the JPDA algorithm is to compute the joint measurement-track
association probabilities, P(64z..k). Once the joint association probabilities are available, the
marginal association probabilities are computed by summing over the joint events in which the
marginal event occurs as shown in (2.33).

By = P(Bjt |Zlk): Z P(Blzl'k) &)jt (9)1
= (2.33)

j=1---m, t=01,---T

where:
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Hjt is a measurement-track association event;

c?)jt =1 if a measurement-track association, &,

it s for measurement j and track t

is feasible and @, = Oif not;

m, = number of measurements at time k;
T = number of target tracks.

The values of ,Bjt then become the weighting factors that are used to calculate the combined

innovation for each target, t:
My
Vi, = 2By Vi, - (2.34)
i=1

The combined innovation,l/tk , is itself a Gaussian mixture of m, Gaussian components

having PDFs of Nl_l/ Sd. Although (2.34) is a Gaussian mixture, the JPDA approximates the

it
posterior state estimate PDF as a single moment matched Gaussian. The posterior mean of the

state estimate of each target, t, is thus computed via the standard Kalman filter equation:

A

X = %s TK V- (2.35)
The posterior covariance for track t is composed of three covariance components:
R, =B, PR, +[1-B 1R +R . (2.36)
The first covariance component, ,[iok Ptklk_l, is due the fact that with probability ,[iok , hone of the

measurements are correct. The term F’tkcIk in the second covariance component is the covariance

of the state updated with the correct measurement and is described by the standard Kalman filter

covariance update equation:
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R = Ptk|k71 B Ktk Sk Kt’k ) (2.37)

ik
The third component, Pk , is the spread of the innovations (analogous to the spread of the means

discussed previously) and is defined by (2.38).

k

_ My
Ptk = Ktk Z'Bt.k‘k Vit Vitk —V Vtk Ktk (2.38)
i=1

In the single-target PDAF, clutter is uniform over the surveillance region and is non-
persistent. Thus, the net contribution of the clutter to the state estimate mean is zero and a
single, moment-matched Gaussian is a reasonable approximation of the true PDF. In the JPDA,
however, if there is persistent clutter from another target then a single moment-matched
Gaussian poorly represents the true PDF. This concept is illustrated in Figure 2.5. A
consequence of using a single moment-matched Gaussian rather than the true multi-modal PDF
is the JPDA track-coalescence phenomenon (when two closely spaced parallel tracks merge into

a single track). [7,11]

In summary, we see that multi-modality occurs in the IMM, IMPDA, and JPDA tracking
algorithms. All of these algorithms model a Gaussian mixture as a single, moment-matched
Gaussian. This “simplification” often results in significantly greater tracking errors. In order to
reduce these errors and obtain more accurate tracking, it is necessary to better model the actual

multi-modal PDF.

2.4 Estimation Techniques to Address Multimodality

The three standard techniques that address non-Gaussian PDFs (including Gaussian
mixtures) are:

» Gaussian sum filters (GSF) [13,14];

*  Grid-based methods [36, 65];

» Particle filters (PF) [36, 65].
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As will be shown in upcoming sections, the GSF and grid-based methods suffer from several
shortcomings that make them impractical for our purposes. Consequently, the particle filter is the

technique of choice for this type of problem.

Moment
[\ Matched
PDF
PDF-1 :
poo | Nupg > :
; PDF-2
-‘l"‘..-‘...'.. N[“ZIPE‘]
X

Figure 2.5 Moment-Matched Gaussian Representation of PDF in JPDA

2.4.1 Approximate Grid-Based Methods

Grid-based methods use a discrete version of the Bayesian update equation (2.3). They

can approximate the posterior density, p(xx | zix) , if the state space is continuous but can be
divided into a finite number, N, of discrete states {X,i(:i =1,...N_}. The posterior density is
computed via the method shown below.

Assume that the posterior PDF at time k-1 is defined as:

NS

p(xk—ll Z:L'k—l) = Z WI;—]Jk—l 5(Xk—1 - Xli<—1) : (2.39)

i=1

The discrete prediction and update equations can then be expressed via (2.40-2.43).
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NS . .
p(xkl z:l.'k—l) = Zwlk|k—1 J(Xk - XL) (State Prediction) (2.40)
i=1

NS . .
p(xkl Zﬂ.‘k) = Zwk|k Ol (Xk - XL) (State Update) (2.41)
i=1

Where the weights are defined as:

NS

Wy = ZWk 1k p(xklxk 1) (2.42)

1=

W = W:qk-l p(zkle)
Kk ™ Ny (2.43)

Z Wli|k—1 P (Zk X} )

=
Thus, (2.40) is a discrete form of the Chapman-Kolmogorov equation while (2.41) is a discrete

Bayesian update equation.

The approximate grid-based method suffers from two key drawbacks. First, the grid must
be sufficiently dense in order to get an accurate representation of a continuous state space. This
is computationally expensive because it requires a very large number of grid points as the
dimension of the state space increases. The second drawback is that the state space must be
predefined. Thus, the grid points cannot be concentrated so as to provide better resolution in

high probability regions.

2.4.2 Gaussian Sum Filter (GSF)

Sorenson and Alspach [13,14] developed the concept of the GSF to deal with non-
linear/non-Gaussian situations. The GSF makes use of the Gaussian sum approximation lemma,
which states that any PDF, p(x), can be approximated as closely as desired by a weighted sum of

Gaussian PDFs as shown below in (2.44).

Pes() = > N(x= 44, ) 01p(¥ @44
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where:
m

a; is a scalar weighting factor with zqi =1;

i=1

and 4 and P; are the mean and covariance, respectively, of the ith Gaussian term.

The parameters a;, 14, and P; are chosen so that they minimize the L norm (k generally
is equal to 2) between the actual density function, p(x), and the Gaussian sum approximation,
pgs(X). This approximation can be made very accurate by choosing a large value for m, the
number of Gaussian terms. Thus, a bank of parallel Kalman filters can represent a non-
linear/non-Gaussian system. A key drawback of the Gaussian sum approach is that the number
of Gaussian terms, and hence the number of Kalman filters, increases at each time iteration and
grows exponentially (referred to as the growing memory problem). This growth, if left unchecked,
makes the GSF too expensive computationally.

Caputi [15,16] developed a modified Gaussian sum estimation technique that uses a
fixed number of Gaussian sum terms and avoids the growing memory problem. Caputi's method
is designed for systems with linear state and measurement equations but non-Gaussian
measurement and process noise. His techniqgue models the non-Gaussian noises as the sum of
a zero mean Gaussian component and a semi-Markov bias term.

Tam and Hatzinakos [17,20] developed an adaptive Gaussian sum tracking algorithm for
radar tracking. Their approach assumes that both process and measurement noises are
Gaussian and state equations are linear. As was the case in the CMKF, their main goal is to deal
with the effects of non-linear polar-Cartesian measurement transformation. In order to accomplish
this, they use a GS approximation to compute the value of p(z | xx). The growing memory
problem is dealt with by disregarding density functions with small a; coefficients and by combining
densities that are statistically close (i.e. small Bhattacharyya distance). Since state equations are
assumed to be linear, the Chapman-Kolmogorov equation in numerator in (2.4) is replaced by a
Gaussian density whose mean is obtained by the Kalman filter state prediction (2.5) equation and

whose covariance is defined by the Kalman covariance prediction equation (2.6).
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The drawback of all of these approaches, however, is that they retain only a fixed number
of Gaussian mixture components. Thus, they are not well suited for modeling a target state with

a multi-modal PDF that potentially has a large number of modes.

2.4.3 Particle Filter (PF)

Although, Monte-Carlo methods for state estimation have been available for over 30
years, Gordon, et al. presented the first true particle filter in 1993 [26]. The PF is a sequential
Monte-Carlo technique that produces, at each time instant k, a cloud of Np particles that
approximates estimates the probability density function of the posterior target state, p(Xx |z1x) -
Thus, by drawing appropriately weighted samples from this "cloud" one can solve the Bayesian
estimation equation (2.3) and obtain the state estimate. As Np becomes very large, the density
approximation becomes more accurate. A key benefit of the PF method is that it can accurately

approximate a multi-modal PDF.

Another PF benefit is that non-linear states/measurements and non-Gaussian noises can
be handled without resorting to linearization and/or partial derivatives (i.e. Jacobians). The major
drawback of PF methods is that a very large number of particles may be required in order to

accurately represent the target state PDF.

The patrticle filter solves the Bayesian estimation equation by approximating the posterior

PDF via the discrete weighted sum in (2.45).

P(Xox | Zik) = ZWL O (Xox = %ok ) - (2.45)
i=1

The individual weights, W,i(, are computed by applying the principle of importance sampling.
Since it is difficult or impossible to directly sample p(Xy, | Z.) . we define a density 72(X) that

can be evaluated and that is chosen such that p(X)[J72(X) .  Additionally, let
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X ~q(x),i=L...N, be samples that are drawn from a proposal (X)that is referred to as the
importance density.

Since p(X) O 711(X) , the individual weights of each normalized particle are then defined as:

w,'(Dn(Xi):w,;DM. (2.46)
a(x’) A% 1221)

The importance density is chosen so that it can be factorized as:

q(XOklzlk) = q(xklxo:k—l’ zlk) q(XO:k—llzl'k—l) ' (2-47)
This allows us to obtain samples from the current state by augmenting samples from the previous

state.

To obtain the weight update equation, we first express the posterior PDF, p(Xy, | Z,,) , in
terms of P(Xgys | Zys) . P(Z |%,). and p(X, |%,.,) to obtain:

P(Z | Xoxr Zesa) P(Xoy | Zugea) _

PXox | Ziy) = P(Xey 12+ 2y a) =

P(Z|Z4-)
P(Z | Xoi» Zuse) POY > Xowea | Zes)
P(Z|Zy-1)
P(Z | Xox s Zuses) PCX | Yo s Zises) [P(Xepes |Zus) = (2.48)
P(Z|Z4-1) '
P(Z, | %) P& | X,a)
oz 2) CP(Xoka | Zisen)-

State evolution is assumed to be a first order Markov process. Consequently, the conditioning

term, Z,,_, , can be dropped from the likelihood function, p(z, | X.), and the transition prior PDF,

P(X, | %) Since p(z, | Z,_,) is simply a normalizing constant, P(X,, | Z,) is proportional

to the quantity in (2.49).

Py [ 24) O P(Z | %) POX | %e1) P(Kope 1 Zises) (2.49)
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We now note that If we now substitute (2.47) and (2.49) into (2.46) and simplify, we obtain the

recursive particle weight update equation (2.50).

w, 0P %) PO% [ Xit) P(Koscs | Zic)
A% Xor-t ) A0l Zusr)

. o (2.50)
—w . PENR) PO [ %)
k-1 i1yl
q(xk |X0:k—1’ Zlk)

If we assume that the importance density, q(x), also describes a first order Markov process, then

the importance density depends only on the previous state, X,_;, and the current
measurement, Zy . In most tracking scenarios, only the current filtered state estimate, X, is

required. We can therefore discard the target path, Xy _1, and the observation history, Zq .

The particle weight update equation can then be expressed via (2.51).

P(Z, %) P(X [ Xic)
0% X1 Z0)

w, 0w, (2551)

The weights are then normalized by dividing each particle weight by the sum of the particle

weights at a given sample time k.

Wi WII( 2.52
k i .
Oi

The posterior filtered density, [Z)(Xk | Zxk) , Is now calculated as:

POX 1 Zu) = D W I (% =%, ). (2.53)
i=1

The patrticle filtering technique described above is known as the sequential importance
sampling (SIS). Although, the SIS is simple to implement, it suffers from the “Degeneracy
Phenomenon”. Over time, the variance of the particle weights increases. This eventually results

in a situation in which all but one particle has negligible weight. A common technique to reduce
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this degeneracy is to resample when the effective sample size, Ngy, falls below a predefined
threshold (such as Nt < 0.5 Np). Although Ngt cannot be directly computed, it can be

approximated as:

1

> (w,)?

i=1

N, = (2.54)

The other key issue in particle filtering is choosing an appropriate importance density.

The simplest choice of importance density is to use the transition prior state density,
p(x,i( |x,i(_l). When the prior is used as the importance density, the particle update equation

(un-normalized) can be expressed as:

P(Z, 1 %) POX | % s)

w0 w . LS
T p(XXe)

=W, p(z %) (2.55)

Gordon’s particle filter, which is known as the bootstrap particle filter (BPF) or Sampling
Importance Resampling (SIR) filter uses the prior as the importance density. In addition, the SIR
resamples at every time increment and sets the resampled particle weight to 1/N,, . This removes
the dependency of the current particle weight to the previous particle weight. Thus, the un-

normalized particle weight is simply the value of the measurement likelihood function, evaluated
at the predicted particle, XL , yielding: Wll( 0 = p(Zk |X|'() With this in mind, the SIR

algorithm can be summarized as follows:
» Initialization: Assume that the initial state PDF, measurement and process noise PDFs,
and the measurement likelihood function are known.

» Sampling and Prediction: Obtain Np samples from the posterior density available at

time k-1: p(Xk_l|Zk_l) and propagate these points through the system

i
model, fk_l(Xk_l) + W, _, , and obtain a collection of "predicted points”, Xy .
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Importance Weight Calculation: Upon receipt of a measurement z, evaluate the

likelihood of each prior sample point and thus obtain a normalized weight, Wli( , for each

N plz 1%, )

Z (zklxk).

j=

sample: Wik = (2.56)

where: p(zk | XL ) is the likelihood function of the current measurement, conditioned

on the "predicted” particle.
Resampling: The posterior state density function is then obtained by sampling (with
replacement) from the set of points defined by the right hand side (RHS) of the equation

below.

P(% [Z) =D W (% —%) (2.57)
=

After resampling, all of the particle weights are set to 1/Np.
Filter output: The state estimate is typically chosen to be the mean value of the particle

states. Since the particle weights are now equal after resampling, the state mean is:

)’Zk|k Z Xk (2.58)

P i=1

The SIR PF is popular because it is easy to implement. Thus, it has been used in

numerous non-linear/non-Gaussian filtering applications. It does, however, sometimes require a

very large number of particles in order to work well. This situation occurs when the prior density

and likelihood function have only a small region of overlap [36]. A significant amount of research

has been done on particle filtering since the introduction of the SIR PF. The bulk of this research

has focused on improving the performance or reducing the computational cost of the basic SIR

filter and identifying new applications for the PF.
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Djuric, et al. [30] combined the PF with a Gaussian sum approach to develop a hybrid
Gaussian sum particle filter (GSPF) that used a small, fixed number of Gaussian sum terms (6 to
16) and relatively small number of particles (N, =100). Their GSPF implementation was applied
against a one-dimensional system that had highly non-linear state and measurement equations.
Additionally, process and measurement noises were non-Gaussian. Their results indicated that
the hybrid GSPF offered much lower mean squared errors (MSE) than a GS-only filter with the
same number of GS terms.

Arulampalam, et al. [36] presented several PF algorithm variants that offer some
advantages over the traditional SIR PF. These PFs, which include the Auxiliary Sampling
Importance Resampling Filter (ASIR), Regularized Particle Filter (RPF), and the Likelihood
Particle Filter (LPF), sometimes offer better RMSE performance than the conventional SIR. Hue,
et al. [33] have recently addressed the multi-target tracking via the PF and have developed the
Multi-target Particle Filter (MTPF) that incorporates a Markov-chain Monte-Carlo (MCMC)
technique known as Gibbs sampling. Blom et al. [41], Frank et al. [43], Schultz et al. [50], and
Vermaak et al. [59] have also focused on developing multi-target PF implementations.

Farina, et al. [40] compared the performance and computational costs of the EKF, UKF,
CADET (Covariance Analysis Describing Function Technique), and SIR particle filter against the
theoretical Cramer-Rao lower bounds (CRLB) of estimation error. Their example used non-linear
measurement and process models with Gaussian process and measurement noises. All of the
estimation methods were consistent and produced good estimates. The particle filter, however,
(and also the CADET algorithm) required over two orders of magnitude of computations than did

the EKF or UKF.

2.5 Multiple Model Particle Filter (MMPF)

Another area of PF research is in the tracking of maneuvering targets via multiple
switching process models [6]. As was mentioned previously, the Kalman-based IMM

approximates a multi-modal state PDF via a single moment-matched Gaussian. The particle
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filter, however, is not restricted to Gaussian densities. McGinnity and Irwin adapted the multiple
model concept to particle filtering and developed the first MMPF [28, 29]. Their MMPF uses an
alternate form of the Bayesian estimator in which branched prior densities are merged into r

model conditioned densities:
P(%IM! ,Zz,)=D p(xIM),z,)p(M) M ,z,). (2.59)
j=1

The second term of the right hand side (LHS) is expanded out by using Bayes’ rule to obtain the

following model probability in (2.60).

. pM! IM!,z,) p(M!]|z,)
(MM ) = P e P
) | o 1K . (2.60)
h" p(Mz,)
p(MIk+1 z)

The denominator, p(M Lﬂ |z,), is a normalizing term and is simply the sum of the numerator

over all values of j. The posterior state PDF at time k+1 is the given by the sum of r, model

conditioned, posterior PDFs as shown below in (2.61).

P (X1 Zus) =D, PRt IM! 2y ) DM |, Z340y) (2.61)
i=1

A key difference between the MMPF and the standard bootstrap PF is that each particle
is an ordered pair that consists of the state, X, , and a mode index M k’ , j =1...,r.

The MMPF includes a mode mixing step in which particle modes transition from one
mode to another according to a Markov transition matrix, h'l.  This Markov transition is
implemented via a “roulette wheel” sampling method in which the “size” of each pattern on the
wheel is proportional to its probability.

The predicted state for each particle, |_X1I< ) M kJJ is obtained by applying the process

model that corresponds to the model indicated for particle i. The importance weight calculation,

resampling, and computation of the posterior mean are the same as in the SIR PF. The posterior
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model probabilities are automatically calculated during the resampling process since the particles

for each mode are resampled according to their posterior probability.

2.6 Initial Multirate Particle Filter Efforts

Hong and Cui [52] further extended the multirate estimation concept to multiple-model
particle filtering techniques and developed the multirate interacting multiple model particle filter
(MRIMM-PF). The basic idea behind MRIMM-PF is that targets spend most of their time in CV
motion and that target maneuvers are relatively infrequent. The MRIMM-PF exploits this fact by
developing a multirate algorithm which consists of a nhon-maneuvering third-rate model that is
updated every three scans while the maneuvering full-rate models are updated at every scan.

A typical target’s trajectory is CV for most of the track life. Thus, on average, most of the
particles will be assigned to the non-maneuvering model. Since this non-maneuvering model is
updated once every three scans, the average number of particles in the MRIMM-PF is
substantially less (approximately 46%) than that required for a full-rate MMPF for a comparable
level of RMSE performance. This results in less computational cost, since cost is O(N) in particle

filters.

2.7 Maintaining Multi-Modality in Particle Filters

Particle filter-based algorithms are theoretically well suited for dealing with multi-modal
PDFs. In reality, however, low-weight particles are seldom resampled. Weak modes are, thus,
often lost after a few iterations. This presents a significant problem if the weak mode is due to the
presence of another target that we wish to track. Vermaak, et al. [44] have developed a
techniqgue to maintain multimodality by modeling the target distribution as a non-parametric
mixture model. Each mixture is modeled via a separate particle filter that interacts with the other
particle filters only during the computation of mixture weights. Their algorithm uses K-means
clustering to recompute the mixture representation during the tracking scenario as targets appear

and disappear.
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2.8 Measurement Gating With Multi-Modal Likelihood Functions

The issue of “how to define a measurement validation gate?” arises in particle filters
because there is no direct analog to the validation gate found in Kalman filter-based trackers. In
single target tracking scenarios where false alarms are present, measurement gating is
necessary to reduce the possible measurement-track association hypotheses to a manageable
level since the number of hypotheses equals the number of measurements plus one (i.e. an
additional hypothesis is required for the null target case). Gating becomes even more critical in
multi-target scenarios because the number of possible association hypotheses grows

exponentially as the number of targets and false alarms increases.

A conventional Kalman tracker uses the Gaussian innovation covariance, S,,;, to define

a validation gate around the predicted measurement. Typically, the gate excludes measurements
that fall outside the 3-4 sigma range. Since innovation covariance is not available in particle
filters, some other gating scheme is required. Marrs, et al. [47] developed a non-parametric
efficient score function by computing the expected log-likelihood from known measurement and
clutter statistics. Vermak et al. [59] also developed a gating mechanism that models the prior
particle set as a Gaussian and then incorporates a particle filter analog of the innovation

covariance matrix from this Gaussian.

2.9 Particle Filter Track Before Detect (TBD-PF)

Conventional target detection schemes set a detection threshold to determine if a sensor
return represents a potential target or is the result of noise. The dilemma of this method is that if
the threshold is set too high then a target may not be detected. Conversely, if the threshold is set

too low then many false alarms will be generated. Thus, the detection threshold is often set as a

practical compromise between a high probability of detection (P, ) and an acceptable probability

of false alarm (PFA). In a low-SNR environment, achieving a practical compromise is

problematic. TBD techniques eliminate the detection threshold and simultaneously track and
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detect targets. This allows tracking of targets having much lower SNR values than is possible
with standard detection-then-track schemes.

In recent years, particle filtering techniques have been applied to the TBD problem.
Particle filters are an attractive choice because measurement likelihood functions often have
Rayleigh or Ricean PDFs at low SNR levels. A basic single target TBD-PF algorithm was initially
proposed by Salmond et al. [54]. Rollason and Salmond [55] then developed a TBD-PF for
targets with unknown amplitude. Boers and Driessen further extended TBD-PF concepts and
developed a multi-target TBD-PF [63]. Musick et al. [32] implemented a bootstrap TBD-PF
algorithm for an electro-optical (EO) sensor with a Rayleigh likelihood function. Oii et al. [57]
adapted Musick’s algorithm by deriving an optimal proposal density which used Rao
Blackwellization. Ristic [56] designed a TBD-PF tracker that used an EO sensor with Gaussian
likelihood function. His algorithm tracked targets down to an SNR of 5 dB and contained the
following elements:

»  Explicitly probability of track computation;

» Particle existence state determined via Markov transition (existence states =

newborn, existing, and dead);

* Asingle PF was used for all existence states.

Rutten et al. [58] built upon and improved Ristic’s algorithm. Rutten’s TBD-PF algorithm
modeled a radar sensor that used a Ricean-Rayleigh measurement model (target plus noise PDF
is Ricean while noise-only PDF is Rayleigh). His algorithm differed from Ristic’s in that it explicitly
included the track existence probability in the target state vector and used separate particle filters
to compute the newborn and existing densities. Although Rutten’s TBD-PF implementation was

more complex, it could track CV targets down to an SNR of 3 dB.

2.10 Spatial-Domain Multi-Resolution Particle Filtering (SD-MRES-PF)

SD-MRES-PF is a data compression and particle count reduction technique that Hong

and Wicker [71] recently developed. SD-MRES-PF (like multirate particle filtering) uses a DWT to
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decompose a data sequence into LP and HP components. Unlike multirate particle filters, MRES-
PF works at full-rate and decomposes the sampled uni-resolution (uni-res) PDF into LP and HP
PDF components. The HP PDF components are then compared against a pre-defined minimum
threshold. This process is illustrated in Figure 2.6 and Figure 2.7. Component samples that fall
below this threshold are then removed. In practice, many of the data points in the HP
components have relatively small values and are “noise-like” in nature. Thus, removing these
small “noise-like” components allows us to reconstruct the uni-res PDF with fewer particles
without significantly degrading particle filter RMSE performance.

The PDF components are then transformed with an appropriate IDWT algorithm in order
to reconstruct a “data compressed” uni-res PDF that has fewer particles than the original. The
amount of “data compression” varies according to the size of the threshold. A larger threshold
results in more compression and fewer particles. Conversely, a smaller threshold produces the
opposite effect. The new, reduced, particle set is then propagated and updated via a SIR-PF.

The SD-MRES-PF features two methods to implement multiresolutional particle filtering.
These are termed as the implicit and explicit methods. The implicit method embeds the wavelet
transformation into a complicated variable structure but does not require an inverse transform to
reconstruct the uni-res density. In contrast, the explicit method uses a simple variable structure
but requires an inverse transform for uni-res density reconstruction.

The Hong and Wicker SD-MRES-PF was a proof-of-concept model that only operated
over one update cycle. The original uni-res PDF in the SD-MRES-PF was generated as
histogram PDF that required 5000 samples to generate 1000 sampled PDF points. Consequently,
it is not suitable as a multiple update particle filtering algorithm because the PDF generation
process would negate any particle savings obtained from the multi-resolution processing. An

extended SD-MRES-PF that operates over multiple time increments is presented in Section-5.
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3 MULTIRATE - MULTIPLE MODEL PARTICLE FILTER

(MRMMPF)

The MRMMPF algorithm was first introduced in the initial proposal for this dissertation
and forms the building block of the MRMMPF-TBD algorithm that is described in the Section-4.
The MRMMPF described in the following paragraphs was thus intended as a “proof of concept” in
order to demonstrate the advantages of multirate particle filtering vs. full-rate particle filtering and

Kalman-based tracking algorithms.

The MRMMPF combines elements of the MMPF and the IMPDA. It uses a multi-pattern
multiple model particle filter to compute state estimates at 1/3-rate (1/3-R) and conventional
MMPFs to compute state estimates at full-rate (1-R). Within the MRMMPF, the 1/3-R MMPF and
the 1-R MMPF are run in parallel. The 1/3-R MMPF computes estimates at every third sample
increment (i.e. k = 3,6, 9,...) while two cascaded 1-R MMPFs compute estimates at the

intermediate points (k = 1,2,4,5, ...).

The original MMPF algorithm was designed for single target tracking in a zero-clutter
environment (i.e. zero false alarms). The MRMMPF, however, is intended to function in the
presence of false alarms. Thus, the measurement likelihood functions in both the 1/3-R MMPF
and the 1-R MMPF components of the MRMMPF were modified to use a PDA-type likelihood

function that will be described later in this section.

Both multirate tracking (via Kalman filtering) and multiple model particle filtering have
been addressed in previous research. These two techniques have yet, however, to be combined

into an integrated tracking algorithm that tracks targets in the presence of clutter. Hence, the
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rationale behind the MRMMPF is to combine the strengths of the aforementioned algorithms.

These strengths are:

« The IMPDA’s ability extract coherent information from measurements over multiple
scans;

* The ability of the MMPF to handle non-linear/non-Gaussian PDFs.
It will be shown that a bootstrap (i.e. SIR) PF implementation of MRMMPF outperforms the
IMMPDAF, IMPDA, and the MMPF.

3.1 MRMMPF Theoretical Description and Design

A four-pattern/four model bootstrap version of the MRMMPF algorithm was implemented
according to the block diagram shown in Figure 3.1. The basic components of the MRMMPF
algorithm are:

1. 1/3-Rate MMPF Initialization;
2. Full-rate MMPF Initialization;
3. 1/3-Rate Mixing;
4. 1/3-Rate MMPF;
5. Full-rate MMPF;

6. Full-rate state vector output.

Note: In the remainder of this dissertation, one-third-rate variables will be denoted by the “1/3R”

superscript (e.g.)A(%‘T’(R). Variables without the “1/3R” superscript are assumed to be full-rate

(e.0. f(k,k). Additionally, particles will be annotated with a subscript to indicate whether they are

predicted (X,i(,k_l) or posterior (X,i(,k) particles.
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Figure 3.1 MRMMPF Algorithm Block Diagram

3.1.1 1/3-Rate MMPF Initialization

The proof-of-concept MRMMPF does not include a track initiation function and assumes

that the initial 1/3-rate state PDF is known. This initial PDF is assumed to be Gaussian with a

1/3R

mean vector, L, p/eR

, and covariance matrix F,""". No information (i.e. diffuse prior) is assumed

to be available regarding initial pattern probabilities, p(M g““), j=1:--,4. Thus, each pattern

i 1
probability is set to: p(M %) IZ .

The 1/3-R measurement noise PDF is also assumed to be Gaussian and is the same as

V,
in the IMPDA:{ ke } =N(OR, ). where:
V LH

K
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_[025R_,+R_, + 025R, 0 . (3.1)
R, = 0 025R_,+ 025R | |

and where: R, is the 1-R measurement covariance of the sensor.
Based on the initial state PDF and pattern probabilities, we first generate an initial set of

Np particles: [X(i)“3R ,Mgm ],j=1..,4. As was the case with the MMPF, each 1/3-R particle is
an ordered pair that consists of a state vector, X(i)““, and its associated pattern index, Mgm :

N
Since the probability of each pattern is 0.25, TP particles are assigned to each pattern. The

state vectors of each particle, x8’3R , are obtained by drawing Np values from the following random

vector:

Xive = IR 4 WUR =1 N (3.2)

0

where Wé’ %R is the 1/3 rate process noise vector.

Since the initial covariance matrix, POI’SR, is assumed diagonal, the process noise vector

can be obtained taking the square roots of the variance components (i.e. the main diagonal) and

multiplying the resulting matrix by a zero-mean, unity variance random vector:

V péﬁR 0 0 0 0 0
0o ypX o 0o 0 0
U3R
W3R = 0 0 V p03,3 0 0 0
C 0 0 0 /pllsR 0 0 Wy (3.3)
04,4

o o o 0 I O

0 0 0 0 0 / péf::g
where
péi/?R = ith row, jth column entry in the Pol/SR matrix:
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V,, = 6x1 random vector whose elements are random variables distributed ~ N[O]1].

3.1.2 Full-Rate MMPF Initialization

The full-rate MMPF is initialized by transforming the 1/3-R MMPF patrticles to 1-R. This is

accomplished via a set of inverse discrete wavelet transform (IDWT) matrices. The IDWT

matrices used are the same ones found in the IMPDA and are designated as TC_Vl and TC_Al. The

TC_Vl IDWT converts 1/3-R particles with constant-high-pass (CH) model indices (i.e. CH?

component = 0) into 1-R constant velocity (CV) particles in which the acceleration components

are zero, as shown in (3.4).

-1

21 =-2T1 O

XL :Tc_\} XL1/3R =0 TI 0 Xli(1/3R

0 0 I

where:
T = scan period,;
| = 2x2 identity matrix;

0 = 2x2 matrix of zeros.

(3.4)

Correspondingly, TC_Al transforms 1/3-R particles with constant-high-high-pass (CHZ)

model indices (i.e. non-zero CH? component) into 1-R constant acceleration (CA) particles:

2l -2T1 1572
X =Tax==/0 TI -T2
V2 2

0 0 —T
2
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3.1.3 1/3-Rate Mixing

The MRMMPF algorithm works on a three scan update cycle. Thus, when describing the

algorithm, we will assume that the update cycle starts at t = k-3. For each 1/3-R particle,

[XLH%T(_S : nggﬁ_s] , We generate a new particle, [XLH%T(_S , Mliui’fg ] , with particle number i and

pattern index j (Note: The particle number, i, is different from pattern index i) . As with the

IMMPDAF, IMPDA, and MMPF, we assume that the mode jump is a Markov process with known

probability transition matrix h''. The “post-mixing” model index, Mkjui’fg , Is then obtained by

applying the switching Markov chain with transition probability h' to M ;’_‘Q’aﬁi_s M k“_3§k_3 =i,

then M % will be set to j with a probability h''.
This Markov transition is implemented via a “roulette wheel” sampling method in which

the “size” of each pattern on the wheel is proportional to its probability. Thus, if M ;’_Saﬁi_s =i and

Un is a uniformly distributed number from (0,1], then M ;llks_% is chosen as the value of s where:

ih” <u, sih” andih” =0. (3.6)
= j=1 j=1

This concept is somewhat difficult to visualize and can best be described by the following

example. Assume that we have the following Markov transition matrix:

091 004 004 001
005 085 005 005
005 005 085 005
001 004 004 091

h' =

The previous mode, i, at k-3 is denoted by the matrix rows while the new mode, j, at time k is

denoted by the matrix columns. Assume that at k-3, the old mode is: i=1. We now generate a
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uniformly distributed random number: &/, ~(01] and obtain the following potential mode
transition scenarios

« If y, <091, then mode j=1.
« If 091< u, < (091+ 004), then mode j=2.
« If 095< i, < (091+ 004+ 004), then mode j=3.

 Finally, If 099< < (091+ 004+ 004+ 001), then mode j=4.

A similar argument applies if mode i = 2,3 or 4.

3.1.4 1/3-Rate MMPF

1/3-R State Propagation: The 1/3-R MMPF functions in an analogous manner to the 1-R

MMPF. After the mixing process, each particle, [X, “3§k 3,Mkjllk’ii;,], is propagated through a

_ U3RY 4 \WY
dynamic system model, ( ) that is based on its pattern index, Mk“lfg .

Mk|k3 Mk|k3'

1/3R
The 1/3-R state transition matrix, ( ) operates over three time steps and depends

M k-3
on the specific pattern and model index. Patterns 1 and 4 both use the CH? model and will thus

use the CH? 1/3-R state transition matrix:

| 6l 9V2l
f’j/izc'* ( 1/3R) =0 | 3\/§| ] (3.7)
0 0 |

Conversely, Patterns 2 and 3 both use the CH model and will thus use the CH 1/3-R state

transition matrix:

M -3

0
§ V3R (Xi/-%R =0 | 0. (3.8)
0 0
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The process noise vector is obtained from the 1/3-R process noise covariance matrix,

1/3R

Mgs that corresponds the model (either CH or CHZ) associated with a given pattern. The value

of Q,%,fz:; is the same as that developed for the IMPDA. Thus, for the CH case:

1Y3R™ _ ~1/3R%" 2 11/3RH
Q = I

M - k-3 awlc/gR k-3 (3.9
where:
Cl
FQER " = 1/3 rate CH noise gain, previously defined in (2.26);
ag ;CH = 1/3 rate process noise variance.

1/3R

The 1/3 rate process noise variance, 0 ;CH , in turn derived from the 1-R process noise

1/3R

variance, Uvzv via the following transformation:

2 — 2 !
O-chlgiR _TO.CH UW TO.CH (3.10)
where:
_ T2 _
| 0 0
272
T2
Tsw=| O | 0 3.11
o o2 (3.11)
T2
0 0 |
i 2v2 |

and:
T =scantime

| = 2x2 identity matrix.
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2
For the CH? case, Fklf‘;RCH is the 1/3 rate CH? noise gain shown in (2.30). The 1/3 rate

process noise variance, 0 ZCHZ , Is then expressed as:

Wi/3Rr
o’ ,=T ,o°T (3.12)
where:
F12 -
—1 0 0
TZ
Te:= 0 —1 0 (3.13)
TZ
0 0 —I
— 4 -
Once Q,f,ng is known, WJ,\fR is obtained via eigendecomposition as follows:
k-3 -3
AR 0 0
VVH‘ZE\? leISR D1/3R V[\]]./SR - X1/3R O .. . O V,\ZIUSR (314)
1/3R
0 0 JAY
where:
D** = A diagonal matrix whose entries, /\11’3R : ~-/\1é3R , are the eigenvalues of Q,%,,’i’lz ;

1/3R . . .
X = A matrix whose columns are the corresponding eigenvectors such

1/3R 1/3R —_ \/1/3R 1/3R
that: Q ° X7 =X D,

V,"®" = 6x1 random vector whose elements are random variables distributed ~ N[01].

For CH’ patterns, the state vectors of “predicted” particles, [X,ijlffs M ;l}(’ig] are obtained

by setting the CH? component of the 1/3-R state vector to the value indicated in the pattern index,

M3, passing it through the CH? state transition matrix and then adding a random CH? process

noise vector:
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X | [1 6l 92l %y
%, |=[0 1 32l || X, [+ (3.15)
.| [0 0 1 |f,

where: fm =X _3 , = the maneuver pattern for pattern index Myjs.

H

For example, if the CH? pattern was: f_ =X, , =104/2, then (3.15) would become:

X, I 6l 9J21 || Xa
% l=lo 1 3y21 || % +w§/{~:"kRZH . (3.16)
.| 10 0 1 Jlioy2

Correspondingly, for particles with CH patterns, the state vector is:

Xk,_ Il 6l O Xk—3,_
X, |=|0 1 o f, +\,\,h1,|’~°7R : (3.17)
Xy 0 0 0| O

where:

fp =X, = the pointing pattern for pattern index My.s.

1/3-R Likelihood Function and Particle Weights : At this point, one can now compute

a 1/3-R likelihood function, p(Z,i’SRlXL}ﬁRS), and the corresponding particle weights, Wli(llSR. We

construct a 1/3-R measurement vector from the measurements [Zk_2 v 2y Zk] via the method

shown in (2.28). Since there are measurement false alarms, the measurement vector actually
becomes a measurement matrix in which each column represents a 1/3-R measurement vector.

If we assume that there is only one true target in the scenario, then the number of columns is
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equal to the number of measurement combinations, my, available from [Zk_2 v 2y Zk] and is

defined as:

= (1+ Nf,_, ) {1+ Nf, ) ({1 + Nf, ) (3.19)
where:
Nf, = the number of false alarms at time k.

Thus, the measurement matrix is defined as

)

1/3R _ 1/3
Z [Z * (3.19)

We assume that the false alarms obey the Poisson clutter model. Therefore, the
probability of observing my false measurements at scan Kk is:

v, (AV™

(3.20)
m,!

:uF(mk):e

where:
A, = the false alarm rate per scan and V, = measurement volume of the validation gate.

The 1/3-R likelihood function in (3.21) below is then obtained in an analogous manner to
that of the parametric PDAF [7] and PDA particle filter [48]. We first note that the measurements
are independent. Thus, by summing over the association hypotheses the aggregate 1/3-R
likelihood function can be expressed as the sum of individual likelihood functions generated by

my+ 1 hypotheses:

my

1/3R 1/3R
p( TllfRS) Z ( 601X ) - (3.21)
n=0
We now factor the LHS of (3.21) to obtain:

(a1 )= > pla™ s ) olet 1) .22

=0

>

where:

Hk” = Feasible association hypothesis for measurement n;
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P(6; | %%) = the probability of hypothesis 6 ;

( VIR ! 1|;(3R3, ) the likelihood of hypothesis &, .

The measurements are assumed to be independent. Thus, the overall likelihood function of a

hypothesis becomes a product of the component likelihoods:

oz ﬁf%ﬂ” r!p z, " 'ﬁ’k“s,@k”). (3.23)

The component likelihoods, p(zlkl3R [ % 1|{(3R3, ) can be expressed as:

( V3R | llfRs,H,f):N([Zi/SR" -H XLll((iRsJ, RkLH) if zp>"" is from atarget;  (3.24)
p( /3R |X|'(1|{(3_F*3,6’”) v if " is from a false alarm; (3.25)

where:

Vi = Volume of measurement space.

The likelihood of a given hypothesis can now be obtained using the previous results and applying

them to the following cases:
«  6,: None of the measurements are valid
. Bn : Association hypotheses 1..my, that each feature a single valid target.

This results in:
n 1 i 1/3r -
( R 1|1<3R3’9k )sz—l N([ZlilsR” —-H Xk|k—3]’ Re. ) n=12,---m (3.26)

( 1/3R

l
| %%, 6 ) un , =0, (3.27)

k
The next step is to compute, p(@,:‘lx:(ﬂi%) . Applying the PDA derivations in [7 and 48], we

obtain:
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-1
Nyl ﬂF(m):| _
p(6, x“3R)-— PR, +\1-P, P, ,N=1.--m (3.28)
| kk-3 { ( )/JF( _1)

-1
| e | #e(m) #=(m) _

g |xw=)y=(1-P, P PR +(-F, R )———5| ,n=0(3.29
p( k |Xk|k—3) ( D G),up(rnk_l)|: DG ( D G)IUF(rnk_) ( )
where:

Pp = probability of detection and Pg = probability that measurement falls in the

measurement gate.

We now simplify the previous two equations by noting that:

o (V)
pie(m) { m, L[(mk—l) )]y

#e (M =1) {e_wk(/lvk)”‘*‘l} rm(/lV)’“‘l m,
(m, 1)

(3.30)

Applying (3.30) into (3.28) and (3.29), one obtains:

-1
: 1 AV,
p(8 | Xier,) =— P, P {P P, +(1-P, P, )=« } =
k k-3 D'G (3.31)

P, P, [mP, P+ (1P, P, )AV, ] n=1-m,

-1
) AV, AV,
Pk 1) = (1- P, R, )mk {P P +({-Py P)mk} =
(3.32)
(1_PD R )% [mk Py R+ (1_PD P )/]Vk]_l’ n=0

The previous results are now substituted into (3.22) to obtain (3.33)

( 1/3R Il(llll(gas) i p( VR |Xk1|{(3_R3 ,ekn) IO(HC | Xli<1|f<3fs):

=0

AV, [mk P, P, +(1-P, P, ))lvk]‘l + (3.33)

>

1
V™

(1_PD G)

I:)D PG

o 6 [mp R+ (=P, P, )AV, || ZN([z;fSRn HXas), R )
k
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In the MRMMPF presented here, the SNR is assumed to be large and gating is not used.
Consequently Py is set to unity (i.e. target is always detected) and P = 1. The likelihood function

then becomes:

D(Z§/3R | X% ) -1 r: N ([Zi’SR” -H xLll(f_Rs], Re. ) . (3.34)

rrl(vkmk_l “
The importance weights are then calculated using the same methodology as in the standard

. . . . 1
bootstrap PF. Since the particle weights are normalized, the constant term, — drops out

m Vi

and we are left with (3.35) below.

SN[z -Hxm] R )

/3R _ p(Z&BR | Xb/lffs ) — n=1
W, -~ TN m (3.35)
Soli) B[ Enl s )|
nn=. nn=1\_n=1

The particles are then resampled via the importance sampling method to obtain xLlllfR .

1
Following resampling, all particle importance weights are set to ——. The 1/3-R target state in
P

each particle is then transformed via a 1/3-R-to-1-R inverse DWT, to obtain the 1-R target
state, X:qk. If the particle in question has a CH model index, then TC_Vl is applied while TC_Al is

used for a CH? patrticle.

The model indices in the transformed particles are unchanged. Thus, a 1/3-R particle

with an index that corresponds to a negative X, , value will be transformed into a 1-R particle
H

with a negative acceleration while 1/3-R CH particles are transformed into constant velocity
(acceleration = 0) 1-R particles. The full-rate output of the MRMMPF at time k is then obtained by

taking the mean of the 1-R patrticle states as shown in (3.36).

Xk (3.36)
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3.1.5 Full-Rate MMPF

1-R State Propagation: The 1/3-R MMPF only generates target state outputs at every
third sample point (k-3, k, k+3, ...). In order to obtain 1-R target states at the interim two sample
points (k-2 and k-1, k+1 and k+2, ... ), we use a modified version the MMPF described
previously. To do this, at every the sample (k-3, k, k+3, ...) the state from each 1/3-R particle is

fed through the 1/3R-1R inverse DWT described previously. This generates a 1-R particle

set,[XL_ak_e,y M|i<—3|k—3] . This particle set is filtered via a 2-stage/3-model, constant acceleration

(CA) MMPF. The prior PDF is obtained via the following kinematic model:

T2
I T —I
2 X
Xe-2k-3 = ka,qk,3(Xk—3) Wi s o I TI X Wit g - (3.37)
0 0 I |[X=ay,,

The MMPF includes models for @y ==8u,, 8y, , =0, Ay, 4y = Bmax - The
a,\,,k_ﬁk_3 =0 model processes particles with model indices corresponding to the CH patterns while

the a,\,,k_ﬁk_3 = *a,,models process particles with model indices corresponding to equivalent

2
CH? patterns (i.e. X, , 21% Tzamax). The 1-R process noise vector is derived by using a

similar technique to the one described for the 1/3-R case. First, the full-rate process noise

covariance matrix, QMk_Zk_3 , is derived for both the a,, =*a,,models and the

k-2k-3

aMk_Zk_3 = 0model (which is actually a constant velocity (CV) model).

The process noise matrix for the A s * a,,,models is then expressed as:

CA _CA 2 ICA
QMk,Q,k,3 - rk—3UWCA rk—3 (3.38)
where:
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2
Ly

rA = 21- is the full-rate CA noise gain;
I

ag VZVCA is the full-rate constant acceleration process noise variance.

The process noise matrix for the C VI 0 model, Qﬁ\:—Zk—s' is developed in a similar fashion

except that the process noise gain terms becomes: rf_Vs: T . Theoretically, the process

noise variance, UVZVCA , would be set to zero in a CV model. In a particle filter, however,

additional process noise must be added in order to prevent the “degeneracy phenomenon”. Note:
A very small value (~1O'8) is also added to the last element of the Ff_\g vector so that the

process noise covariance matrix stays non-singular. Once the process noise matrices are
computed, the process noise vector is computed the same way as in the 1/3 rate case via (3.39).

JA, 00

=XD V,=X| 0 . 0 |V,
0 0 A,

1-R Likelihood Function: The first stage of the MMPF uses the measurement set z, .

W,
M2k

(3.39)

As was the case with the 1/3-R measurements, this measurement set includes false alarms.

Thus, the number of measurements is:
M., = (1+Nf,,) (3.40)
where: Nf, _, = the number of false alarms at k-2.

We now derive a full-rate PDAF-type likelihood function using exactly the same methodology as

in the 1/3-R case and obtain (3.41-3.42).
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p(Zk-Z |Xli<-2|k—3 ) = ﬁ D N ([Zl?—z —-H Xli<—2|k—3]’ R ) (3.41)

m,_
W, = p(zk‘2|Xii<—2/k—3) _

1
-2 7 Np P -2
Z p(zk—z | X:EZIK—S) i ”i N([Z:—z -H X:?2|k—3]' Rk—z)J

nn=1 nn=1\_n=1

-2 H Xii<—2]k—3]' Rk—z )

zZ
—

N
xS

(3.42)

This produces a full-rate particle set [X:(_ak_2 M|i<—2|k—2]- The full-rate output at

)A(k_2|k_2 is then obtained by computing the sample mean. Since we are already operating at the

full-rate, an inverse DWT is not used. The second stage of the MMPF repeats the process with z,

1 and generates Xy -1 -
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4 MULTIRATE MULTIPLE MODEL PARTICLE FILTER TRACK BEFORE

DETECT (MRMMPF-TBD)

This section presents a full-rate multiple model particle filter for track before detect
(MMPE-TBD) and a multirate multiple model particle filter for track-before-detect (MRMMPF-
TBD). It extends the previously developed MMPF and MRMMPF so that they can track low SNR
targets which perform small maneuvers. Current particle filter track before detect (PF-TBD)
algorithms assume constant velocity (CV) motion and filter updates at a full-rate (i.e. at every
measurement scan). Previous work in multirate processing, via a discrete wavelet transform
(DWT), has shown that multirate tracking algorithms can provide comparable performance at a
lower computational cost.

To date, these multirate approaches have not yet been applied to low signal-to-noise
ratio (SNR) targets. Consequently, the goal of the MRMMPF-TBD is to combine the MMPF, TBD

techniques, and multirate processing in order track low-SNR targets at a reduced particle cost.

41 MRMMPE-TBD Algorithm Overview

The MRMMPF-TBD and MMPF-TBD both use a combined probabilistic data association
(PDA) and maximum likelihood (ML) approach. The MRMMPF-TBD (top-level block diagram
shown in Figure 4.1) consists of a 3-model full-rate MMPF run in parallel with third-rate, 3-model,
MMPF. The full-rate MMPF uses a CV model and two constant acceleration (CA) models for
positive or negative accelerations. The third-rate MMPF employs a constant high-pass (CH)

model, which is analogous to the full-rate CV model.

A third-rate model is used instead of a half-rate because the third-rate model only
requires one update per three scans (versus one update per two scans for half-rate), resulting in
a lower particle count. Additionally, at least three scans are required to obtain CH? state and

measurement vectors (which are analogous to acceleration components). Both the full-rate and
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third-rate MMPFs use the bootstrap method and incorporate ML-PDA likelihood functions for data
association and particle weighting. The basic operation of the MRMMPF-TBD is summarized as

follows:

1. Initialization: Begin with a set of 1/3-R particles at k-3. Each particle consists of an

+1/3R P
ordered pair, [ X_g_5, M Ll_/;Rk_3] , that consists of a target state and a mode index.

2. Mode Mixing: Perform mode mixing according to the Markov state transition

probabilities.

3. Third-rate and Full-rate Separation: Compute the probability of maneuver by

determining the ratio of CH? mode particles, NCHZ,to the total number of particles N;:

=1-P

) an - Divide the particle set into two portions such that

P... Np particles are assigned to the full-rate set and then convert the states of these particles

from 1/3-R=>»1-R via the inverse discrete wavelet transform (IDWT) matrix (Defined in section 3).
The mode indices for each particle remain unchanged. Thus, CH particles are mapped to CV,

and CH’ particles are mapped to their appropriate CA model. The remaining fraction (i.e.

P onran Np ) Of the particle set is left unchanged. The key point is that as the maneuver

probability increases more particles are processed via the full-rate model in order to quickly

respond to maneuvers.

4. MMPF: Process the third-rate CH particle set by the third-rate MMPF, using the 1/3-R

measurement vector (Described in Section 3), and compute the posterior 1/3-R partial particle

~i1/3R

set, [Xka M ,LTCR ]. Process the full-rate particle CV/CA set by the three full-rate MMPFs, using

the 1-R measurements at K—2,k—1,k, and compute the posterior 1-R partial particle set,

[i,ilk M le] . Convert the 1-R particle set to 1/3-R via the DWT and then merge with the partial
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i1/3R i
posterior 1/3-R set, resulting in the complete posterior 1/3-R set, [XII<|k M ,'(T,/:R ].

+1/3R ;
5. State Estimation: Convert the 1/3-R particle set, [ Xy, ,M,'(T,/:R ], to 1-R via the
inverse DWT and then compute the conditional mean of the particle states to obtain the state

estimate, )A(klk. Real time outputs, if required, can be obtained at K —2 and k-1 from the 1-R

MMPF particle sets. Otherwise, target states for K—2 and k-1 can be obtained by

smoothing )A(klk. Smoothed, non-real-time outputs will generally be more accurate since they

incorporate the information from measurements atk—2,k—1,k and are based on a larger

particle set.
Real-Time Outputs
Xp_2ik—2  Fk-1k-1
_,l"33 3 il/3R
[-‘k—suc—s My ]
k-2 k-1 k -
=iy
l (¥ - My
oo r»-m—1pl=| ‘MI‘»-1F'F MMPF‘
lode Mixing
3R ) ) pr= 1f3—R-)1R|
l > "\II = Enaﬂ ‘?\I r >
1R 1/13R
Divide into
7 .
Full & | N, =Total Num. Particles = N + N'3% . Pa‘:tri?:ﬁa N
Third Rate = v Sets hl
Sets r
173K 3R
138 _ ; 4 b
N - Rmmmu ‘MP ['\f( I "‘1{{;' I ]
» 3™-Rate -
MMPF ”

/3R

[% -Mp"]

FlE

Figure 4.1 MRMMPF-TBD Block Diagram
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4.2  Full-Rate Target Models

The full-rate (1-R) target models used are the standard CV and CA models with the state

vectors defined as shown in (4.1)-(4.3) . In both the CV and CA cases, the control input, U, ,is

modeled as a Gaussian noise process, W, , that is zero mean and has variance o’ .
Wk

X = Fe X +T 4 (4.1)
o _ . _TZ_
X 1 T 00 O Of x -
Vv, 01 00 O 0]V T
0O 00OO0OOP O
For the CV Model: % = % + 02 W, 4.2)
y 0001TO|y T
vy 0 0001 0|V %
EM |10 0 00 0 O EXN 0|
o B 2 1. _ 27
X 17T L 0 0 O |X r
2 2
Vi 01 T 00 OfW% T
For the CA Model: % = 00 1 00 T02 & + le W, (4.3)
y 00 0 1T —||Y] |—
V. 2 vV 2
Y 00 O O 1 T Y T
Pt o0 0 00 1| | 1]

The 1-R process noise covariance for the CV case is therefore defined as:
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0 0] (4.4)

o on| a7
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I
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Q
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o —||\>|_,Lo —||\>|_,L
I
Q
N

I
L
I
L

onv|da|[do o
N

Correspondingly, the 1-R process noise covariance for the CA case is:

o - 43 2 2
T T T )
— — — T° T 0 0 O
f| 7] |2
. . ST 10
- 2 01— 2 — 2
Q=ho I = 72 1% | T2 | %W T4 T T2 (4.5)
— — O 0 0 — — —
Ik .
T 2
1 1 0O 0 O > T T
2
0O 0 O L T 1
L 2 i

4.3 Third-Rate Target Models

The third rate models include a constant high-pass (CH) model for tracking during non-
maneuvering segments. The CH model is analogous to the CV model in the full-rate case while
the CH? model (and its associated patterns) is analogous to the full-rate constant acceleration
(CA) models. Note: The third-rate MMPF does not include constant high-high pass (CHZ) model.
Since the MRMMPF-TBD does, however, require CA€=>CH? conversions, a derivation of a 2-

pattern CH? model is included for completeness.

The vectors are then stacked to produce a 1/3-Rate state vector:

* Low-Pass X, (analogous to position)
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» High-Pass X, (analogous to velocity)

* High-High Pass X (analogous to acceleration)
Where: X[ = FY3RX 1R 4 [ MaRylam (4.6)

The 1/3-R state transition matrices F, and F

on? for the equation above are obtained from the

CH and CH? model definition that was derived in [45].

% 16 000 0] % |
Xy 0100 0 0| X
X, X,
CH Model: U =R X = 0 000007 4.7)
Y 00016 0||W%
YH 0 00O 1 0|V
_sz_k+3 00000 O__sz_k
%] 169200 0][x]
X 01 3\/5 0O 0 O Xy
X, X,
CH?” Model: A I 00 1 00 0 [|% 48
N o 00 0 16 92||l%
Yu 00 0 0 1 3J2|| ¥«
R 00 0 00 1 |[Y]

In the CH model, the control inputs are modeled as CH? Gaussian noise disturbances
with: - Xy . N (0, Qx.y 2 ) Xz . N (O, Q.. 2 ) X . N (©0,Q.s 2 ). Correspondingly, in

the CH? Model the control inputs are modeled as CH? Gaussian noise disturbances with:

Xy ~ N (O1Qk+lH3)1 Xera g ™ N, Qk+2H3)1 Xerg 3 ~ N, Qk+3H3) :
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Full-rate state vectors are converted into third-rate state vectors (i.e. 1-R=>»1/3-R) via an

invertible linear transformation matrix. In the case of a constant velocity model, the CV-CH

transform matrix is T, while the CA-CH’ matrix is T, .

2 -2T 00 0 O
O T 00 0 O
CV - CH: x**=T,, x, = 0 0 1000 X, (4.9)
O 0 0 2 -21 O
O 0 OO0 T O
0 0 00 0 1]
2 -2T 1512 0 O 0 |
O T =T> 0 O 0
0O O QTZ 0O O 0
CA - CH?: x*R=T_ x = o 0 20 > _or 1872 |% (410
0O O 0 0O T -T?
0O O 0 0O O %TZ

The reverse transformations (i.e. 1/3-R=>»1-R) are accomplished by multiplying the 1/3-R state

vectors via the inverse DWT matrices, TC;l and TC;l.

4.4 Full-Rate Measurement Model

A typical radar sensor provides range, range rate, and angle information for a target. The
sensor used in this simulation is a simplified radar that outputs a matrix of 2-dimensional x-y
target position bins along with a target intensity reading for each bin. Thus, the 1-R measurement

vector is defined as:
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z, 100000
H, X X
2=z, { “ k}{o 0010 o} « (4.11)

ZI
ZI
k

Targets are modeled as point masses and target position smearing due to FFT windowing effects
or target extent are not modeled. The target amplitude probability density function (PDF) for bin
(x,y) is modeled as Rayleigh random variable (RV) via the method described in [7] and [32],

where SNR is the defined as the minimum expected SNR.

Target + Noise PDF: . (;k) = (1+Z—|S;\FR)eX _ZQ%S\IR) (4.12)
2
Noise-only PDF: Po (;k) =2z ex —'? (4.13)

4.5 Third-Rate Measurement Model

In order to convert the full-rate 1-R position measurements into 1/3-R low-pass and high-

pass components, we apply a 1-R-t0-1/3-R measurement transformation [45]:

Zo | _ 05z,_,+z_,+ 05z, (4.14)
Zk - 0'52k—2 + 052k . .

H

The target intensity is assumed to change slowly. It is thus modeled as a low-pass process with

no high-pass components:

lek/3R =05z +z +05z . (4.15)

| k-2

The complete 1/3-R measurement vector is then defined via (4.16).
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2| [ 05z ] 'z, | (052, |
z, 05z, z, 05z,
z, | =|-05z,| +|0]| + |05z
z, - 05z, 0 05z,
_le-_k L 0.52I leer —Z|_k—1 _0_52|_k
(4.16)

100000 ]

H L3R y U3R 00010 Ox1/3R
=l " |=jlo1000 0"

- 000010
z,,

4.6 Particle Weight Computation (Full-Rate)

The MRMMPFE-TBD algorithm uses the bootstrap method in which the un-normalized

particle weights are proportional to the value of the measurement likelihood function:

w, 0 p(z | %). (4.17)

The ML-PDA likelihood function for the full-rate particle filter is presented below and is
obtained by applying the methods described in non-parametric PDAF [7], PDA particle filter [48],
and the non-parametric IMMPDAFAI [7]. It is first assumed that measurements are statistically
independent and that position and target amplitude measurements within the validation gate are

also independent. The measurement likelihood function can be expressed as the sum of joint

likelihood functions generated by m, +1 hypotheses:

p(z. &% ) (4.18)

M3

plz 1%)=

>
1
o

We now factor the RHS of (4.18) to obtain:

62



p(z,1x..60) pler1x) (4.19)

Mz

plz %)=

>
1
o

where:

Hk” = Feasible association hypothesis for measurement n;
p(H,f | XL) = the probability of hypothesis 8" ;

p(z 1X.,6") = the likelihood of hypothesis 6.

Since the measurements are assumed to be independent the overall hypothesis likelihood

becomes a product of the component likelihoods:

p(z, IXL,9£)=|ﬁp(ZL‘IXL,6’£). (4.20)

The likelihood of a given hypothesis can now be obtained using the previous results and

applying them to the following cases:

«  6,: None of the measurements are valid;

. Bn : Association hypotheses 1..n, each feature a single valid target.

In order to compute p(zk |XL HK”) we also assume that position and target amplitude

measurements within the validation gate are independent. The likelihood of hypothesis Hk” can

then be decomposed as a product of individual position and amplitude likelihoods:

oz 1%.8)=plz,, 2. |X.6)

= p(zlk | X, ,Hk”) Ep(zpk | X, ,glf) ’ (4.21)

Where: ZPk is the position component of the measurement and ZIk is the target intensity.

The amplitude likelihood function, p(zIk | X Hk”) if Z, is from atarget is:
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n

p(zlk 1% ,«9,?)= pl(zl)ﬁﬁ pO(Z.jk): El j: po(zj ) (4.22)
J#n 0

Ik

Substituting the PDFs for po( ) and pl( ) that were previously computed, we obtain:

2 )
| +rR) TN 20+ R) | W,
D(Z|k | X ﬂkn): n (Z.nk )2 EI:' po(sz)
Zlk ex _T

(4.23)

1 [l)s

:(1+SNR)ex 2(1+ \R) EﬂpO( )

The equation above is now expressed more compactly as:
( z, |xk,6?” ( )EI" po( ) (4.24)

The amplitude likelihood function, p(zI |Xk, ) if Z is not from a target is:

p(zIk | X, ,Hlf): po(zj ) (4.25)

The next step is to compute the position likelihood. If Z,';‘,k is from a target, then the position

likelihood is defined as a Gaussian:

p(Z;k |XL,67£):VP—§1 N([Z;k _Hxli<|k—l]’ Rk)’ n=12,---m, . (4.26)

k

If Zp is not from a target:
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p(z'F‘,k | X, ,HQ):V% , n=0 (4.27)

K
where:

V. = Volume of measurement space;

Ps = Probability that the correct measurement is inside the gate volume;

Ry = Position measurement covariance matrix.

The covariance matrix Ry is obtained by applying the standard radar measurement

accuracy formula [4]:

r’* 0 sensor resolution
Rk:{k r2]where:rk: (4.28)

2. /NR

Since the actual SNR of the target will be unknown, the SNR value in the equation above is
defined as the minimum SNR at which the tracker is designed to operate. The hypothesis
probability, p(H“XL) , iIs now calculated by using the non-parametric (i.e. diffuse prior) PDAF

model shown in (4.29).

p(@“xL):P?rEG, i:l...’mk

| (4.29)
pler1x.) =1-p,p,, i=0

The value of P, is computed by integrating the target+noise PDF from the detection

threshold 7 to infinity:

P, =T P, (zlk)dz|k : (4.30)

Combining (4.26-4.29) and then substituting this into (4.18) we obtain the complete full-rate

measurement likelihood function in (4.31).
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n=1

v el )b ne)s (5 B mk ] R)al e

n=1

D(Zk |X|i<): |:nj po(z.jk)E{l_kani i m\ljfw—l i {N([ng —H, Xti<|k—1]’ Rk)DL(Z.”k )}} =

The normalized particle weights for the full-rate particle filter are shown in (4.32).

WL _ Npp(Zk |Xli<|k.—1)
Z p(zk | Xli|k—1)
=1

(4.32)

ror)e [P S -] RI)

_ m )&
,i: L-p, PG)+[P?T:</kjn§=1:{N([ZSk ~H, %), Rk)EL(z[‘k )

My
The term {Vk_m‘ EI_| Po (ZI” )} is common to both numerator and denominator and thus drops out.
k
n=

4.7 Particle Weight Computation (1/3-Rate)

The 1/3-R position likelihood is computed in an analogous manner to the full-rate case.

The key difference is that 1/3-R measurements and a 1/3-R measurement covariance

matrix, R, are used where:

(4.33)

_[15R, 0,,
R { 0, O.SRJ '

In order to compute the 1/3-R amplitude likelihood, the 1/3-R noise and target+noise PDFs must

first be computed. The 1/3-R amplitude measurement is sum of three 1-R Rayleigh random
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variables. Therefore, 1/3-R PDFs can theoretically be obtained via a transformation of variables

and three-way convolution of the 1-R PDF:

.05
1/3R(21/3R): 05 . p1(2|k_l) . ‘L 05 |

4.34).
P\, |05 |05 (439

In practice, however, this PDF derivation has no closed form solution. Instead, the 1/3-R
PDFs were approximated via moment-matched Gaussian PDFs. In order to generate this

moment-matched approximation, we note that the Rayleigh PDF has the following form:

2
IO(Z) =iexp S (4.35)
g 207

with the following first and second moments:
T .
Mean: 4, = \/;% =1.2533147, and Variance: aiy = 205 ~ Hiay - (4.36)

The 1/3-R PDF is then approximated by a Gaussian N(ZIL —,UrlsR ; 0}2;;“) with:

1/3R

Uy =00, + U, + 05U, =24, (4.37)

21/3R

o’ = 02502y + afay + 0-25‘7,2 = 1.50;_ (4.38)

ray

For the noise-only case, the PDF is normalized so that U(i =1 while for the target+noise case,

02 =1+3N\R .

The 1/3-R noise-only PDF is therefore approximated as N(ZIL —,ué’SR , 002““) while the

/3
1/3-R target+noise PDF, is approximated by a Gaussian N(ZIL —,L111/3R ) 0'121 R) . The values of
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1/3R
1/3R , 2 J are

l VIR ngJ are obtained from (4.36-4.38) by setting 0~ =1 while l,U

obtained by setting 0, =1+ \R .

The 1/3-R amplitude likelihood function, conditioned on hypothesis Hk” then becomes:

1/3R

1,3R( m)
| | Ik

p(zll3R| 3R en)

Ik

(4.39)

nt/3R 1/3R 21/3R ) /3R 1,3R
)

_ N (Z|k _/'11 1/3R( 1/3R) ( 1/3R) 1/3R( 1/3R)
= N (Zn1/3R _ 1/3R 21/3R EI_' I E|_| N .

The complete 1/3-R likelihood function (i.e. position-amplitude) and the 1/3-R particle weights can

now be computed in the same manner as the 1-R case via (4.40).

1/3R| {1/3R )

p(Zk Klk-3

Np ( 1/3R L1/3R )
Z p\Z |Xk|k 3

=1

ij1/3R —

k

(4.40)

R Y T

K n=1

e 7S il ] )

4.8 Measurement Gating

Dim target tracking generates numerous false alarms. Measurement gating is therefore
required. The algorithms presented here use a heuristic three-level system of gating. The first

level of gating, referred to as coarse gating, places a square gate around the predicted 1-R

measurement point location:
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. s 1& ; ;
000100 X1 Where Xk|k=,\TZXk|k-1' with N, being the

p i=l

. 1 00 0 0 Of.
Zyea = Hy Xyt =

number of particles. (Note: The measurement matrix H, shown here uses only position

information and not intensity.) The objective of the coarse gating is to remove unlikely
measurements without incurring much computational cost. The length of a gate side was set at

heuristically at 1X the sensor resolution level.

Measurements that passed the coarse gate were then gated via a fine gate in a fashion
similar to that outlined by Vermak et al. [59] via (4.41-4.42). Fine gating is used with both the 1-R
and 1/3-R measurements. This gating process is illustrated for the 1-R case in Figure 4.2. Note:

The 1/3-R fine gates are 4-dimensional and cannot be easily depicted.

Y= [z— H, f(klk_l]' (SK )‘l [z— H, iklk_l] < x* threshold (4.41)
where:
. J— 1 Np i R i R ’
S« =H( Ry H¢ where: R, = m;[xk/k—l _Xklk—l][xk/k—l - Xk|k—1] (4.42)
P i=

The third level of gating is based on target amplitude and is only applied to 1/3-R

measurements that pass 1/3-R fine gate. The measurements are sorted by target amplitude

(highest-to-lowest) and only the N __  highest ones are selected. Note: The value of N __ is

heuristically determined from simulation. A low value of N__ reduces run time because fewer

false measurement sets are generated. Unfortunately, if this value is set too low, the real

measurement may sometimes be inadvertently eliminated, resulting in error. Conversely, if

N,..x is too large then runtime will be excessive. During simulations, N, =8 produced good

results and fast runtimes.
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We construct a 1/3-R measurement vector from the measurements in three consecutive
scans: [Zk_2 v 2y Zk]. The 1-R measurements at each time increment pass through the 1-R

coarse gate. Since there are false alarms, the measurement vector actually becomes a
measurement matrix in which each column represents a 1/3-R measurement vector. If we

assume that there is only one true target in the scenario, then the number of columns is equal to

1/3R

the number of measurement combinations, N This quantity is obtained from

[Zk_2 v 2y Zk] and is defined as:

M = m, My m= (14 N ) L+ N ) L+ N (4.43)
where Nf, = the number of false alarms in the 1-R coarse gate at time k.

1/3R

1/3R 1/3R m,
» LI | Zk . The

The 1/3-R measurement matrix is defined as Zk = Zk

1/3-R measurement matrix then passes through a 1/3-R fine gate. Next, amplitude gating is
applied to the surviving 1/3-R measurements. Amplitude gating becomes especially important for

1/3-R measurements because of the large number of spurious 1/3-R measurement combinations.
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1-R Coarse Gate 1-R Fine Gate

i

m., :(1+ ka—z): 9 M, :(1+ ka—l): 8 m, :(1+ ka): 6

m:BR -m_,m_m :(1"' ka—z) [(1"' ka—l) [ﬂl+ ka) =432

Figure 4.2 1-R Coarse and Fine Gating Example
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5 EXTENDED SPATIAL DOMAIN MULTI-RESOLUTION PARTICLE

FILTERING (E-SD-MRES-PF)

The Hong and Wicker SD-MRES-PF [71] was a proof-of-concept model that only
operated over one update cycle. In its current form it is not suitable as a multiple update particle
filtering algorithm because of the large number of samples required to generate the histogram
PDF that the SD-MRES-PF employs. This section presents an extended SD-MRES-PF(E-SD-
MRES-PF) that tracks the evolution of a non-linear/non-Gaussian state over multiple time
increments. A detailed derivation of the SD-MRES-PF will not be included in this section since it
already presented in [71]. Instead, this section will focus on the modifications required to
implement the E-SD-MRES-PF.

The algorithm for the E-SD-MRES-PF is described below.

Npg

1. Generate initial sampled PDF of N, particles: p(xo) = 2(4) 5(X—XL). This
i=1

PDF will typically be non-Gaussian.

2. Propagate the particle set through the non-linear process equation, f(X), and

Np ) )
generate a the propagated sampled PDF: p(Xk |Zk—l) = 2@_1 5(Xk - Xle_l).
i=1

3. Compute a likelihood function for each particle: p(zk |X|i(,k_l).

4. Calculate the new normalized weight for each particle,

= p(zk |X|i</k—1)(‘~’f<—1

Np

S 0z X s)ed s

i=1
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5. Sort the particles according to increasing XL,kvaIues in order to generate a

Npg

sampled PDF: p(Xk |Zk) = Z(UL
i=1

ok~ %)

6. Transform the posterior sampled PDF via the “Explicit Method”. To accomplish

this, the weights of the sampled PDF are divided into eight-sample blocks. The

8

sum of the weights of each block, Wy, ZZan , Is then computed and saved (it

=1

will be used later to re-normalize the weight of the block). Each block is then fed

into a 3-level DWT Haar-wavelet filter bank that generates the Level 1-3 filter

coefficients in the manner shown in Figure 5.1 below.

r
1 2 8
[a) I R ]

(12—

LPF g
G ) » H
H .( :) » Levell

HPF

coefficients

L]
1 2z 3 4
[&’a 200 gy > 00y, 0 4y ]

o @
Level 3
: coefficients
H

r
1 2
Level 2 [”’13’“’33 ]

coefficients

r
1 2
[“’:m“’kz]

Figure 5.1 Multiresolutional Decomposition via DWT Filter Bank

7. Mechanize the filter bank via the linear transformation depicted in (5.1).

Wy =

where:

o,
o,
o,
AN
af,
of,

o,
o,

ods
s
2
28
Wy
oy
oy

4

Wy |

SEESEEEE
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10.

11.

h®* h* hn* h h*® h* h K
-h* -h* -n®* -h* R hn Kn
-h* -h* h K 0 O 0 O

120 0 0 0 -h? -h? h? hz,andhzﬁ
-h h 0 O O 0 0 O
0O 0 -h h 0O 0 0 O
0O 0 O 0 -h h 0 O
0O 0 O 0O 0 0 =-hnh

Compare the elements of @), against the predetermined threshold, t , and set
to zero any element that is below this threshold. The result of this thresholding

process is a new transformed block ¢, .

Apply inverse DWT, @ =T '@, =T'd), in order to obtain a new block of uni-

resolution weights. Note: Some of the elements of the new block will have
repeated elements. Larger thresholds will result in greater data compression and
more repeated elements.

Examine the zero elements of the new uni-resolution block in order to determine
which elements are repeated and remove those so that only distinctive elements

will be propagated.

Compute the sum of weights of the new block, W, . Multiply the individual

WB 0
WBl

weights by the ratio of . This ensures that the PDF segment represented by

the new block will have the same total weight as the original block in Step-5.

Once all of the eight-sample blocks are processed, we will have a reduced
particle set with N, particles. An example of this thresholding and

reconstruction process is depicted in Figure 5.2.
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12. Resample (with replacement) the new reduced particle set and set the new

, : - 1
particle weight such that:. W, = —— .
N,
) 1 Npy i
13. Generate the state estimate: E[xk] = N_ é_(xk —xk).
p1 =1

14. Draw N, = (1+ r ) Ny, particles from the resampled particle set and reset the

i 1
particle weights to: W'k = —— . The quantity I is a heuristically determined

Np,
value that prevents the reduced particle set from going to zero as the number of
iterations increases. (A range of 0.1<r < 0.3 produced good simulation results).

15. Go to Step-2 and repeat Steps 2-15.

Original Uni-Res  Multi-Res Weights ~ Uni-Res Weights  Uni-Res VWeights

Weights (Threshold = 0.05) After. Remave Repeats
) ) ) ) Thresholding ) )
0.0278 03536 0.0117 0.0417
0.0556 0.1572 0.0417 0.0000
00833 0.0556 7 0.0972 0.0972
0.1111 0.0556 0.0972 0.0000
w="1o1388| " ¥~ {00000 = W= 141528 = W= s
0.1667| DWT 0.0000 IDWT 0.1528 0.0000
0.1944 0.0000 02083 02083
02222 | 0.0000 | | 0.2083 0.0000|
Wgg= 1 wg, = 0.5
[0.0834] ] .
0.0000 Remove Zero-Weight Entries
0.1944 0.0834
Re-Normalize e 0.0000| o 0.1944
Weights (wg/wg,) 0.3056 “=1 03056
0.0000
0.4166 04166
0.0000 |

Figure 5.2 Thresholding Example via the Explicit Method
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6 GAUSSIAN FINITE MIXTURE MODEL PARTICLE FILTERS (GMMPF)

Two key challenges of particle filters are maintaining multimodality and reducing
computational costs. Although particle filtering techniques outperform Kalman-based methods,
their computational costs are between 2-3 orders of magnitude greater than Kalman filter-based

estimators. This fact is illustrated in Table 4.1 below.

Table 6-1 Filter Run Times (Rounded to Nearest Minute)

Filter Type
IMM-PDAF |  IMPDA MMPF | MRMMPF
Ru.n Time 1 1 416 580
(Minutes)

The main culprits responsible for the large MMPF and MRMMPF runtimes are computing
the likelihood functions for each particle and the resampling process. These large runtimes make
particle filter-based trackers impractical for most “real-world” tracking scenarios. In addition,
particle filters often cannot maintain multimodality over an extended period of time (i.e. weaker
modes are suppressed). This section presents two Gaussian finite mixture model particle filter
variants that address the multimodality and computational cost issues. During the design and
testing of the MRMMPF, it became apparent that Matlab coding implementation (i.e. vectorizing
code vs. loops) significantly impacted runtime. Since particle filter computational cost is a

function of O(N,), particle count was used as the metric of computational cost.

6.1 Gaussian Finite Mixture Models (FMM)
The GMMPF makes use of the Gaussian sum approximation lemma, which states that

any PDF, f(X), can be approximated as closely as desired by a weighted sum of Gaussian

PDFs, fi (X) . In a Gaussian FMM, the multi-modal PDF, f(x), is approximated as a sum of k

Gaussians:
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f(x)=mm £, () + 7, £, (x) + -+ + 75 (x) 6.1)
Kk

where: Z:ITi =1.
i=1

The key benefit of the Gaussian FMM approach is that each individual component of

f (X) can be completely described by only two parameters: a mean vector, /4 , and a covariance

matrix, 2. If f, (X) represents the prior PDF and if the measurement likelihood function is

Gaussian then each Gaussian component can be updated via a Kalman filter variant (analogous
to that of a Gaussian sum filter bank). In the event that the measurement equations are non-linear
but the likelihood is Gaussian, an EKF or UKF may be used instead. This GMMPF variant is

designated as a Kalman GMMPF (K-GMMPF). If the measurement likelihood function is non-
Gaussian then each component of f(X) is updated via a particle filter. These concepts are

applied in the GMMPF and K-GMMPF algorithms described below.

The GMMPF/K-GMMPF used the K-means algorithm to divide the particle sets for each
of the r models into m cluster components. Next, a mean and covariance, [,urym,Zrme, was
computed for each cluster component. Component weights were computed by dividing the

r,m

N,

number of samples in each cluster component by the total number of particles, 77, | =

Note: The expectation maximization (EM) algorithm [49] was initially used to generate the mixture
parameters but proved unsatisfactory. It was slow and often produced ill conditioned covariance
matrices. The K-means based parameter extraction algorithm was much faster than EM and also

proved to be numerically stable.

6.2 GMMPF and K-GMMPF Algorithms
The GMMPF/K-GMMPF algorithms both use three kinematic models: CV, CA-positive

acceleration, and CA-negative acceleration. The GMMPF algorithm is summarized below and

depicted in Figure 6.1.
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1. Begin with a set of N “posterior” particles at time k-1: p(xk_l|zk_l, rk_l). Model index

indicator I, _, is defined (for a 3-model filter) as:

a. r =1 corresponds to a negative constant acceleration;
b. r=2 corresponds to a zero acceleration (constant velocity);
C. r =3 corresponds to a positive constant acceleration.

2. Perform model mixing according to Markov state transition matrix, P, with transition
probabilities h" .

3. Run each particle through a process model whose kinematics are based on the particle

model index and obtain a set of “prior” particles that represents: p(Xk|Zk_l, rk_l)

4. Partition the particle set into three subsets such that each subset contains particles

having the same model index, r.
5. Run each particle subset through an FMM parameter extraction algorithm and generate
a mean vector, //. .., a covariance matrix 2, m,, » and a mode probability 77, ., . Then
kAL Tk 7K

model the prior particle density as a finite Gaussian mixture model: GMM;, GMM,, or
GMM;. Each GMM is, in turn, composed of m Gaussians (m = 3 for the prototype
algorithm). Note: the k-1 subscript is omitted in the RHS of 6.2-6-4 in order to reduce

symbol clutter.
a. GMM; (i.e. the GMM for r = 1 particles):
p(Xklzk—1= M =l) =m;N |./11,1121,1J +m,N |.Iul,2’zl,2J +e+m,N |./le=sz (6.2)

b. GMM; (i.e. the GMM for r = 2 particles):
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p(Xklzk—l’ P 2) = 772,1N|./12,1122,1J + 7T, Nl./12,2=zz,2j to I Nl./lz,mizz,m (6.3)
C. GMM; (i.e. the GMM for r = 3 particles):

p(xklzk—l1 Ma :3) = ]TSJNl.luS,l’ZS,lJ +m,N 3,2123,2J +e+ 1N 3,m1zs,mJ (6.4)

6. Draw 77, N samples from each GMM mode, N[,urym,Zrym, and assign an
appropriate model index, r, to each particle.

a. Particle model indices are assigned based on parent GMM model index.

b. Samples from each Gaussian mode processed via a separate particle filter,

PF: m, where r = process model index and m = Gaussian mode index.

C. Compute particle weights, V\fr,w , for each model r and mixture m via the SIR

algorithm. Also compute the sum of the particle weights for each model/mode:

W =D W (6.5)

d. Compute the new mixture weights according to the method outlined by Vermaak

[44]:
n. W
— Mg 1M
77'erK = L . (6.6)
z z 77; Myy \Nr My
r=1 m=1

7. Resample each of the particle filters. Draw Nrm particles from each patrticle filter,

where Nrm =N, 7T, 1 - Thus, the particles are drawn from each particle filter according
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to their new mixture weights and are combined into a single aggregated particle set. The

aggregate particle set now approximates the posterior PDF, p(xk|zk, rk) .

a. Filter output at time k is the mean the mean of the particle states:

1 3
S —_ I
Xk|k - N zxk|k '
p i=1

8. Go back to Step-2 and repeat process for next time increment.

The K-GMMPF algorithm is summarized below:

1-5. Same as GMMPF.
6. Process each GMM component mode, Nl,urym,Zrme kk-1» DY @ Kalman filter (EKF or UKF)

and compute the posterior PDF, Nl_lur,mizr,m kk for each component.

7. Same as GMMPF except that VT/erK is replaced by Ar,m& , Which is the measurement

likelihood function for each Kalman filter.

8. Sample N, . particles from Nl_lur,mizr,m w where N, =Np77 .. Thus, the

particles are drawn from each patrticle filter according to their new mixture weights and are

combined into a single aggregated particle set. The aggregate particle set now approximates

the posterior PDF, p(xk|zk, rk).
a. Filter output at time k is the mean the mean of the particle states:
~ 1 & i
Xk|k - leqk :

NP i=1

9. Same as GMMPF.
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Figure 6.1 Gaussian Finite Mixture Model Patrticle Filter (GMMPF)
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7 SCENARIOS AND SIMULATION RESULTS

This section describes the simulation scenarios and provides the modeling results for
following algorithms:

*  MRMMPF vs. MMPF, IMPDA, and IMMPDAF,;
*  MRMMPF-TBD vs. MMPF-TBD;

» Extended Spatial Domain Spatial-Domain Multi-Resolution Particle Filtering (E-SD-

MRES-PF);

* Gaussian Finite Mixture Model Particle Filters (GMMPF).

7.1  MRMMPF vs. MMPF, IMPDA, and IMMPDAF

7.1.1 Scenario Description

The simulation results below compare the performance of the following algorithms:
* 3-model IMMPDAF: 1-CV and 2-CA models;
e 4-Pattern IMPDA: Same patterns as MRMMPF;
* 3-Model MMPF (10,000 particles): 1-CV and 2-CA models (+accel./-accel.);
* Prototype 4-Pattern MRMMPF (10,000 particles): 2-CH patterns and 2-CH?
patterns.

Each algorithm was tested against four different target acceleration scenarios:
a=+/-5;a=+/-15, a = +/-25, and a = +/- 40 msec?. The performance metrics were average x/y
position root mean square (RMS) errors and average v,/v, velocity RMS errors. Of these metrics,
the position RMS errors were the key ones. Each target trajectory lasted for 240 sample times,
and consisted of five segments:

» Constant velocity segment-1;
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» Constant acceleration segment-1 (positive acceleration);
» Constant velocity segment-2;

» Constant acceleration segment-2 (negative acceleration);
» Constant velocity segment-3.

The start-stop sample increments and acceleration levels of each track segment are summarized

in Table 7-1.
Table 7-1 Tracking Scenarios
Track Scenario-1 Track Scenario-2 Track Scenario-3 Track Scenario-4
Track Start | Stop Start | Stop Start | Stop Start | Stop
A A A A

Segment | Smpl ] Smpl cc Smpl | Smpl ce Smpl | Smpl ce Smpl ] Smpl ce
Cv-1 1 60 0 1 60 0 1 60 0 1 60 0
CA-1 61 90 5 61 90f 15 61 73] 25 61 69| 40
CV-2 91] 150 0 91 150 0 74 150 0 70 150 0
CA-2 151] 180 -5 151 180] -15 151 163] -25 151 159] -40
CV-3 181 240 0 181 240 0 164 240 0 160 240 0

The sampling period for each scenario was 2 seconds and the maximum number of false
alarms was 3 per scan. The initial target state for each scenario was:

e (Xo,Yo) = (15,100 m, 15,100m);

*  (Vyo,Vy0) = (100 m/sec, 100 m/s);

«  (a0ay0) = (0.0 m/sec’, 0.0 m/s?).

The full-rate measurement noise covariance was Ry = 10,000 I. The number of Monte-
Carlo runs for each simulation was 50. The mode/pattern Markov transition matrices for the

various algorithms were:

092 003 005 07 03 00
Nm-poas =| 002 09 008(; h,,. =[0025 095 0.025|;
01 02 07 00 03 07
085 005 005 005 092 001 00 007
o _|005 085 005 005 o _| 001 092 007 00
MR-MMPE 1005 005 085 0057 ™" | 02 00 08 00
005 005 005 085 00 02 00 08
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7.1.2 Scenario-1 (a = +/- 5 m/s™) Results

Scenario-1 has relatively small target maneuvers. The patterns for the original IMPDA

developed by Hong and Cui [45] are defined as:

200 0 800 0

, 200 , | o | ., |80 , | 0O
P=lol P22l Polol P Tlwovz]
0 -10J2 0 10V2

The MRMMPF patterns are the same as the IMPDA except the order has been changed:

0 200 800 0
1 o | , (200 , |800| , | O
ooz P T o P T o P 1oz
-10V2 0 0 10y2
This rearrangement of patterns was done for simple bookkeeping purposes and does not impact

the MRMMPF algorithm. Thus, in the MRMMPF, pl corresponds to a negative acceleration, p2

and p3 correspond to straight line motion, while p4 corresponds to a positive acceleration.

The x-y RMS position and v,-vy, RMS velocity errors for each filter are shown in Figure 7.6
through Figure 7.9. The true trajectory overlaid with measurements and false alarms is shown in
Figure 7.2. Figure 7.3, Figure 7.4, Figure 7.4, and Figure 7.5 depict the RMS position errors vs.
sample increment for the IMMPDAF, IMPDA, MMPF, and the MRMMPF, respectively. Figure 7.6
- Figure 7.9 depict the RMS velocity errors for each filter type. Figure 7.10 - Figure 7.11 show the
pattern probabilities for the IMPDA and MRMMPF while Figure 7.13 - Figure 7.14 depict the
model probabilities for each of the algorithms (i.e. CV-CA for IMMPDAF/MMPF and CH-CH? for

IMPDA/MRMMPEF).
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Table 7-2 RMS Position and Velocity Errors (a=+/-5)

Track Scenario-1: a=+/-5
Acceleration Scenario
. X RMS Y RMS Vy RMS | Vy RMS
Filter Type Error Error Error Error

IMMPDAF 57.1 57.8 9.2 9.2
IMP-PDA 35.0 35.7 5.1 5.2
MMPF 45.6 44.2 7.9 7.9
MR-MMPF 30.9 31.7 5.2 5.2

[

100

150

200

250

Time (k)

Figure 7.1 True Track vs. Noisy Measurements + FA
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Figure 7.2 IMMPDAF RMS Position Errors (a=+/-5)
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Figure 7.3 IMPDA RMS Position Errors (a=+/-5)
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MMPF Algorithm: solid - x coordinate, dotted -y coordinate
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Figure 7.5 MRMMPF RMS Position Error (a=+/-5)
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Velocity Errors (RMS))

IMM-PDA algorithm: solid - x coordinate, dotted - y coordinate
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Figure 7.6 IMMPDAF RMS Velocity Errors (a=+/-5)
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Figure 7.7 IMPDA RMS Velocity Errors (a=+/-5)
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MMPF Algorithm: solid - x coordinate, dotted - y coordinate
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Figure 7.8 MMPF RMS Velocity Errors (a=+/-5)
MR-MMPF Algorithm: solid - x coordinate, dotted - y coordinate
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Figure 7.9 MRMMPF RMS Velocity Errors (a=+/-5)
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Figure 7.11 MRMMPF Pattern Probabilities (a=+/-5)
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Model Probs.
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Figure 7.12 IMMPDAF Model Probabilities (a=+/-5)
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Figure 7.13 IMPDA Model Probabilities (a=+/-5)
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Figure 7.15 MRMMPF Model Probabilities (a=+/5)
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7.1.3 Scenario-2 (a = +/- 15 m/s™) Results
Scenario-2 has moderate target maneuvers. The patterns for the MRMMPF are defined
as:
0 200 2000 0
1 o | ., |20 4, (2000 , | O
N2 L T L B 30V2 |
-30/2 0 0 3072
The IMPDA patterns are defined as:
200 2000 0 0
. _|200f , (2000  , o | 410
PZlol P o | P Tl-z0v2 P T|aov2|
0 0 -30/2 30v2

The x-y RMS position and RMS velaocity errors for each filter are shown in Table 7-3. In order to
save space, only the RMS position errors will be displayed for this and subsequent scenarios
(since RMS position error is the key metric). Thus, Figure 7.16 - Figure 7.19 depict the RMS
position errors vs. sample increment for the IMMPDAF, IMPDA, MMPF, and the MRMMPF,

respectively.

Table 7-3 RMS Position and Velocity Errors (a=+/-15)

Track Scenario-2: a=+/-15
Acceleration Scenario
. X RMS Y RMS | VxRMS | Vy RMS
Filter Type Error Error Error Error

IMMPDAF 60.8 61.6 13.0 13.1
IMP-PDA 49.8 49.6 13.1 13.0
MMPF 51.4 51.0 13.2 13.2
MR-MMPF 34.8 34.2 9.5 9.3
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Figure 7.17 IMPDA RMS Position Errors (a=+/-15)
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MMPF Algorithm: solid - x coordinate, dotted - y coordinate
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Figure 7.19 MRMMPF RMS Position Errors (a=+/-15)
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7.1.4

Scenario-3 has moderate target maneuvers. The patterns for the MRMMPF are defined

as:

0

o= Ol p
-502 |
~50V/2

2

Scenario-3 (a = +/- 25 m/s®) Results

200
200/

0
0

The patterns for the IMPDA are defined as:

200

- Figure 7.23, depict the RMS position errors vs. sample increment for the IMMPDAF, IMPDA,

. |1s00| |
o P T|-s0vz|" P

MMPF, and the MRMMPF, respectively.
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The x-y RMS position and RMS velocity errors for each filter are shown in Table 7-4. Figure 7.20

Table 7-4 RMS Position and Velocity Errors (a=+/-25)

Track Scenario-3: a=+/-25

Acceleration Scenario

i X RMS Y RMS Vyx RMS | Vy RMS
Filter Type Error Error Error Error
IMMPDAF 61.2 60.6 13.4 13.3
IMP-PDA 48.0 48.0 18.9 19.0
MMPF 48.3 48.7 12.3 12.2
MR-MMPF 30.2 29.6 10.9 10.9
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IMM-PDA algorithm: solid - x coordinate, dotted - y coordinate
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Figure 7.20 IMMPDAF RMS Position Errors (a=+/-25)
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Figure 7.21 IMPDA RMS Position Errors (a=+/-25)
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MMPF Algorithm: solid - x coordinate, dotted - y coordinate
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Figure 7.22 MMPF RMS Position Errors (a=+/-25)
MR-MMPF Algorithm: solid - x coordinate, dotted - y coordinate
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Figure 7.23 MRMMPF RMS Position Error (a=+/-25)
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7.1.5 Scenario-4 (a = +/- 40 m/s™) Resul

Scenario-4 has large target maneuvers. The patterns for the MRMMPF are defined as:

ts

0 200 1640 0
1 O | ., |200f , (1640 , | O
Pl eovz P Tl ol P o | P Tleovz2)|
-80V2 0 0 80V2
The patterns for the IMPDA are defined as:

200 1640 0 0

11200 , 1640 . o | L, | O
PZlol P o P T —eovz P Tleov2
0 0 -80V2 80v2

The x-y RMS position and RMS velocity errors for each filter are shown in Table 7-5. Figure 7.24

- Figure 7.27 depict the RMS position errors vs. sample increment for the IMMPDAF, IMPDA,

MMPF, and the MRMMPF, respectively.

Table 7-5 RMS Position and Velocity Errors (a=+/-40)

Track Scenario-4: a=+/-40
Acceleration Scenario

. X RMS Y RMS | VxRMS | Vy RMS
Filter Type Error Error Error Error

IMMPDAF 63.1 62.1 17.4 17.3

IMP-PDA 60.9 61.6 28.3 28.3

MMPF 56.7 57.8 16.5 16.5

MR-MMPF 29.8 30.1 13.2 13.2

99




IMM-PDA algorithm: solid - x coordinate, dotted - y coordinate

160 T T T T

140

120

100

80

60

Position Errors ( RMS )

40

20

|

| n 0l i,
|

Fo LA ”(vﬂ AR 4” | v il Y

At ) o i \\ AR v“

Il

f
I
,/\\
i

L L L L

0 50 100 150 200
Time (k)

250

Figure 7.24 IMMPDAF RMS Position Error (a=+/-40)
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Figure 7.25 IMPDA RMS Position Errors (a=+/-40)
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MMPF Algorithm: solid - x coordinate, dotted - y coordinate
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Figure 7.26 MMPF RMS Position Errors (a=+/-40)
MR-MMPF Algorithm: solid - x coordinate, dotted - y coordinate
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Figure 7.27 MRMMPF RMS Position Errors (a=+/-40)
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displayed in Figure 7.28 below. Since the x-position and y-position RMS errors are nearly

The track position RMS errors for all of the scenarios are summarized in Table 7-6 and

identical, only the x-position errors are listed.

7.2

7.2.1

Table 7-6 X-Position RMS Error Summary for All Scenarios

X-Position RMS ERROR
Acceleration Scenario
Filter Type a=+\-5 a=+-15| a=+-25 | a=+\-40
IMMPDAF 57.1 60.8 61.2 63.1
IMP-PDA 35.0 49.8 48.0 60.9
MMPF 45.6 514 48.3 56.7
MR-MMPF 30.9 34.8 30.2 29.8

70.0 ~
65.0

X-Position Average RMS Error vs. Track Acceleration Scenario

60.0
55.0 -
50.0 1

450

= 40.0 A

5 3501

2 300

4
25.0 -
20.0 -
15.0
10.0 -

5.0 1

0.0

—— IMMPDAF
—&— |MP-PDA
—he— MMPF

= & MR-MMPF

a=+\-5

a=+\-15

a=+-25

Acceleration (msec?)

a=+\-40

Figure 7.28 X-Position RMS Error Summary for All Scenarios

MRMMPF-TBD and MMPF-TBD.

Scenario-1 Description: Mildly Maneuvering Target

Scenario-1 used a mildly maneuvering target with the following simulation parameters:
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e Scan Period: T=1;

» Track Length: 123 scans with target visible from T =4 - 120 ;
o 1% Maneuver: a=25m[3ec? (a.k.a mode CA-2) from T=25-30;
o 2" Maneuver: a=-25m[3ec? (a.k.a mode CA-1) from T=55-60;
0 Rest of track is CV motion;

+ Initial State: X, = [8000 200,0,8000,0,0]' ;

+ Detection threshold: 7=0dB SN\R;

«  Amplitude Gating Setting: N, =8measurements;

e Sensor resolution = 100m x 100m;

* Sensor accuracy: Computed as a function of resolution and target SNR via

(5.28);
080 010 010
«  Markov mode transition matrix: - =| 025 0.75 000|;
025 000 075

*  Number of Monte-Carlo runs/simulation: 50.

MRMMPF-TBD performance was compared against MMPF-TBD performance for
nominal particle counts of 2000, 1000, and 500 particles and for target SNR values of 10dB, and
7dB. The SNR value for each target amplitude measurement was obtained by drawing a random
number from either the noise-only Rayleigh PDF in (4.13) if the target is not visible or the target +
noise Rayleigh PDF in (4.12) if the target is visible. For the latter case, it should be noted that the

NRys
linear, not logarithmic form of SNR must be used in the PDF, where SNRZZI.O( 10 j The

algorithm for this Rayleigh random number generator can be found in Leonov and Leonov [67].
The performance metrics for this analysis were mean position root-mean-square error (RMSE),

mean velocity RMSE, and mean particle count.
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7.2.2 Scenario-2: Non-Maneuvering Target

A second non-maneuvering scenario was also run for target SNR values of 5dB and 4dB.
The goal here was to compare performance at very low SNR values and to map out the bottom
end of the performance envelopes of the MRMMPF-TBD and MMPF-TBD algorithms. The

simulation parameters are the same as in Scenario-1 except for the following:

« a=0mi%ec?;

« N, =15;
094 003 003
- B =025 075 000]|.
025 000 075

7.2.3 Scenario-1 results

The MRMMPF-TBD position and velocity RMSE performance for Scenario-1 was
comparable the MMPF-TBD. These results are summarized in Table 7-7. The first column of
Table 7-7 lists the full-rate particle count used by the MMPF-TBD while the second column
indicates the mean multirate particle count. The multirate count is lower in all cases because CH
(i.e. non-maneuvering) particles are updated once in every three scans. The third column lists the
ratio of multirate to full particle counts and provides a metric of the relative computational cost.
The remaining columns summarize the position and velocity RMSE performance of the two
algorithms.

The full-rate MMPF Position and velocity RMSE plots for the 2000 nominal particle case
at SNR = 10dB are shown below in Figure 7.29 and Figure 7.30. Since these results were
representative, plots for the 1000 and 500 particle cases are omitted. The main tradeoff with the
MRMMPFE-TBD was that although error during CV motion was lower, peak error during maneuver
period was higher than for the MMPF-TBD. Both the MMPF-TBD and MRMMPF-TBD were also
tested at for a 6dB SNR. At this low SNR, the performance of both algorithms was erratic and

they often diverged. Consequently 6dB SNR results are not included in Table 7-7. The model
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probability plots for the MMPF and MRMMPF-TBD at SNR= 10dB are shown in Figure 7.31 and

Figure 7.32 below.

Inspection of Table 7-7 shows that the actual particle cost for the MRMMPF-TBD was

approximately 59% of the MMPF-TBD. The mean particle count vs. time plot is shown in Figure

7.33. The plot shows that the full 2000 particles are used at the third-rate (i.e. N(K + 3) seconds)

update points while approximately 700 particles are used at the full-rate updates (i.e.

N(k +1),N(k + 2) seconds) during CV motion.

During the maneuvers, more of the particles migrate from the non-maneuvering mode the
maneuvering modes (i.e. CA-1 or CA-2) and the full-rate particle count increases. Since the
modes of the particles are governed by Markov transition probabilities, the actual numbers will
vary slightly between different runs. Thus, a mean particle count is computed and displayed as a
function of time in Figure 7.33. At every third sample point, a third-rate update occurs in which all
of the 2000 particles are used. The grand mean particle count is then computed and summarized
in Table 7-7. A sensitivity analysis plot of position RMSE vs. particle count for both the MMPF-

TBD and the MRMMPF-TBD are shown in Figure 7.34 and Figure 7.35, respectively.

7.2.4 Scenario-2 Results

The results of the Scenario-2 (i.e. non-maneuvering target) are summarized in Table 7-7.
MRMMPF-TBD performance is clearly superior to the MMPF-TBD for all cases except the 2000
particle/SNR=5dB case, in which case the performance is approximately equivalent. It is also
evident that except for the 2000 particle/SNR=5dB case, the MMPF-TBD tracker diverged. In
contrast, the MRMMPF-TBD algorithm successfully tracked the target except for the worst case
(i.e. 500 particle/SNR=4dB). Since there were no target maneuvers, the MRMMPF-TBD in
Scenario-2 used approximately 40% as many particles as the MMPF-TBD. This occurred
because the dominant mode was CH, which is only updated once every three scans. Since there
were no maneuvers in Scenario-2, model probabilities and particle counts remained nearly

constant throughout the run and are therefore not displayed.
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Table 7-7 MRMMPF-TBD vs. MMPF-TBD Performance Summary: Scenario-1

Mean Number of Particles|] Mean Time Avg. Position Mean Time Avg. Velocity
SNR cal | muti Partiple RMSE RMS!E Pos. RMSE RMSE RMS!E Vel. RMSE
(dB) Rate | Rate Rgno Full Multi Rgno Full Multi Rgno
(Multi/Full) | Rate | Rate | (Multi/Full) | Rate | Rate | (Multi/Full)
2000} 1166 0.583]13.419] 12.790 0.953] 4.023] 3.813 0.948
10 1000] 585 0.585]13.631] 13.396 0.983] 4.162] 3.914 0.940
5000 293 0.586]13.720] 14.438 1.052) 4.345] 4.102 0.944
2000} 1188 0.594]18.973] 18.128 0.955] 5.130] 4.856 0.947
7 1000] 596 0.596]18.882] 19.669] 1.042) 5.141) 5.091 0.990
5000 299 0.599]19.716] 19.257] 0.977] 5.449] 4.926 0.904

Table 7-8 MRMMPF-TBD vs. MMPF-TBD Performance Summary: Scenario-2

Mean Number of Particles| Mean Time Avg. Position RMSE| Mean Time Avg. Velocity

SNR cal | M Partigle RMSE RMSE Pos. RMSE RMSE RMS!E Vel. RMSE
(dB) Rate | Rate Rgtm Full Multi Rate Rgtm Full Multi Rgtm

(Multi/Full)] Rate (Multi/Full) | Rate | Rate | (Multi/Full)

2000] 796 0.398] 25.384 26.119 1.029] 3.838] 3.810 0.993

5 1000 400 0.400) 261.896 29.774 0.114] 5.960] 3.504 0.588

5000 199 0.398] 641.476 26.502 0.041] 11.458] 3.921 0.342

2000} 807 0.403] 388.808 41.205 0.106]10.117] 4.848 0.479

4 1000} 402 0.402] 396.842 31.355 0.079] 12.567] 4.283 0.341

500F 203 0.406] 703.138] 420.259 0.598] 16.050] 10.745 0.670
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Full-Rate vs. Multi-Rate Position Errors: Particle # = 2000, SNR = 10dB
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Figure 7.29 MMPF-TBD vs. MRMMPF-TBD Position RMSE (2000 Particles, SNR
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Figure 7.30 MMPF-TBD vs. MRMMPF-TBD Velocity RMSE (2000 Particles, SNR
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Figure 7.32 MRMMPF-TBD Model Probabilities (2000 Particles, SNR




2200

Mean Particle Count vs. Time (2000 Particles SNR = 10dB)

2000

T

1800

T

1600 |-

1400

T

1200

1000 -

800 -

600ﬁ———————————————————————————————————————i ————————————————
400 - - -

0 e e e e T EEE TR,

T T T
|
|
|

I

|
|
|
T
|
|
L
|
|
|
-
|
|
|
|
|
|

i

|
|
|
T
|
|
. By N 12 1 MR m
|
|
|
|
|
|
|
|
|
|

140

Figure 7.33 MRMMPF-TBD Mean Particle Count vs. Time (2000 Particles, SNR = 10dB)
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Figure 7.35 MRMMPFE-TBD Position RMSE vs. Particle Count Sensitivity

7.3 E-SD-MRES-PF vs. Standard Uni-Resolutional Bootstrap Filter (BPF)

The E-SD-MRES-PF was compared against a standard BPF for the three scenarios described
below. The key difference between the scenarios was the type and complexity of the initial PDF.
The simple scenario featured an initial PDF that was a single Gaussian. The more complex
scenarios featured initial PDFs that were Gaussian sums composed of widely dispersed modes

and different variances. The key performance metric was the particle efficiency ratio, R, , which

is defined as the number of uni-resolution particles to multiresolutional particles for a given RMSE

P_uni
performance level: R, =——=—.

P_nmres
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7.3.1 E-SD-MRES-PF Scenario Description

7.3.1.1 Scenario-1 (Complex 5-Modal Initial PDF)

Scenario-1 parameters are listed below:

. , . - S X i 2
*  Highly non-linear state equation: X, = 0.6X,,, +(m + |09(Xk,k );
k/k
. . . | DXk
+  Highly non-linear measurement equation: z, =15tan™| ———
+ X

k/k

*  Number of time steps: 30;

*  Number of Monte-Carlo iterations per simulation:100;
« Initial particle count (prior to thresholding): N, =1000;
«  Multi-Resolution thresholds varied from 0 to 10°;

* Initial PDF: Complex Gaussian mixture with 5 widely spaced modes and widely different

variances:

P, = 0.3N[x104] + 0.IN[x 25,02]+ 0.AN[x30,01]+ 02N[x 55,001+ 0.3N[x95,03.

7.3.1.2 Scenario-2 (Bi-Modal Initial PDF)
All parameters are the same as Scenario-1 except for initial PDF:

» Initial PDF: Gaussian mixture with 2 widely spaced modes and different variances:
po = 06N[x102] + 04N[x,204] .

7.3.1.3 Scenario-3 (Gaussian Initial PDF)

All parameters are the same as Scenario-1 except for initial PDF:

* Initial PDF: Single Gaussian: p,= N[X ,15,4] .

7.3.2 Results

The results for Scenario-1 are summarized in Table 7-9. As is evident from Figure 7.36,

the RMSE of the E-SD-MRES-PF remained nearly constant except at very low particle counts.
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Table 7-9 Uni-Res vs. Multi-Res RMSE (Scenario-1)

Scenario-1: Uni-Res vs. Multi-Res RMSE
Uni-Res .
Multi-Res | Particle | RMSE (For MultiRes| Doro. oI | o6 RMSE
Threshold Count Same # RMSE ' Delta
. Res
Particles)
1.0E-03 25 0.786 0.764 -0.023 -3.00%
1.0E-04 56 0.743 0.680 -0.063 -9.25%
1.0E-05 145 0.725 0.676 -0.050 -7.34%
1.0E-06 405 0.695 0.677 -0.018 -2.60%
0.0E+00 1008 0.680 0.655 -0.025 -3.85%

Multi-Res RMSE (Red) vs. Uni-Res RMSE (Black): 100 Runs

08 T ! ! T T
e ,SYl—__<k
0.76 Yoo -

N
Rpp =2 1900 474
0.74 Npoww 56 -

0 200 400 600 800 1000 1200
# Particles

Figure 7.36 Uni-Res vs. Multi-Res Performance (Scenario-1)

In contrast, the RMSE of the uni-res BPF steadily worsened as the particle count was
reduced. The particle efficiency ratio, R, , was determined by extending a horizontal constant

RMSE line (shown as a dotted green line in) from the knee of the curve of the SD-MRES-PF

RMSE plot to the point at which this line intersected the uni-res BPF RMSE curve. The knee of
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the curve was chosen because it was at this point that SD-MRES-PF RMSE began to rapidly

Np 4 _1000_

The results for Scenario-2 are summarized in Table 7-10 and Figure 7.37. Although the

SD-MRES-PF still outperformed the uni-res BPF, the improvement was much less noticeable

N.
than in Scenario-1.  In Scenario-2, this resulted in Rye =———=-—=409.

Table 7-10 Uni-Res vs. Multi-Res RMSE (Scenario-2)

Scenario-2: Uni-Res vs. Multi-Res RMSE
Uni-Res .
Multi-Res | Particle | RMSE (For [Multi-Res| Po' & MUI] o6 rusE
Threshold Count Same # RMSE ) Delta
. Res
Particles)
1.0E-03 29 0.754 0.734 -0.021] -2.82%
1.0E-04 68 0.695 0.682 -0.013[ -1.87%
1.0E-05 171 0.672 0.652 -0.020] -3.11%
1.0E-06 475 0.656 0.650 -0.006) -0.94%
0.0E+00 1008 0.647 0.649 0.002 0.29%

The results for Scenario-3 are summarized in Table 7-11 and Figure 7.38. For this case,
the SD-MRES-PF offered no improvement over the uni-res BPF (i.e. R,z =1).

The particle efficiency ratios for all of the scenarios are summarized in Figure 7.39.
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Multires RMSE (Red) vs. Uni-Res RMSE (Black): 100 Runs
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Figure 7.37 Uni-Res vs. Multi-Res Performance (Scenario-2)
Table 7-11 Uni-Res vs. Multi-Res RMSE (Scenario-3)
Scenario-3: Uni-Res vs. Multi-Res RMSE
Uni-Res i :
Multi-Res | Particle | RMSE (For [Multi-Res| Po' & MUIU] o6 rusE
Threshold Count Same # RMSE ’ Delta
. Res
Particles)
1.0E-03 29 0.768 0.729 -0.039 -5.34%
1.0E-04 67 0.689 0.675 -0.014 -2.02%
1.0E-05 169 0.656 0.662 0.007 0.99%
1.0E-06 467 0.641 0.648 0.007 1.07%
0.0E+00 1008 0.660 0.644 -0.016 -2.54%
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Multires RMSE (Red) vs. Uni-Res RMSE (Black): 100 Runs
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Figure 7.38 Uni-Res vs. Multi-Res Performance (Scenario-3)
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Figure 7.39 Particle Efficiency Ratio Summary
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7.4 GMMPF AND K-GMMPF

The goal of the finite mixture modeling approach was to reduce particle counts while
maintaining multimodality. Consequently, the GMMPF and K-GMMPF algorithms were both
tested against a conventional bootstrap MMPF in a single target scenario in order to compare the

particle counts vs. RMSE performance.

7.4.1 GMMPF AND K-GMMPF Scenario

The single target scenario used the following parameters:

» 3-dimensional state vector: [X'Vx'ax],' (clustering only performed on position-

velocity dimensions);
» Single target with no false alarms (Pga = 0);
* Probability of detection and gating is unity (Pp = 1, Pg = 1);
» Target acceleration: a = +/- 40;
* Scan Period: T=8 seconds;
*  Number of time steps per run: 60;
* Measurement error = 100m;
*  Number of Runs = 50.

The performance metrics were position RMSE, velocity RMSE, and particle count. The
“baseline” case was a 1,000-particle MMPF. Results for a 50 run simulation are listed in

below in Table 7-12.
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7.4.2 GMMPF and K-GMMPF Results

It is evident that both the GMMPF and K-GMMPF provided comparable RMSE
performance to the MMPF but with a smaller particle count. It is interesting to note that the K-
GMMPF with 200 particles performed nearly as well as the MMPF with 1000 particles but at 20%
of the particle cost (Note: at 200 particles, the MMPF completely lost track of the target).

The GMMPF and K-GMMPF were also tested in a two-target scenario in which the
targets nearly merged then separated. In this scenario, the filter diverged when K-means was
used but maintained track when EM was used. This was the only scenario in which EM proved

superior to K-means.

Table 7-12 GMMPF/K-GMMPF Results

Tracking Scenario: Max Accel =40
Number of Runs =50

. Number of | M&XNUM 1 pyis x | Rvs-vx | Particle Cost

Algorithm : Gaussians (Relative to
Particles Error Error )

per Model Baseline)

MMPF (Baseline) 1000 N/A 69.5 17.9 1.00
GMMPE 600 3 68.9 16.5 0.60
K-GMMPE 600 3 69.6 15.5 0.60
K-GMMPFE 200 3 70.7 17.8 0.20

7.5 Summary and Discussion of Results

Chapter 7 presented results from the simulations of the following algorithms:

*  MRMMPF vs. MMPF, IMPDA, and IMMPDAF,;
*  MRMMPF-TBD vs. MMPF-TBD;

» Extended Spatial Domain Spatial-Domain Multi-Resolution Particle Filtering (E-SD-

MRES-PF);

* Gaussian Finite Mixture Model Particle Filter (GMMPF) and Kalman GMMPF.
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7.5.1 MMPF and MRMMPF Summary

It is evident that the particle filter-based MMPF and MRMMPF algorithms significantly
outperformed the Kalman-based algorithms. The MRMMPF outperformed all of the other
algorithms in terms of both RMS position and velocity error. The key drawback of the particle
filter algorithms, however, was that run times were between 2-3 orders of magnitude greater than
that of Kalman-based algorithms. Consequently, next the step was to examine methods that

could reduce particle filter computational costs while maintaining performance.

7.5.2 MMPF-TBD and MRMMPF-TBD Summary

The MRMMPF-TBD had comparable error performance (or better performance for the
low SNR cases) to the MMPF-TBD with approximately 40% to 60% of the particle cost of the
latter (depending on the target maneuver scenario). This performance could probably be
improved further by developing a better importance density (i.e. one that incorporates the current

measurement).

7.5.3 E-SD-MRES-PF Summary

The E-SD-MRES-PF provided large particle savings when the initial PDF was a complex
Gaussian sum with widely dispersed modes. This is evident from the particle efficiency ratio Rpe.
As the number of Gaussians and the complexity of the initial PDF increased, the Rpg of the E-SD-
MRES-PF also increased. Conversely, for simple PDF scenarios, the E-SD-MRES-PF does not
provide any Rpg improvement. A plausible explanation for this trend is that complex PDFs with
widely spaced modes have large areas where the PDF changes relatively slowly interspersed
with a few areas in which the value of the PDF changes more rapidly. The areas that change
slowly can be adequately modeled as a low-pass process and hence require relatively few
samples while the few areas that change rapidly also require high-pass and high-high-pass

components. The data compression ability of E-SD-MRES-PF allows it to concentrate particles on
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those areas that are rapidly changing. In contrast, the regions that are changing slowly can be

adequately described with fewer samples.

7.54 GMMPF AND K-GMMPF Summary

The GMMPF and K-GMMF, using K-means clustering, provided comparable single-target
performance to the conventional MMPF but at substantially lower particle counts. In addition, the
K-GMMPF was able to maintain track at 200 particles while the MMPF lost track at 200 particles.
In a limited 2-target scenario, the K-means-based GMMPF and K-GMMPF diverged while their

EM-based counterparts maintained track.
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8 CONCLUSIONS

The dissertation explored the impact of non-Gaussian and multi-modal PDFs on target
tracking. It first presented the MRMMPF tracking algorithm and determined that the MRMMPF
produces a smaller RMSE than the IMMPDAF, IMPDA and full-rate MMPF (for the same particle
count). During the course of this research, it became apparent that particle filter tracking
algorithms were computationally costly and resulted in large runtimes. Consequently, the
remainder to dissertation focused mainly on developing particle filter-based tracking algorithms
that provide good performance at a reduced particle count.

The MRMMPF concept was then extended to include tracking of low SNR targets,
resulting in the MRMMPF-TBD. The MRMMPF-TBD had comparable error performance to the
full-rate MMPF-TBD with approximately 40% to 60% of the particle cost of the latter (depending
on the target maneuver scenario). Additionally, when the MRMMPF-TBD was applied to very
low-SNR, non-maneuvering targets, it provided both particle savings and much better RMSE
performance than the MMPF-TBD.

The next topic examined was mutli-resolutional particle filtering. This dissertation
developed an E-SD-MRES-PF that extended the basic multiresolutional PF and provided
comparable RMSE performance and much lower particle costs. The E-SD-MRES-PF provided
the greatest particle savings for complex, multi-modal PDFs with widely spaced modes.

The last area that the dissertation examined was patrticle filter applications of finite
mixture models (FMM). The first two FMM-based algorithm developed were the single-target
GMMPF and the K-GMMPF. Both of these algorithms provided comparable RMSE performance

to the standard MMPF but at substantially lower particle cost.
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9 FUTURE WORK

9.1 MMPF-TBD and MRMMPF-TBD

This performance of MMPF-TBD and MRMMPF-TBD could probably be improved further
by developing a better importance density (i.e. one that incorporates the current measurement).
Both of these algorithms use the prior for the importance density. This arrangement proved
adequate for the full-rate MMPF-TBD, which uses a 2-dimensional (2-D) position likelihood
function. In contrast, the MRMMPF-TBD uses a 4-D position likelihood function which is quite
narrow relative to the prior. It was necessary to artificially increase the process noise in order to
ensure that the prior PDF provided support for the likelihood function. A better importance
density would likely result in reduced RMSE.

Another potential MMPF-TBD and MRMMPF-TBD improvement would to develop an
adaptive amplitude gate. At higher SNR values, the amplitude likelihood function differences
between target generated 1/3-R measurements and noise-generated measurements are large.
Thus, a smaller gate size should be sufficient. Conversely, at lower SNR values a larger
amplitude gate is required to capture the true target measurement. An additional improvement
could potentially be obtained by applying approximation methods for determining the PDF of
sums of Rayleigh RVs such as are described in [68] and [69] or by computing the 1/3-R PDF
numerically via a FFT-based discrete convolution of the 1-R PDFs.

Another area worth exploring would be to incorporate target feature information into the
MRMMPFE-TBD algorithm for the purpose of joint tracking and identification (JTID). In realistic
military tracking scenarios one must consider target ID in order to avoid fratricide. JTID might

also assist the data association process by helping to further separate targets from clutter.
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9.2 E-SD-MRES-PF

The E-SD-MRES-PF only operates on single dimension. Many particle filtering
applications (especially for target tracking) require a multidimensional state vector. Thus, for an
E-SD-MRES-PF to be practical for these applications, it must also be multidimensional. One
possible way to accomplish this might be via a 2-D discrete wavelet transform that acted on the
X-Y dimensions but did not process the velocity and acceleration components of each particle.
Using the explicit method, redundant particles (based on X and Y component thresholding) would
be removed. The velocity/acceleration components would then be taken “as is” from the particles
that survived.

If the multi-dimensional E-SD-MRES-PF proved practical, it should then be possible to
combine both multirate and multiresolutional processing in a single tracking filter, resulting in

even greater particle savings.

9.3 GMMPF and K-GMMPF

The GMMPF and K-GMMPF are three-dimensional tracking filters. It would be useful to
extend the GMMPF and K-GMMPF to at least six dimensions so that they could process entire
target state vectors. It would also be useful to provide them with the ability to track multiple
targets. The main roadblock to this appears to be the EM algorithm. At dimensions greater than
two, the EM algorithm often became unstable and generated poorly conditioned or even singular
covariance matrices. In addition, EM is much slower than K-means. Thus, research that focused
on developing a more stable and faster variant of the EM algorithm would be a useful endeavor in

future GMMPF development.
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APPENDIX-A: LIST OF ABBREVIATIONS

1R Full-rate

1/3-R Third Rate

BPF Bootstrap Particle Filter

BDF Distribution filter

CA Constant Acceleration

CH Highpass

CH? Constant High-Highpass

Ccv Constant Velocity

DWT Discrete Wavelet Transform

EKF Kalman Filter

E-SD-MRES-PF Extended Spatial Domain Multi-Resolution Particle Filter
FMM Finite Mixture Model

GMMPF Gaussian Mixture Model Particle Filter

GHF Gauss-Hermite Filter

GSF Gaussian Sum Filter

IDWT Inverse Discrete Wavelet Transform

IMM Interacting Multiple Model

IMMPDAF Interacting Multiple Model Probabilistic Data Association Filter
IMPDA Interacting Multipattern Data Association
JPDA Joint Probabilistic Data Association

K-GMMPF Kalman Gaussian Mixture Model Particle Filter
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KF

MMPF

MMPF-TBD

MRMMPF

MRMMPF-TBD

PDA

PDF

PF

SD-MRES-PF

SIR

TBD

UKF

Kalman Filter

Multiple Model Particle Filter

Multiple Model Particle Filter Track Before Detect
Multirate Multiple Model Particle Filter

Multirate Multiple Model Particle Filter Track Before Detect
Probabilistic Data Association

Probability density function

Particle Filter

Spatial Domain Multi-Resolution Particle Filter
Sample Importance Resample

Track Before Detect

Unscented Kalman Filter
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