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ABSTRACT 

Hlinomaz, Peter Vladimir, Ph.D., Engineering Ph.D. Program, Wright State University, 2008, 

Study of Multi-Modal and Non-Gaussian Probability Density Functions in Target Tracking with 

Applications to Dim Target Tracking 

 

The majority of deployed target tracking systems use some variant of the Kalman filter for 

their state estimation algorithm.  In order for a Kalman filter to be optimal, the measurement and 

state equations must be linear and the process and measurement noises must be Gaussian 

random variables (or vectors).  One problem arises when the state or measurement function 

becomes a multi-modal Gaussian mixture. This typically occurs with the interactive multiple model 

(IMM) technique and its derivatives and also with probabilistic and joint probabilistic data 

association (PDA/JPDA) algorithms. Another common problem in target tracking is that the 

target’s signal-to-noise ratio (SNR) at the sensor is often low.  This situation is often referred to as 

the dim target tracking or track-before-detect (TBD) scenario. When this occurs, the probability 

density function (PDF) of the measurement likelihood function becomes non-Gaussian and often 

has a Rayleigh or Ricean distribution.  In this case, a Kalman filter variant may also perform 

poorly.  The common solution to both of these problems is the particle filter (PF). A key drawback 

of PF algorithms, however, is that they are computationally expensive.  This dissertation, thus, 

concentrates on developing PF algorithms that provide comparable performance to conventional 

PFs but at lower particle costs and presents the following four research efforts. 

1. A multirate multiple model particle filter (MRMMPF) is presented in Section-3.  The MRMMPF 

tracks a single, high signal-to-noise-ratio, maneuvering target in clutter. It coherently 

accumulates measurement information over multiple scans via discrete wavelet transforms 

(DWT) and multirate processing.  This provides the MRMMPF with a much stronger data 

association capability than is possible with a single scan algorithm.  In addition, its particle 

filter nature allows it to better handle multiple modes that arise from multiple target motion 

models.  Consequently, the MRMMPF provides substantially better root-mean-square error 
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(RMSE) tracking performance than either a full-rate or multirate Kalman filter tracker or full-

rate multiple model particle filter (MMPF) with a same particle count.      

2. A full-rate multiple model particle filter for track-before-detect (MMPF-TBD) and a multirate 

multiple model particle filter for track-before-detect (MRMMPF-TBD) are presented in 

Section-4.  These algorithms extend the areas mentioned above and track low SNR targets 

which perform small maneuvers. The MRMMPF-TBD and MMPF-TBD both use a combined 

probabilistic data association (PDA) and maximum likelihood (ML) approach.  The MRMMPF-

TBD provides equivalent RMSE performance at substantially lower particle counts than a full-

rate MMPF-TBD.   In addition, the MRMMPF-TBD tracks very dim constant velocity targets 

that the MMPF-TBD cannot.  

3. An extended spatial domain multiresolutional particle filter (E-SD-MRES-PF) is developed in 

Section-5.  The E-SD-MRES-PF modifies and extends a recently developed spatial domain 

multiresolutional particle filter prototype.  The prototype SD-MRES-PF was only 

demonstrated for one update cycle.  In contrast, E-SD-MRES-PF functions over multiple 

update cycles and provides comparable RMSE performance at a reduced particle cost under 

a variety of PDF scenarios.  

4. Two variants of a single-target Gaussian mixture model particle filter (GMMPF) are presented 

in Section-6.  The GMMPF models the particle cloud as a Gaussian finite mixture model 

(FMM). MATLAB simulations show that the GMMPF provides performance comparable to a 

particle filter but at a lower particle cost.  
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1 INTRODUCTION 

This dissertation studies the impact of non-Gaussian and multi-modal probability density 

functions in target tracking.  The majority of currently deployed target tracking systems use some 

variant of the Kalman filter for their state estimation algorithm [2,3,4,5,7,8,9,10].  In order for a 

Kalman filter to be optimal, the measurement and state equations must be linear and the process 

and measurement noises must be Gaussian random variables (or vectors).  In reality, the linearity 

assumptions often do not hold.  When this occurs, standard Kalman filter variants such as the 

extended Kalman filter (EKF) and unscented Kalman filter (UKF) generally perform well.  One 

problem area arises when the state or measurement function becomes a multi-modal Gaussian 

mixture. This situation commonly occurs in the following tracking scenarios: 

• Interacting Multiple Models (IMM);  

• Interacting multi-pattern data association (IMPDA); 

• Joint probabilistic data association (JPDA). 

In all of these cases, a standard Kalman-filter variant attempts to represent a Gaussian mixture 

as a single, moment-matched, Gaussian probability density function (PDF).  An example of this 

phenomenon is illustrated in Figure 1.1 and Figure 1.2 below.  The PDF in Figure 1.1 is a Parzen 

estimate [10] of the X-position target state component in a multiple model particle filter (MMPF) 

while Figure 1.2 is a moment-matched approximation of that PDF.  It is evident from the two 

figures that the single Gaussian poorly represents the actual mixture PDF.   For a target tracking 

algorithm, the end result of this oversimplification is less accurate tracking.  

Another common problem in target tracking is that the target’s signal-to-noise ratio (SNR) 

at the sensor is often low.  This situation is often referred to as the dim target tracking or track-
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before-detect (TBD) scenario. When this occurs, the PDF of the measurement likelihood function 

becomes non-Gaussian and often has a Rayleigh or Ricean distribution.  In this case, Kalman 

filter derivatives often perform poorly. 
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Figure 1.1 Actual Gaussian Mixture PDF of Target State 
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Figure 1.2 Moment-Matched Gaussian Representation of PDF Target State 
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1.1 Problem Definition 

The standard technique that has been used in recent years to attack both the multi-modal 

and dim-target problems is particle filtering.  Although standard particle filters perform better in 

multi-modal/non-Gaussian scenarios than other algorithms, they suffer from several key 

drawbacks. They do not coherently accumulate information over multiple scans (i.e. all data 

association hypotheses resolved at each measurement update).  Particle filters are also 

computationally costly with run times that are 2-3 orders of magnitude longer than Kalman filter-

based estimators. 

In addition, current particle filter TBD algorithms assume constant velocity (CV) motion 

and full-rate filter updates (i.e. at every measurement scan).  Previous work in multirate 

processing has shown that multirate tracking algorithms can provide comparable performance at 

a lower computational cost. To date these multirate approaches have not yet been applied to low 

SNR targets.   

Thus, the main goal of this research is to combine:  

• Multiple model particle filtering (MMPF); 

• Track-before-detect (TBD) techniques; 

• Multirate processing in order to track low-SNR targets at a reduced particle cost.    

Secondary goals are to: 

• Extend current multiresolutional particle filtering techniques in order to provide 

equivalent RMSE performance at reduced particle counts; 

• Investigate the feasibility of combining finite mixture models (FMM) and particle 

filtering in order to reduce computational costs. 
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1.2 Summary of Contributions  

This dissertation presents four original research efforts that focus on each of the 

preceding particle filter issues.  

1. A multirate multiple model particle filter (MRMMPF) is presented in Section-3.  The MRMMPF 

tracks a single, high signal-to-noise-ratio, maneuvering target in clutter. It coherently 

accumulates measurement information over multiple scans via discrete wavelet transforms 

(DWT) and multirate processing.  This provides the MRMMPF with a much stronger data 

association capability than is possible with a single scan algorithm.  In addition, its particle 

filter nature allows it to better handle multiple modes that arise from multiple target motion 

models.  As a consequence, the MRMMPF provides much better root-mean-square error 

(RMSE) tracking performance than either a full-rate or multirate Kalman filter tracker or full-

rate MMPF with a same particle count.  Note: Due to the large runtimes encountered with the 

MMPF and the MRMMPF, subsequent efforts were re-focused on reducing runtimes while 

maintaining RMSE performance rather simply reducing RMSE.    

2. A full-rate multiple model particle filter for track before detect (MMPF-TBD) and a multirate 

multiple model particle filter for track-before-detect (MRMMPF-TBD) are presented in 

Section-4.  These algorithms extend the MMPF and MRMMPF so that they can track low 

SNR targets which perform small maneuvers. The MRMMPF-TBD and MMPF-TBD both use 

a combined probabilistic data association (PDA) and maximum likelihood (ML) approach.  

The MRMMPF-TBD provides equivalent RMSE performance at substantially lower particle 

counts than a full-rate MMPF-TBD.   In addition, the MRMMPF-TBD also tracked very dim 

constant velocity targets that the MMPF-TBD could not.  

3. An extended spatial domain multiresolutional particle filter (E-SD-MRES-PF) is developed in 

Section-5.  The E-SD-MRES-PF modifies and extends a recently developed spatial domain 

multiresolutional particle filter prototype [71].  The prototype SD-MRES-PF was only 
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demonstrated for one update cycle.  In contrast, the E-SD-MRES-PF functions over multiple 

update cycles and provides comparable RMSE performance at a reduced particle cost.  

4. Two variants of a single-target Gaussian mixture model particle filter (GMMPF) are presented 

in Section-6.  The GMMPF models the particle cloud as a Gaussian finite mixture model. 

MATLAB simulations show that the GMMPF provides performance comparable to a standard 

particle filter but at substantially less particle cost.  
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2 PREVIOUS WORK 

2.1 Kinematic State Estimation  

In order to understand the role of particle filter-based estimation it is first useful to briefly 

overview basic estimation concepts and summarize relevant work done to date. All kinematic 

state estimation algorithms seek to estimate the kinematic state (i.e. position, velocity, and 

possibly acceleration) of a target from a sequence of measurements that have been corrupted by 

noise.  The target kinematic state at time instant k, xk, can be described by the following 

difference equation:  

111 )( −−− += kkkk wxfx        (2.1) 

where: )( kk xf is a target kinematic model and kw  is an additive process noise term.  

The target measurement at time instant k, zk, can likewise be defined by an analogous 

difference equation:  

kkkk vxhz += )(         (2.2) 

where: )( kk xh defines the measurement model and kv  is an additive measurement noise term.  

The probability density function (PDF) of the target state conditioned on the measurement set, 

)|( :1kk zxp , can be described via the following recursive Bayesian relationship below: 
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The prior probability, )|( 1:1 −kk zxp , is defined by the Chapman-Kolmogorov equation as 

described by Bar Shalom and Li. [6] and can also be derived via the total probability theorem: 

∫

∫

−−−−

−−−−−− ==

11:111

11:111:111:1

)|()|(

)|(),|()|(

kkkkk

kkkkkkkk

dxzxpxxp

dxzxpzxxpzxp

   (2.4) 

The fact that the process evolution is first order Markov allows the conditioning on 1:1 −kz  to be 

removed from both the transition prior probability, )|( 1−kk xxp , and the likelihood function, 

)|( 1−kk xzp .   

2.2 Kalman Filter: Linear/Gaussian Special Case 

Although (2.3) defines the solution to the optimum estimation problem, it is generally 

impossible to solve analytically. An exact analytical solution is possible only when (2.1-2.2) 

describe linear systems and when both the process noise (whose covariance matrix denoted as 

Qk) and the measurement noise (covariance matrix denoted as Rk) are Gaussian.  When this 

occurs, the target state PDF, p(xk+1 |zk+1), can be computed via the standard linear Kalman filter 

(LKF) equations shown below in (2.5-2.12).  Note: since the process is assumed to be Markov, 

the dependency on measurements prior to time k is dropped in the LKF equations.   

kkkk xFx =+ |1     (State Mean Prediction)   (2.5) 

kkkkkkk QFPFP +′=+ ||1    (State Covariance Prediction) (2.6)  
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11|111 +++++ +′= kkkkkk RHPHS   (Innovation Covariance)  (2.7)  

1
11|11

−
++++ ′= kkkkk SHPK    (Filter Gain)   (2.8) 

kkkkk xHz |11|1
~

+++ =     (Measurement Prediction) (2.9) 

kkkk zz |111
~

+++ −=ν    (Innovation)   (2.10) 

11|11|1 +++++ += kkkkkk Kxx ν   (State Mean Update)  (2.11) 

111|11|1 ++++++ ′−= kkkkkkk KSKPP  (State Covariance Update) (2.12) 

where:  

Fk is the linear state transition matrix 

Hk is the linear measurement matrix 

Note: Deterministic control inputs, Γkuk, are assumed to be zero without loss of generality.  

In realistic target tracking scenarios, the Gaussian and linear assumptions often are not 

valid because either the system dynamics are nonlinear (due to target maneuvers) or the 

measurement prediction equation is a non-linear function of the state (i.e. state equations are in 

Cartesian coordinates while measurements are in polar coordinates). A variety of filters have 

been developed to deal with these non-linear situations.  These include: 

• Converted measurements Kalman filter (CMKF); [4] 

• Extended Kalman filter (EKF) [7]; 

• Unscented Kalman filter (UKF) [23,24,25]; 
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• Biscay distribution filter (BDF) [22]; 

• Gauss-Hermite filter (GHF) [19,20]. 

Analysis by Cui, Hong, and Layne [46] and Farina et al. [40] indicates that when the only 

issue is a small-to-moderate nonlinearity, all of these filters provide very similar performance.  

The real difficulties arise when either the process and/or measurement noises are non-Gaussian 

or when the state PDF is a multi-modal.   

2.3 Causes of Multimodality 

The three situations that give rise to multimodality are: 

1. Multiple modeling (MM) approach [6]; 

2. Interacting multi-pattern data association (IMPDA) [45]; 

3. Joint probabilistic data association (JPDA) [2]. 

2.3.1 Multiple Modeling (MM) Approach 

In the multiple modeling approach with switching models, the state and measurement 

equations are described via (2.13-2.14). 

( )
k

MwMxfx kkkkk 111 ),( −−− +=        (2.13) 

( )kkkkk MvMxhz += ),(        (2.14)  

The variable M is the model index parameter that can take on values of M = 1,…r.  By applying 

the total probability theorem, the PDF of the target state at time index k can be expressed via 

(2.15). 
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)|(),|()|( :1
1

:1:1 k
i

r

j
k

j
kkk zMpzMxpzxp

kk
⋅=∑

=

     (2.15) 

If one assumes that the model index depends on a Markov process, the mode transition 

probability of mode i into mode j can be defined as: 

)|(
1

ijij

kk
MMph

−
=         (2.16) 

and mechanized as a pre-defined model transition matrix. As the time index k increases the 

number of possible model histories increases exponentially with kr .  

Thus, if each one of the model paths is modeled via a Kalman filter, the target state PDF 

shown below in (2.17) is a Gaussian mixture with an exponentially increasing number of terms. 

)|(),|()|( :1,
1

:1,:1 klk

r

l
klkkkk zMpzMxpzxp

k

⋅=∑
=

    (2.17) 

where: =l model history throughout the trajectory  

Although the approach above generates the optimal minimum variance estimate, it is evident that 

this technique is impractical even for small values of r.  

2.3.1.1 Interactive Multiple Model (IMM) Algorithm 

The most common sub-optimal approach is the Interactive Multiple Model (IMM) [6].  A 

functional diagram of a two-model IMM is depicted below in Figure 2.1.   
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Figure 2.1 IMM Algorithm Block Diagram 

The mixing probabilities are defined as:  
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  (2.18) 

The mixing probabilities can now be expressed more compactly via (2.19). 

1atmodelofprob.:where

,,1,

1

1
1

1|
1|1

−=

=≡

−

=
−

−
−−

∑
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rji
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kk L

     (2.19)  
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In the optimal MM, each mixing operation results in a new set of Gaussian mixtures.  The 

IMM, however, simplifies the PDF by approximating it as a single Gaussian, 

],ˆ[ 0
1|1

0
1|1

j
kk

j
kk PxN −−−− , where the mean is given by: 

rjuxx
r

i

ji
kk

i
kk

j
kk L1,ˆˆ

1

|
1|11|1

0
1|1 ==∑

=
−−−−−−      (2.20) 

and the covariance is expressed as: 

.,1

,}]ˆˆ[]ˆˆ[{ 0
1|11|1

0
1|11|11|1

1

|
1|1

0
1|1

rj

xxxxPuP j
kk

i
kk

j
kk

i
kk

i
kk

r

i

ji
kk

j
kk

L=

′−⋅−+= −−−−−−−−−−
=

−−−− ∑
    (2.21) 

The IMM resolves the problem of exponentially increasing model history by maintaining a 

constant number of model terms.  If the individual means of the Gaussian mixture components 

are close together then the Gaussian approximation (with its single mode) is reasonably accurate.  

If, however, the means are widely separated then the single Gaussian approximation is a poor 

representation of the true PDF.  After the mixing process, the individual mixed 

states,
j

kk
j

kk Px 0
1|1

0
1|1 ,ˆ −−−− , are processed via a Kalman filter that generates a posterior estimate, 

j
kk

j
kk Px || ,ˆ ,  for each model, and a model likelihood, 

j
kΛ . The model likelihood is computed via 

(2.22). 

rjSxhzNZMzp j
k

j
kkk

kj
kk

j
k L1},)];ˆ([{],|[ 0

1|
1 =−==Λ −

−
   (2.22) 

The next step in the IMM algorithm is to update the mode probabilities, 
j

ku .  The mode 

probabilities are defined as shown in (2.23). 
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( )∑
=

Λ

Λ
=≡ r

j
j

j
k

j
j
kkj

k
j

k

c

c
ZMpu

1

]|[       (2.23) 

The last step in the algorithm is to compute the model conditioned state estimate.  The 

PDF at this point is also a Gaussian sum.  The IMM algorithm again approximates the PDF as a 

single moment-matched Gaussian, ],ˆ[ || kkkk PxN , where: 

 rjuxx
r

j

j
k

j
kkkk L1,ˆˆ

1
|| ==∑

=
and  

rjxxxxPuP kk
j

kkkk
j

kk
j
kk

r

i

j
kkk L,1,}]ˆˆ[]ˆˆ[{ |||||

1
| =′−⋅−+=∑

=
.  (2.24) 

In sum, we can see that there are two places (i.e. mixing and output) in the IMM 

algorithm in which a single moment-matched Gaussian approximates a Gaussian mixture.   

2.3.2 Interacting Multi-Pattern Probabilistic Data Association (IMPDA) 

The IMPDA, that Hong et al. [45] developed, is a multirate extension of the IMMPDAF 

that operates both at full rate (1R) and one-third rate (1/3-R). The discussion below briefly 

summarizes the key features of the IMPDA and identifies the points within the algorithm that give 

rise to a multi-modal state PDF.  A detailed derivation of the algorithm is found in [45]. 

The IMPDA uses the discrete wavelet transform to extract coherent information from 

measurements over multiple scans.  This allows the IMPDA to accumulate information over 

several scans and provides better data association performance than single-scan algorithms such 

as IMMPDAF.  While the IMMPDAF uses only distance information for data association, the 

IMPDA uses multi-patterns containing distance, directional, and maneuver information.   
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In order to generate these multi-patterns, the IMPDA takes a sequence of three trajectory 

points and then passes them through a series of two-tap, high-pass and low-pass discrete Haar 

wavelet transform filters. The output of the filter bank (as depicted in Figure 2.2) is a set of three 

patterns: 

• Location pattern fP (analogous to target position); 

• Pointing pattern fL (analogous to velocity); 

• Maneuvering pattern fM  (analogous to acceleration). 

Since the multi-patterns are derived from target state vectors and are analogous to position, 

velocity, and acceleration, it is convenient to define them via (2.25). 

















≡
















2H

H

L

M

P

L

x

x

x

f

f

f

        (2.25) 

For non-maneuvering targets, fP and fL define the target pattern while for maneuvering targets fP, 

fL , and fM are required to define the target’s kinematic behavior.  The basic IMPDA uses two 

types of multirate models to represent the target kinematics.  These are the Constant High-pass 

(CH) model, which is analogous to a Constant Velocity (CV) model, and the Constant High-High-

pass (CH2), which is analogous to a Constant Acceleration (CA) target model.  The task of these 

models is to map target patterns from one, 3-scan wide, time window into the next (Figure 2.3).  
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Figure 2.2 Extraction of Patterns from a Sequence 

 

Figure 2.3 Pattern Mapping From One Window to Next 
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The CH model is defined via (2.26) below. 
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    (2.26) 

The high-high-pass components are treated as zero-mean Gaussian disturbances with the 

following distributions 

).,0(~),,0(~),,0(~
222222 332211

HHHHHH
kkkkkk QNxQNxQNx ++++++   (2.27) 

The one-third-rate CH measurements are defined as:  
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The equivalent one-third-rate measurement noise is: ),0(
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The CH2 model is defined via (2.30) below. 
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The high-high-high-pass components are treated as zero-mean Gaussian disturbances 

with the following distributions: 
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).,0(~),,0(~),,0(~
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The one-third-rate CH2 measurement equation is: 
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  where 
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are previously defined in (2.28). 

Since the patterns are only updated every three samples, the target positions at sample points 

between pattern updates are calculated via a standard full-rate Kalman filter.  

The IMPDA (Figure 2.4) runs multiple parallel models and has a structure analogous to 

that of an IMMPDAF.  Thus, like the IMM, the IMPDA results in target states that are Gaussian 

sums both after the mixing process and in the final output state.  The IMPDA also models these 

Gaussian sums via a single moment-matched Gaussian.     
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Figure 2.4 IMPDA Algorithm Block Diagram 

2.3.3 Joint Probabilistic Data Association (JPDA) 

The JPDA algorithm [2] is a multi-target extension of the well known probabilistic data 

association filter (PDAF) [3].  In both the PDAF and the JPDA, the posterior state PDF is a 

Gaussian mixture that is modeled via a single Gaussian.  In the single-target PDAF the multi-

modality is caused by non-persistent clutter. This clutter is generally modeled as uniformly 

distributed throughout the surveillance volume.  JPDA, however, assumes multiple targets are 

present.  If two (or more) targets are closely spaced then target measurements from one target 

may fall within the validation gate of its neighbor, resulting in persistent clutter.  Since the JPDA 
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models multiple modes via a single Gaussian, the individual targets may coalesce into a single 

target.   

The discussion below briefly summarizes key elements of JPDA and identifies where and 

how multimodality occurs. A detailed JPDA derivation is available in [2, 3, and 4]. 

JPDA operates under the following set of assumptions: 

• There is a known number established targets that are being tracked; 

• Tracking occurs in the presence of clutter; 

• Measurements from one target may fall into the validation gate of another target over 

multiple scans and act as persistent interference; 

• The targets follow a Markov process, which can be sufficiently described by an 

approximate conditional mean and covariance for each target; 

• Each target has a state and measurement model. 

JPDA thus takes the following basic approach to the multi-target tracking problem: 

• Measurement to target track probabilities are calculated jointly across the targets; 

• The association probabilities are calculated only for the current set of measurements and 

previous association hypotheses are not considered; 

• The state estimates are computed separately for each target. 

The key task in the JPDA algorithm is to compute the joint measurement-track 

association probabilities, P(θk|z1:k). Once the joint association probabilities are available, the 

marginal association probabilities are computed by summing over the joint events in which the 

marginal event occurs as shown in (2.33). 

( ) ( ) ( )

Ttmj

zPzP

k

jtkkjtjt

LL ,1,0,,1

,ˆ|| :1:1

==

=≡ ∑ θωθθβ
θ       (2.33) 

where:  
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jtθ  is a measurement-track association event; 

1ˆ =jtω  if a measurement-track association, jtθ , for measurement j and track t 

is feasible and 0ˆ =jtω if not; 

km  = number of measurements at time k; 

T = number of target tracks. 

The values of jtβ then become the weighting factors that are used to calculate the combined 

innovation for each target, t: 

∑
=

=
k

kk

m

j
jtkjtt

1

νβν .        (2.34) 

The combined innovation,
kt

ν , is itself a Gaussian mixture of mk Gaussian components 

having PDFs of [ ]
kk tjt SN ,ν .  Although (2.34) is a Gaussian mixture, the JPDA approximates the 

posterior state estimate PDF as a single moment matched Gaussian.  The posterior mean of the 

state estimate of each target, t, is thus computed via the standard Kalman filter equation: 

kkkkkk tttt Kxx ν+=
−1||

ˆˆ .        (2.35) 

The posterior covariance for track t is composed of three covariance components:  

.
~

]1[
|01|0| kkkkkkkkk t

c
ttttt PPPP +−+=

−
ββ       (2.36) 

The first covariance component,
1|0 −kkk

tt Pβ , is due the fact that with probability
k

t0
β , none of the 

measurements are correct. The term c
t kk

P
|

in the second covariance component is the covariance 

of the state updated with the correct measurement and is described by the standard Kalman filter 

covariance update equation: 
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kkkkkkk tttt
c

t KSKPP ′−=
−1||

.       (2.37) 

The third component,
kt

P
~

, is the spread of the innovations (analogous to the spread of the means 

discussed previously) and is defined by (2.38). 
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In the single-target PDAF, clutter is uniform over the surveillance region and is non-

persistent.  Thus, the net contribution of the clutter to the state estimate mean is zero and a 

single, moment-matched Gaussian is a reasonable approximation of the true PDF.  In the JPDA, 

however, if there is persistent clutter from another target then a single moment-matched 

Gaussian poorly represents the true PDF.  This concept is illustrated in Figure 2.5.  A 

consequence of using a single moment-matched Gaussian rather than the true multi-modal PDF 

is the JPDA track-coalescence phenomenon (when two closely spaced parallel tracks merge into 

a single track). [7,11]   

In summary, we see that multi-modality occurs in the IMM, IMPDA, and JPDA tracking 

algorithms.  All of these algorithms model a Gaussian mixture as a single, moment-matched 

Gaussian.  This “simplification” often results in significantly greater tracking errors.  In order to 

reduce these errors and obtain more accurate tracking, it is necessary to better model the actual 

multi-modal PDF.   

2.4 Estimation Techniques to Address Multimodality 

The three standard techniques that address non-Gaussian PDFs (including Gaussian 

mixtures) are: 

• Gaussian sum filters (GSF) [13,14];  

• Grid-based methods [36, 65]; 

• Particle filters (PF) [36, 65]. 
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As will be shown in upcoming sections, the GSF and grid-based methods suffer from several 

shortcomings that make them impractical for our purposes.  Consequently, the particle filter is the 

technique of choice for this type of problem. 

 

 

Figure 2.5 Moment-Matched Gaussian Representation of PDF in JPDA 

2.4.1 Approximate Grid-Based Methods 

Grid-based methods use a discrete version of the Bayesian update equation (2.3).  They 

can approximate the posterior density, p(xk | z1:k) , if the state space is continuous but can be 

divided into a finite number, Ns,  of discrete states },1:{ s
i
k Nix K= .  The posterior density is 

computed via the method shown below. 

Assume that the posterior PDF at time k-1 is defined as: 
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111|11:11| δ  .    (2.39) 

The discrete prediction and update equations can then be expressed via (2.40-2.43).   
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Where the weights are defined as: 
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Thus, (2.40) is a discrete form of the Chapman-Kolmogorov equation while (2.41) is a discrete 

Bayesian update equation.     

The approximate grid-based method suffers from two key drawbacks.  First, the grid must 

be sufficiently dense in order to get an accurate representation of a continuous state space.  This 

is computationally expensive because it requires a very large number of grid points as the 

dimension of the state space increases.  The second drawback is that the state space must be 

predefined.  Thus, the grid points cannot be concentrated so as to provide better resolution in 

high probability regions.   

2.4.2 Gaussian Sum Filter (GSF)  

Sorenson and Alspach [13,14] developed the concept of the GSF to deal with non-

linear/non-Gaussian situations.  The GSF makes use of the Gaussian sum approximation lemma, 

which states that any PDF, p(x), can be approximated as closely as desired by a weighted sum of 

Gaussian PDFs as shown below in (2.44). 
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where:  

αi is a scalar weighting factor with ∑
=

=
m

i
i

1

1α ;  

and µi and Pi are the mean and covariance, respectively, of the ith Gaussian term.   

The parameters αi, µi , and  Pi are chosen so that they minimize the Lk norm (k generally 

is equal to 2) between the actual density function, p(x), and the Gaussian sum approximation, 

pgs(x).  This approximation can be made very accurate by choosing a large value for m, the 

number of Gaussian terms.  Thus, a bank of parallel Kalman filters can represent a non-

linear/non-Gaussian system. A key drawback of the Gaussian sum approach is that the number 

of Gaussian terms, and hence the number of Kalman filters, increases at each time iteration and 

grows exponentially (referred to as the growing memory problem).  This growth, if left unchecked, 

makes the GSF too expensive computationally.    

Caputi [15,16] developed a modified Gaussian sum estimation technique that uses a 

fixed number of Gaussian sum terms and avoids the growing memory problem.  Caputi's method 

is designed for systems with linear state and measurement equations but non-Gaussian 

measurement and process noise.  His technique models the non-Gaussian noises as the sum of 

a zero mean Gaussian component and a semi-Markov bias term.   

Tam and Hatzinakos [17,20] developed an adaptive Gaussian sum tracking algorithm for 

radar tracking. Their approach assumes that both process and measurement noises are 

Gaussian and state equations are linear.  As was the case in the CMKF, their main goal is to deal 

with the effects of non-linear polar-Cartesian measurement transformation. In order to accomplish 

this, they use a GS approximation to compute the value of p(zk | xk).  The growing memory 

problem is dealt with by disregarding density functions with small αi coefficients and by combining 

densities that are statistically close (i.e. small Bhattacharyya distance).  Since state equations are 

assumed to be linear, the Chapman-Kolmogorov equation in numerator in (2.4) is replaced by a 

Gaussian density whose mean is obtained by the Kalman filter state prediction (2.5) equation and 

whose covariance is defined by the Kalman covariance prediction equation (2.6).   
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The drawback of all of these approaches, however, is that they retain only a fixed number 

of Gaussian mixture components.  Thus, they are not well suited for modeling a target state with 

a multi-modal PDF that potentially has a large number of modes.   

2.4.3 Particle Filter (PF)  

Although, Monte-Carlo methods for state estimation have been available for over 30 

years, Gordon, et al. presented the first true particle filter in 1993 [26].  The PF is a sequential 

Monte-Carlo technique that produces, at each time instant k, a cloud of NP particles that 

approximates estimates the probability density function of the posterior target state, p(xk |z1:k) . 

Thus, by drawing appropriately weighted samples from this "cloud" one can solve the Bayesian 

estimation equation (2.3) and obtain the state estimate.  As NP becomes very large, the density 

approximation becomes more accurate.  A key benefit of the PF method is that it can accurately 

approximate a multi-modal PDF.   

Another PF benefit is that non-linear states/measurements and non-Gaussian noises can 

be handled without resorting to linearization and/or partial derivatives (i.e. Jacobians).  The major 

drawback of PF methods is that a very large number of particles may be required in order to 

accurately represent the target state PDF.   

The particle filter solves the Bayesian estimation equation by approximating the posterior 

PDF via the discrete weighted sum in (2.45). 
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The individual weights, i
kw , are computed by applying the principle of importance sampling.  

Since it is difficult or impossible to directly sample )|( :1:0 kk zxp , we define a density )(xπ  that 

can be evaluated and that is chosen such that )()( xxp π∝ .  Additionally, let 
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P
i Nixqx K,1),(~ =  be samples that are drawn from a proposal )(xq that is referred to as the 

importance density.   

Since )()( xxp π∝ , the individual weights of each normalized particle are then defined as: 
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The importance density is chosen so that it can be factorized as:   

)|(),|()|( 1:11:0:11:0:1:0 −−−≡ kkkkkkk zxqzxxqzxq .     (2.47) 

This allows us to obtain samples from the current state by augmenting samples from the previous 

state.  

To obtain the weight update equation, we first express the posterior PDF, )|( :1:0 kk zxp , in 

terms of )|( 1:11:0 −− kk zxp , )|( kk xzp , and )|( 1−kk xxp  to obtain:   
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State evolution is assumed to be a first order Markov process.   Consequently, the conditioning 

term, 1:1 −kz , can be dropped from the likelihood function, )|( kk xzp , and the transition prior PDF, 

)|( 1−kk xxp . Since )|( 1:1 −kk zzp  is simply a normalizing constant, )|( :1:0 kk zxp  is proportional 

to the quantity in (2.49). 

)|()|()|()|( 1:11:01:1:0 −−−∝ kkkkkkkk zxpxxpxzpzxp     (2.49) 
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We now note that If we now substitute (2.47) and (2.49) into (2.46) and simplify, we obtain the 

recursive particle weight update equation (2.50). 
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If we assume that the importance density, q(x), also describes a first order Markov process, then 

the importance density depends only on the previous state, 1−kx , and the current 

measurement, kz .  In most tracking scenarios, only the current filtered state estimate, kx , is 

required.  We can therefore discard the target path, 1:0 −kx , and the observation history, 1:1 −kz  . 

The particle weight update equation can then be expressed via (2.51). 
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The weights are then normalized by dividing each particle weight by the sum of the particle 

weights at a given sample time k. 
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The posterior filtered density, )|( :1kk zxp , is now calculated as: 

∑
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The particle filtering technique described above is known as the sequential importance 

sampling (SIS).  Although, the SIS is simple to implement, it suffers from the “Degeneracy 

Phenomenon”.  Over time, the variance of the particle weights increases. This eventually results 

in a situation in which all but one particle has negligible weight.  A common technique to reduce 
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this degeneracy is to resample when the effective sample size, Neff, falls below a predefined 

threshold (such as Neff < 0.5 NP).  Although Neff cannot be directly computed, it can be 

approximated as:  
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The other key issue in particle filtering is choosing an appropriate importance density.  

The simplest choice of importance density is to use the transition prior state density, 

)|( 1
i
k

i
k xxp − .  When the prior is used as the importance density, the particle update equation 

(un-normalized) can be expressed as: 
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Gordon’s particle filter, which is known as the bootstrap particle filter (BPF) or Sampling 

Importance Resampling (SIR) filter uses the prior as the importance density.  In addition, the SIR 

resamples at every time increment and sets the resampled particle weight to 1/Np .  This removes 

the dependency of the current particle weight to the previous particle weight.  Thus, the un-

normalized particle weight is simply the value of the measurement likelihood function, evaluated 

at the predicted particle,
i
kx , yielding: )|( i

kk
i
k xzpw =∝ .  With this in mind, the SIR 

algorithm can be summarized as follows:  

• Initialization: Assume that the initial state PDF, measurement and process noise PDFs, 

and the measurement likelihood function are known. 

• Sampling and Prediction: Obtain NP samples from the posterior density available at 

time k-1: )|( 11 −− kk zxp and propagate these points through the system 

model, 111 )( −−− + kkk wxf , and obtain a collection of "predicted points", 
i
kx . 



  

 

   

 

29 

• Importance Weight Calculation: Upon receipt of a measurement zk, evaluate the 

likelihood of each prior sample point and thus obtain a normalized weight, i
kw , for each 

sample: 
( )

( )∑
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where:  ( )i
kk xzp |   is the likelihood function of the current measurement, conditioned 

on the "predicted" particle. 

• Resampling: The posterior state density function is then obtained by sampling (with 

replacement) from the set of points defined by the right hand side (RHS) of the equation 

below.   
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After resampling, all of the particle weights are set to 1/Np.  

• Filter output: The state estimate is typically chosen to be the mean value of the particle 

states.  Since the particle weights are now equal after resampling, the state mean is: 
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The SIR PF is popular because it is easy to implement. Thus, it has been used in 

numerous non-linear/non-Gaussian filtering applications. It does, however, sometimes require a 

very large number of particles in order to work well.  This situation occurs when the prior density 

and likelihood function have only a small region of overlap [36].  A significant amount of research 

has been done on particle filtering since the introduction of the SIR PF.  The bulk of this research 

has focused on improving the performance or reducing the computational cost of the basic SIR 

filter and identifying new applications for the PF.   



  

 

   

 

30 

Djuric, et al.  [30] combined the PF with a Gaussian sum approach to develop a hybrid 

Gaussian sum particle filter (GSPF) that used a small, fixed number of Gaussian sum terms (6 to 

16) and relatively small number of particles (Np =100).  Their GSPF implementation was applied 

against a one-dimensional system that had highly non-linear state and measurement equations. 

Additionally, process and measurement noises were non-Gaussian.  Their results indicated that 

the hybrid GSPF offered much lower mean squared errors (MSE) than a GS-only filter with the 

same number of GS terms.     

Arulampalam, et al. [36] presented several PF algorithm variants that offer some 

advantages over the traditional SIR PF. These PFs, which include the Auxiliary Sampling 

Importance Resampling Filter (ASIR), Regularized Particle Filter (RPF), and the Likelihood 

Particle Filter (LPF), sometimes offer better RMSE performance than the conventional SIR.  Hue, 

et al. [33] have recently addressed the multi-target tracking via the PF and have developed the 

Multi-target Particle Filter (MTPF) that incorporates a Markov-chain Monte-Carlo (MCMC) 

technique known as Gibbs sampling.    Blom et al. [41], Frank et al. [43], Schultz et al. [50], and 

Vermaak et al. [59] have also focused on developing multi-target PF implementations.  

Farina, et al. [40] compared the performance and computational costs of the EKF, UKF, 

CADET (Covariance Analysis Describing Function Technique), and SIR particle filter against the 

theoretical Cramer-Rao lower bounds (CRLB) of estimation error.  Their example used non-linear 

measurement and process models with Gaussian process and measurement noises. All of the 

estimation methods were consistent and produced good estimates.  The particle filter, however, 

(and also the CADET algorithm) required over two orders of magnitude of computations than did 

the EKF or UKF.   

2.5 Multiple Model Particle Filter (MMPF) 

Another area of PF research is in the tracking of maneuvering targets via multiple 

switching process models [6].  As was mentioned previously, the Kalman-based IMM 

approximates a multi-modal state PDF via a single moment-matched Gaussian.  The particle 
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filter, however, is not restricted to Gaussian densities.  McGinnity and Irwin adapted the multiple 

model concept to particle filtering and developed the first MMPF [28, 29]. Their MMPF uses an 

alternate form of the Bayesian estimator in which branched prior densities are merged into r 

model conditioned densities: 
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The second term of the right hand side (LHS) is expanded out by using Bayes’ rule to obtain the 

following model probability in (2.60). 

 

)|(

)|(

)|(

)|(),|(
),|(

:1

:1

:1

:1:1
:1

1

1

1

1

k
i

k
jij

k
i

k
j

k
ji

k
ij

zMp

zMph

zMp

zMpzMMp
zMMp

k

k

k

kkk

kk

+

+

+

+
==

.   (2.60) 

The denominator, )|( :11 k
i zMp
k+

, is a normalizing term and is simply the sum of the numerator 

over all values of j. The posterior state PDF at time k+1 is the given by the sum of r, model 

conditioned, posterior PDFs as shown below in (2.61). 
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A key difference between the MMPF and the standard bootstrap PF is that each particle 

is an ordered pair that consists of the state, kx , and a mode index rjM j
k ,,1, K= .   

The MMPF includes a mode mixing step in which particle modes transition from one 

mode to another according to a Markov transition matrix, jih .  This Markov transition is 

implemented via a “roulette wheel” sampling method in which the “size” of each pattern on the 

wheel is proportional to its probability.   

The predicted state for each particle, [ ]j
k

i
k Mx , , is obtained by applying the process 

model that corresponds to the model indicated for particle i. The importance weight calculation, 

resampling, and computation of the posterior mean are the same as in the SIR PF.  The posterior 
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model probabilities are automatically calculated during the resampling process since the particles 

for each mode are resampled according to their posterior probability. 

2.6 Initial Multirate Particle Filter Efforts  

Hong and Cui [52] further extended the multirate estimation concept to multiple-model 

particle filtering techniques and developed the multirate interacting multiple model particle filter 

(MRIMM-PF).   The basic idea behind MRIMM-PF is that targets spend most of their time in CV 

motion and that target maneuvers are relatively infrequent.  The MRIMM-PF exploits this fact by 

developing a multirate algorithm which consists of a non-maneuvering third-rate model that is 

updated every three scans while the maneuvering full-rate models are updated at every scan.   

A typical target’s trajectory is CV for most of the track life. Thus, on average, most of the 

particles will be assigned to the non-maneuvering model.  Since this non-maneuvering model is 

updated once every three scans, the average number of particles in the MRIMM-PF is 

substantially less (approximately 46%) than that required for a full-rate MMPF for a comparable 

level of RMSE performance.  This results in less computational cost, since cost is O(N) in particle 

filters. 

2.7 Maintaining Multi-Modality in Particle Filters  

Particle filter-based algorithms are theoretically well suited for dealing with multi-modal 

PDFs. In reality, however, low-weight particles are seldom resampled.  Weak modes are, thus, 

often lost after a few iterations.  This presents a significant problem if the weak mode is due to the 

presence of another target that we wish to track.  Vermaak, et al. [44] have developed a 

technique to maintain multimodality by modeling the target distribution as a non-parametric 

mixture model. Each mixture is modeled via a separate particle filter that interacts with the other 

particle filters only during the computation of mixture weights.  Their algorithm uses K-means 

clustering to recompute the mixture representation during the tracking scenario as targets appear 

and disappear.   
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2.8 Measurement Gating With Multi-Modal Likelihood Functions 

The issue of “how to define a measurement validation gate?” arises in particle filters 

because there is no direct analog to the validation gate found in Kalman filter-based trackers.  In 

single target tracking scenarios where false alarms are present, measurement gating is 

necessary to reduce the possible measurement-track association hypotheses to a manageable 

level since the number of hypotheses equals the number of measurements plus one (i.e. an 

additional hypothesis is required for the null target case).  Gating becomes even more critical in 

multi-target scenarios because the number of possible association hypotheses grows 

exponentially as the number of targets and false alarms increases.  

A conventional Kalman tracker uses the Gaussian innovation covariance, 1+kS ,  to define 

a validation gate around the predicted measurement.  Typically, the gate excludes measurements 

that fall outside the 3-4 sigma range.  Since innovation covariance is not available in particle 

filters, some other gating scheme is required. Marrs, et al. [47] developed a non-parametric 

efficient score function by computing the expected log-likelihood from known measurement and 

clutter statistics.  Vermak et al. [59] also developed a gating mechanism that models the prior 

particle set as a Gaussian and then incorporates a particle filter analog of the innovation 

covariance matrix from this Gaussian.   

2.9 Particle Filter Track Before Detect (TBD-PF) 

Conventional target detection schemes set a detection threshold to determine if a sensor 

return represents a potential target or is the result of noise.  The dilemma of this method is that if 

the threshold is set too high then a target may not be detected.  Conversely, if the threshold is set 

too low then many false alarms will be generated.  Thus, the detection threshold is often set as a 

practical compromise between a high probability of detection ( DP ) and an acceptable probability 

of false alarm (
FAP ).  In a low-SNR environment, achieving a practical compromise is 

problematic.  TBD techniques eliminate the detection threshold and simultaneously track and 
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detect targets.  This allows tracking of targets having much lower SNR values than is possible 

with standard detection-then-track schemes.  

In recent years, particle filtering techniques have been applied to the TBD problem. 

Particle filters are an attractive choice because measurement likelihood functions often have 

Rayleigh or Ricean PDFs at low SNR levels. A basic single target TBD-PF algorithm was initially 

proposed by Salmond et al.  [54]. Rollason and Salmond [55] then developed a TBD-PF for 

targets with unknown amplitude. Boers and Driessen further extended TBD-PF concepts and 

developed a multi-target TBD-PF [63].  Musick et al. [32] implemented a bootstrap TBD-PF 

algorithm for an electro-optical (EO) sensor with a Rayleigh likelihood function.  Oii et al. [57] 

adapted Musick’s algorithm by deriving an optimal proposal density which used Rao 

Blackwellization. Ristic [56] designed a TBD-PF tracker that used an EO sensor with Gaussian 

likelihood function.  His algorithm tracked targets down to an SNR of 5 dB and contained the 

following elements:  

• Explicitly probability of track computation; 

• Particle existence state determined via Markov transition (existence states =  

newborn, existing, and dead); 

• A single PF was used for all existence states. 

Rutten et al. [58] built upon and improved Ristic’s algorithm.   Rutten’s TBD-PF algorithm 

modeled a radar sensor that used a Ricean-Rayleigh measurement model (target plus noise PDF 

is Ricean while noise-only PDF is Rayleigh).  His algorithm differed from Ristic’s in that it explicitly 

included the track existence probability in the target state vector and used separate particle filters 

to compute the newborn and existing densities.  Although Rutten’s TBD-PF implementation was 

more complex, it could track CV targets down to an SNR of 3 dB. 

2.10 Spatial-Domain Multi-Resolution Particle Filtering (SD-MRES-PF) 

SD-MRES-PF is a data compression and particle count reduction technique that Hong 

and Wicker [71] recently developed.  SD-MRES-PF (like multirate particle filtering) uses a DWT to 
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decompose a data sequence into LP and HP components. Unlike multirate particle filters, MRES-

PF works at full-rate and decomposes the sampled uni-resolution (uni-res) PDF into LP and HP 

PDF components.  The HP PDF components are then compared against a pre-defined minimum 

threshold. This process is illustrated in Figure 2.6 and Figure 2.7. Component samples that fall 

below this threshold are then removed.  In practice, many of the data points in the HP 

components have relatively small values and are “noise-like” in nature.  Thus, removing these 

small “noise-like” components allows us to reconstruct the uni-res PDF with fewer particles 

without significantly degrading particle filter RMSE performance.  

The PDF components are then transformed with an appropriate IDWT algorithm in order 

to reconstruct a “data compressed” uni-res PDF that has fewer particles than the original. The 

amount of “data compression” varies according to the size of the threshold. A larger threshold 

results in more compression and fewer particles.  Conversely, a smaller threshold produces the 

opposite effect.  The new, reduced, particle set is then propagated and updated via a SIR-PF.  

The SD-MRES-PF features two methods to implement multiresolutional particle filtering. 

These are termed as the implicit and explicit methods. The implicit method embeds the wavelet 

transformation into a complicated variable structure but does not require an inverse transform to 

reconstruct the uni-res density. In contrast, the explicit method uses a simple variable structure 

but requires an inverse transform for uni-res density reconstruction.   

The Hong and Wicker SD-MRES-PF was a proof-of-concept model that only operated 

over one update cycle.  The original uni-res PDF in the SD-MRES-PF was generated as 

histogram PDF that required 5000 samples to generate 1000 sampled PDF points. Consequently, 

it is not suitable as a multiple update particle filtering algorithm because the PDF generation 

process would negate any particle savings obtained from the multi-resolution processing. An 

extended SD-MRES-PF that operates over multiple time increments is presented in Section-5.  
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Figure 2-6 Original Uni-Res PDF and Level-1/2 Multi-Res Decompositions (No Thresholding) 

 

Figure 2-7 Level-1/2 Decompositions (Thresholded)
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3 MULTIRATE - MULTIPLE MODEL PARTICLE FILTER 

(MRMMPF) 

The MRMMPF algorithm was first introduced in the initial proposal for this dissertation 

and forms the building block of the MRMMPF-TBD algorithm that is described in the Section-4.  

The MRMMPF described in the following paragraphs was thus intended as a “proof of concept” in 

order to demonstrate the advantages of multirate particle filtering vs. full-rate particle filtering and 

Kalman-based tracking algorithms.   

The MRMMPF combines elements of the MMPF and the IMPDA. It uses a multi-pattern 

multiple model particle filter to compute state estimates at 1/3-rate (1/3-R) and conventional 

MMPFs to compute state estimates at full-rate (1-R).  Within the MRMMPF, the 1/3-R MMPF and 

the 1-R MMPF are run in parallel.  The 1/3-R MMPF computes estimates at every third sample 

increment (i.e. k = 3,6, 9,…) while two cascaded 1-R MMPFs compute estimates at the 

intermediate points (k = 1,2,4,5, …).   

The original MMPF algorithm was designed for single target tracking in a zero-clutter 

environment (i.e. zero false alarms). The MRMMPF, however, is intended to function in the 

presence of false alarms. Thus, the measurement likelihood functions in both the 1/3-R MMPF 

and the 1-R MMPF components of the MRMMPF were modified to use a PDA-type likelihood 

function that will be described later in this section.  

Both multirate tracking (via Kalman filtering) and multiple model particle filtering have 

been addressed in previous research. These two techniques have yet, however, to be combined 

into an integrated tracking algorithm that tracks targets in the presence of clutter. Hence, the 
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rationale behind the MRMMPF is to combine the strengths of the aforementioned algorithms.  

These strengths are: 

• The IMPDA’s ability extract coherent information from measurements over multiple 

scans; 

• The ability of the MMPF to handle non-linear/non-Gaussian PDFs. 

It will be shown that a bootstrap (i.e. SIR) PF implementation of MRMMPF outperforms the 

IMMPDAF, IMPDA, and the MMPF.    

3.1 MRMMPF Theoretical Description and Design 

A four-pattern/four model bootstrap version of the MRMMPF algorithm was implemented 

according to the block diagram shown in Figure 3.1.   The basic components of the MRMMPF 

algorithm are: 

1. 1/3-Rate MMPF Initialization; 

2. Full-rate MMPF Initialization; 

3. 1/3-Rate Mixing; 

4. 1/3-Rate MMPF; 

5. Full-rate MMPF; 

6. Full-rate state vector output. 

Note: In the remainder of this dissertation, one-third-rate variables will be denoted by the “1/3R” 

superscript (e.g. R
kkx 3/1

/ˆ ).  Variables without the “1/3R” superscript are assumed to be full-rate 

(e.g. kkx /ˆ ).  Additionally, particles will be annotated with a subscript to indicate whether they are 

predicted ( i
kkx 1/ − ) or posterior ( i

kkx / ) particles.  
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Figure 3.1 MRMMPF Algorithm Block Diagram 

3.1.1 1/3-Rate MMPF Initialization 

The proof-of-concept MRMMPF does not include a track initiation function and assumes 

that the initial 1/3-rate state PDF is known. This initial PDF is assumed to be Gaussian with a 

mean vector, R3/1
0µ , and covariance matrix RP 3/1

0 .  No information (i.e. diffuse prior) is assumed 

to be available regarding initial pattern probabilities, 4,,1,)( 3/1

0 L=jMp Rj . Thus, each pattern 

probability is set to: 
4

1
)( 3/1

0 =RjMp . 

The 1/3-R measurement noise PDF is also assumed to be Gaussian and is the same as 

in the IMPDA: ),0(
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and where: kR  is the 1-R measurement covariance of the sensor.   

Based on the initial state PDF and pattern probabilities, we first generate an initial set of 

NP particles: 4,...,1,],[ 3/13/1

00 =jMx RR ji .  As was the case with the MMPF, each 1/3-R particle is 

an ordered pair that consists of a state vector, Rix 3/1

0 ,  and its associated pattern index, RjM 3/1

0 . 

Since the probability of each pattern is 0.25, 
4

PN
 particles are assigned to each pattern. The 

state vectors of each particle, Rix 3/1
0 , are obtained by drawing NP values from the following random 

vector: 

  P
RRi Niwx R ,...,1,3/1

0
3/1

00
3/1 =+= µ       (3.2) 

where Rw 3/1
0  is the 1/3 rate process noise vector.   

Since the initial covariance matrix, RP 3/1
0 , is assumed diagonal, the process noise vector 

can be obtained taking the square roots of the variance components (i.e. the main diagonal) and 

multiplying the resulting matrix by a zero-mean, unity variance random vector: 

N

R

R

R

R

R

R

R V

p

p

p

p

p

p

w ⋅































=

3/1
0

3/1
0

3/1
0

3/1
0

3/1
0

3/1
0

3/1
0

6,6

5,5

4,4

3,3

2,2

1,1

00000

00000

00000

00000

00000

00000

      (3.3) 

where  

R

ji
p 3/1

0 ,
 = ith row, jth column entry in the RP 3/1

0  matrix; 



  

 

   

 

41 

NV  = 6x1 random vector whose elements are random variables distributed ~ ]1,0[N . 

3.1.2 Full-Rate MMPF Initialization 

The full-rate MMPF is initialized by transforming the 1/3-R MMPF particles to 1-R.  This is 

accomplished via a set of inverse discrete wavelet transform (IDWT) matrices. The IDWT 

matrices used are the same ones found in the IMPDA and are designated as 1−
CVT  and 1−

CAT . The 

1−
CVT  IDWT converts 1/3-R particles with constant-high-pass (CH) model indices (i.e. CH2 

component = 0) into 1-R constant velocity (CV) particles in which the acceleration components 

are zero, as shown in (3.4). 

RR i
k

i
kCV

i
k x

I

IT

ITI

xTx 3/13/1

1

1

00

00

022
−

−















 −
==      (3.4) 

where: 

T = scan period; 

I = 2x2 identity matrix; 

0 = 2x2 matrix of zeros. 

Correspondingly, 1−
CAT  transforms 1/3-R particles with constant-high-high-pass (CH2) 

model indices (i.e. non-zero CH2 component) into 1-R constant acceleration (CA) particles: 

  RR i
k

i
kCA

i
k x

IT

ITIT

ITITI

xTx 3/13/1

1

2

2

2

1

2

2
00

0

5.122

−

−





















−
−

== .    (3.5) 
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3.1.3 1/3-Rate Mixing   

The MRMMPF algorithm works on a three scan update cycle.  Thus, when describing the 

algorithm, we will assume that the update cycle starts at t = k-3.   For each 1/3-R particle, 

],[ 3/13/1
3|33|3

RR j
kk

i
kk Mx −−−− , we generate a new particle, ],[ 3/13/1

3|3|3
RR

j

kk
i

kk Mx −−−  , with particle number i and 

pattern index j (Note: The particle number, i, is different from pattern index i) . As with the 

IMMPDAF, IMPDA, and MMPF, we assume that the mode jump is a Markov process with known 

probability transition matrix jih .  The “post-mixing” model index, R
j

kkM 3/1
3| − , is then obtained by 

applying the switching Markov chain with transition probability ijh  to  R
kkM 3/1

3|3 −− .  If iM R
kk =−−

3/1
3|3 , 

then R
kkM 3/1

3| − will be set to j with a probability jih .   

This Markov transition is implemented via a “roulette wheel” sampling method in which 

the “size” of each pattern on the wheel is proportional to its probability.  Thus, if iM R
kk =−−

3/1
3|3  and 

un is a uniformly distributed number from (0,1], then R
kkM 3/1

3| − is chosen as the value of s where: 

∑∑ ∑
=

−

= =

≡≤<
0

1

1

1 1

0and
j

ij
s

j

s

j

ji
n

ji hhuh .        (3.6) 

This concept is somewhat difficult to visualize and can best be described by the following 

example.  Assume that we have the following Markov transition matrix:  

 



















=

91.004.004.001.0

05.085.005.005.0

05.005.085.005.0

01.004.004.091.0

jih .     

The previous mode, i, at k-3 is denoted by the matrix rows while the new mode, j, at time k is 

denoted by the matrix columns. Assume that at k-3, the old mode is: i=1.  We now generate a 



  

 

   

 

43 

uniformly distributed random number: ]1,0(~nµ   and obtain the following potential mode 

transition scenarios 

• If 91.0≤nµ , then mode j=1.   

• If )04.091.0(91.0 +≤< nµ , then mode j=2. 

• If )04.004.091.0(95.0 ++≤< nµ , then mode j=3. 

• Finally, If )01.004.004.091.0(99.0 +++≤< nµ , then mode j=4.  

A similar argument applies if mode i = 2,3 or 4.  

3.1.4 1/3-Rate MMPF  

1/3-R State Propagation: The 1/3-R MMPF functions in an analogous manner to the 1-R 

MMPF.  After the mixing process, each particle, ],[ 3/13/1
3|3|3
RR

j

kk
i

kk Mx −−− , is propagated through a 

dynamic system model,  
R

M
R

kM kkkk
wxf 3/13/1

3 3|3|
)(

−−
+− , that is based on its pattern index, R

j

kkM 3/1
3| − .  

The 1/3-R state transition matrix, )( 3/1
33|

R
kM xf

kk −−
, operates over three time steps and depends 

on the specific pattern and model index. Patterns 1 and 4 both use the CH2 model and will thus 

use the CH2 1/3-R state transition matrix: 

 .

00

230

296

)( 3/1
3

3/1
2

3|

















=−−

I

II

III

xf R
k

R
M

CH

kk
      (3.7) 

Conversely, Patterns 2 and 3 both use the CH model and will thus use the CH 1/3-R state 

transition matrix: 

.

000

00

06

)( 3/1
3

3/1

3|

















=−−
I

II

xf R
k

R
M

CH

kk
      (3.8) 
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The process noise vector is obtained from the 1/3-R process noise covariance matrix, 

R
M kk

Q 3/1

3| −
 that corresponds the model (either CH or CH2) associated with a given pattern.  The value 

of R
M kk

Q 3/1

3| −
 is the same as that developed for the IMPDA.  Thus, for the CH case:  

CH

CH
R

CHCH

kk

R
kw

R
k

R
MQ 3/1

3
23/1

3
3/1

3/13| −− Γ′Γ=
−

σ       (3.9) 

where: 

CHR
k

3/1
3−Γ  = 1/3 rate CH noise gain, previously defined in (2.26); 

2

3/1
CH

Rw
σ  = 1/3 rate process noise variance. 

The 1/3 rate process noise variance, 2

3/1
CH

Rw
σ , in turn derived from the 1-R process noise 

variance, 2

w
σ via the following transformation: 

CHCHCH
R

TT
ww σσ σσ ′= 22

3/1
       (3.10) 

where: 

























=

I
T

I
T

I
T

T CH

22
00

0
22

0

00
22

2

2

2

σ       (3.11) 

   

and:  

T  = scan time 

I  = 2x2 identity matrix. 
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For the CH2 case,  
2

3/1
3

CHR
k −Γ  is the 1/3 rate CH2 noise gain shown in (2.30).  The 1/3 rate 

process noise variance, 2
2

3/1
CH

Rw
σ , is then expressed as:  

222

3/1

22
CHCHCH

R

TT
ww σσ

σσ ′=        (3.12) 

where: 























=

I
T

I
T

I
T

T
CH

4
00

0
4

0

00
4

2

2

2

2
σ

.       (3.13) 

 

Once R
M kk

Q 3/1

3| −
 is known, R

M kk
w 3/1

3| −
is obtained via eigendecomposition as follows: 

R
N

R

R

RR
N

RRR
M VVDw

kk

3/1

3/1
6

3/1
1

3/13/13/13/13/1

00

00

00

3|



















Λ

Λ
Χ=Χ=

−
O   (3.14) 

where: 

RD 3/1  = A diagonal matrix whose entries, RR 3/1
6

3/1
1 ΛΛ L  , are the eigenvalues of R

M kk
Q 3/1

3| −
; 

R3/1Χ  = A matrix whose columns are the corresponding eigenvectors such 

    that: RRRR
M DQ

kk

3/13/13/13/1

3|
Χ=Χ

−
; 

R
NV 3/1  = 6x1 random vector whose elements are random variables distributed ~ ]1,0[N . 

For CH2 patterns, the state vectors of “predicted” particles, ],[ 3/13/1
3|3|
RR

j

kk
i

kk Mx −−  are obtained 

by setting the CH2 component of the 1/3-R state vector to the value indicated in the pattern index,   

Mk|k-3, passing it through the CH2 state transition matrix and then adding a random CH2 process 

noise vector:   
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2

3|
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H
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−

     (3.15) 

where: == − 23
H

km xf the maneuver pattern for pattern index Mk|k-3.  

 For example, if the CH2 pattern was: 210
2

==
H

km xf , then (3.15) would become:  

2
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.     (3.16) 

Correspondingly, for particles with CH patterns, the state vector is: 

CH

kk

L

H
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R
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=
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


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
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.     (3.17) 

where: 

==
Hkp xf the pointing pattern for pattern index Mk|k-3.  

1/3-R Likelihood Function and Particle Weights : At this point, one can now compute 

a 1/3-R likelihood function, ( )Ri
kk

R
k xzp 3/1

3|
3/1 | − , and the corresponding particle weights, R

k

i

w 3/1 .  We 

construct a 1/3-R measurement vector from the measurements [ ]kkk zzz ,, 12 −−   via the method 

shown in (2.28).  Since there are measurement false alarms, the measurement vector actually 

becomes a measurement matrix in which each column represents a 1/3-R measurement vector.  

If we assume that there is only one true target in the scenario, then the number of columns is 
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equal to the number of measurement combinations, mk, available from [ ]kkk zzz ,, 12 −−  and is 

defined as:  

  ( ) ( ) ( )kkkk NfNfNfm +⋅+⋅+= −− 111 12      (3.19) 

where: 

kNf = the number of false alarms at time k.  

Thus, the measurement matrix is defined as  

[ ]kmR

k
R

k
R

k zzz
3/13/13/1 ,,1 L= .      (3.19) 

We assume that the false alarms obey the Poisson clutter model.  Therefore, the 

probability of observing mk false measurements at scan k is: 

( ) ( )
!k

m
kV

kF m

V
em

k

k
λµ λ−=         (3.20) 

where: 

kλ = the false alarm rate per scan and kV = measurement volume of the validation gate. 

The 1/3-R likelihood function in (3.21) below is then obtained in an analogous manner to 

that of the parametric PDAF [7] and PDA particle filter [48].  We first note that the measurements 

are independent.  Thus, by summing over the association hypotheses the aggregate 1/3-R 

likelihood function can be expressed as the sum of individual likelihood functions generated by 

mk+ 1 hypotheses: 

( ) ( )∑
=

−− =
k

RR

m

n

i
kk

n
k

R
k

i
kk

R
k xzpxzp

0
3|

3/1
3|

3/1 3/13/1 |,| θ .     (3.21) 

We now factor the LHS of (3.21) to obtain: 

( ) ( ) ( )R

k

RR i
kk

n
k

m

n

n
k

i
kk

R
k

i
kk

R
k xpxzpxzp 3/13/13/1

3|
0

3|
3/1

3|
3/1 |,|| −

=
−− ∑= θθ     (3.22) 

where: 

n
kθ = Feasible association hypothesis for measurement n; 
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=− )|( 3/1
3|

Ri
kk

n
k xp θ the probability of hypothesis n

kθ ; 

( )=−
n
k

i
kk

R
k

Rxzp θ,| 3/1
3|

3/1 the likelihood of hypothesis n
kθ . 

The measurements are assumed to be independent.  Thus, the overall likelihood function of a 

hypothesis becomes a product of the component likelihoods: 

( ) ( )∏
=

−− =
k

RnR

m

n

n
k

i
kk

R
k

n
k

i
kk

R
k xzpxzp

0
3|

3/1
3|

3/1 ,|,| 3/13/1 θθ .    (3.23) 

The component likelihoods, ( )n
k

i
kk

R
k

Rn xzp θ,| 3/1
3|

3/1
− , can be expressed as: 

( ) [ ]( )
LH

RnRn
k

i
kk

R
k

n
k

i
kk

R
k RxzNxzp ,,| 3/13/1

3|
3/1

3|
3/1

−− Η−=θ , if nR
kz 3/1  is from a target;   (3.24) 

( )
k

n
k

i
kk

R
k V

xzp Rn
1

,| 3/1
3|

3/1 =− θ , if nR
kz 3/1  is from a false alarm;    (3.25) 

where: 

Vk = Volume of measurement space. 

 

The likelihood of a given hypothesis can now be obtained using the previous results and applying 

them to the following cases: 

• 0θ : None of the measurements are valid 

• nθ : Association hypotheses 1..mk, that each feature a single valid target.  

This results in: 

( ) [ ]( ) kk
i

kk
R

km
k

n
k

i
kk

R
k mnRxzN

V
xzp

LH

Rn

k

R L,2,1,,
1

,| 3/13/1
3|

3/1
13|

3/1 =Η−= −−− θ    (3.26) 

( ) 0,
1

,| 3/1
3|

3/1 ==− n
V

xzp
k

R

m
k

n
k

i
kk

R
k θ .      (3.27) 

The next step is to compute, )|( 3/1
3|
Ri

kk
n
k xp −θ . Applying the PDA derivations in [7 and 48], we 

obtain: 
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where: 

PD = probability of detection and PG = probability that measurement falls in the 

measurement gate. 

We now simplify the previous two equations by noting that: 
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Applying (3.30) into (3.28) and (3.29), one obtains: 
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The previous results are now substituted into (3.22) to obtain (3.33) 
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In the MRMMPF presented here, the SNR is assumed to be large and gating is not used. 

Consequently PD is set to unity (i.e. target is always detected) and PG = 1. The likelihood function 

then becomes: 

( ) [ ]( )∑
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kk
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3/1 ,
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| 3/13/1 .   (3.34) 

The importance weights are then calculated using the same methodology as in the standard 

bootstrap PF.  Since the particle weights are normalized, the constant term, 
1

1
−km

kk Vm
 , drops out 

and we are left with (3.35) below. 
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 (3.35) 

The particles are then resampled via the importance sampling method to obtain Ri
kkx 3/1
| .  

Following resampling, all particle importance weights are set to 
PN

1
.  The 1/3-R target state in 

each particle is then transformed via a 1/3-R-to-1-R inverse DWT, to obtain the 1-R target 

state,
i

kkx | .  If the particle in question has a CH model index, then 1−
CVT  is applied while 1−

CAT  is 

used for a CH2 particle.   

The model indices in the transformed particles are unchanged.  Thus, a 1/3-R particle 

with an index that corresponds to a negative 
2H

kx  value will be transformed into a 1-R particle 

with a negative acceleration while 1/3-R CH particles are transformed into constant velocity 

(acceleration = 0) 1-R particles.  The full-rate output of the MRMMPF at time k is then obtained by 

taking the mean of the 1-R particle states as shown in (3.36). 

∑
=

=
PN

i

i
kk

P
kk x

N
x

1
||

1
ˆ         (3.36) 
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3.1.5 Full-Rate MMPF  

1-R State Propagation: The 1/3-R MMPF only generates target state outputs at every 

third sample point (k-3, k, k+3, …).  In order to obtain 1-R target states at the interim two sample 

points (k-2 and k-1, k+1 and  k+2, … ), we use a modified version the MMPF described 

previously. To do this, at every the sample (k-3, k, k+3, …)  the state from each 1/3-R particle is 

fed through the 1/3R-1R inverse DWT described previously.  This generates a 1-R particle 

set, ][ 3|3,3|3
i

kk
i

kk Mx −−−− .  This particle set is filtered via a 2-stage/3-model, constant acceleration 

(CA) MMPF.  The prior PDF is obtained via the following kinematic model: 
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The MMPF includes models for max3|2
aa

kkM −=
−−

, 0
3|2

=
−− kkMa , max3|2

aa
kkM =

−−
 .  The 

0
3|2

=
−− kkMa  model processes particles with model indices corresponding to the CH patterns while 

the max3|2
aa

kkM ±=
−−

models process particles with model indices corresponding to equivalent 

CH2 patterns (i.e. max
2

2

2
2

aTx
H

k ±= ).  The 1-R process noise vector is derived by using a 

similar technique to the one described for the 1/3-R case.  First, the full-rate process noise 

covariance matrix, 
3|2 −− kkMQ , is derived for both the max3|2

aa
kkM ±=

−−
models and the 

0
3|2

=
−− kkMa model (which is actually a constant velocity (CV) model).  

The process noise matrix for the max3|2
aa

kkM ±=
−−

models is then expressed as: 

CA
kw

CA
k

CA
M CA

kk
Q 3

2
33|2 −− Γ′Γ=

−−
σ       (3.38) 

where: 
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 is the full-rate CA noise gain;  

2
CAw

σ  is the full-rate constant acceleration process noise variance. 

 The process noise matrix for the 0
3|2

=
−− kkMa  model, CV

M kk
Q

3|2 −−
, is developed in a similar fashion 

except that the process noise gain terms becomes: 
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3 T
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T

CV
k  . Theoretically, the process 

noise variance, 2
CAw

σ , would be set to zero in a CV model.  In a particle filter, however, 

additional process noise must be added in order to prevent the “degeneracy phenomenon”.  Note: 

A very small value (~10-8) is also added to the last element of the CV
k 3−Γ  vector so that the 

process noise covariance matrix stays non-singular. Once the process noise matrices are 

computed, the process noise vector is computed the same way as in the 1/3 rate case via (3.39). 
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O     (3.39) 

1-R Likelihood Function: The first stage of the MMPF uses the measurement set zk-2 .  

As was the case with the 1/3-R measurements, this measurement set includes false alarms. 

Thus, the number of measurements is:  

( )22 1 −− += kk Nfm         (3.40) 

where: 2−kNf = the number of false alarms at k-2.  

We now derive a full-rate PDAF-type likelihood function using exactly the same methodology as 

in the 1/3-R case and obtain (3.41-3.42).  
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This produces a full-rate particle set ][ 2|2,2|2
i

kk

i

kk Mx −−−− .  The full-rate output at 

2|2ˆ −− kkx   is then obtained by computing the sample mean. Since we are already operating at the 

full-rate, an inverse DWT is not used. The second stage of the MMPF repeats the process with zk-

1 and generates 1|1ˆ −− kkx  .  
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4 MULTIRATE MULTIPLE MODEL PARTICLE FILTER TRACK BEFORE 

DETECT (MRMMPF-TBD) 

This section presents a full-rate multiple model particle filter for track before detect 

(MMPF-TBD) and a multirate multiple model particle filter for track-before-detect (MRMMPF-

TBD). It extends the previously developed MMPF and MRMMPF so that they can track low SNR 

targets which perform small maneuvers.   Current particle filter track before detect (PF-TBD) 

algorithms assume constant velocity (CV) motion and filter updates at a full-rate (i.e. at every 

measurement scan).  Previous work in multirate processing, via a discrete wavelet transform 

(DWT), has shown that multirate tracking algorithms can provide comparable performance at a 

lower computational cost.  

To date, these multirate approaches have not yet been applied to low signal-to-noise 

ratio (SNR) targets. Consequently, the goal of the MRMMPF-TBD is to combine the MMPF, TBD 

techniques, and multirate processing in order track low-SNR targets at a reduced particle cost.  

4.1 MRMMPF-TBD Algorithm Overview 

The MRMMPF-TBD and MMPF-TBD both use a combined probabilistic data association 

(PDA) and maximum likelihood (ML) approach.  The MRMMPF-TBD (top-level block diagram 

shown in Figure 4.1) consists of a 3-model full-rate MMPF run in parallel with third-rate, 3-model, 

MMPF.  The full-rate MMPF uses a CV model and two constant acceleration (CA) models for 

positive or negative accelerations. The third-rate MMPF employs a constant high-pass (CH) 

model, which is analogous to the full-rate CV model.  

A third-rate model is used instead of a half-rate because the third-rate model only 

requires one update per three scans (versus one update per two scans for half-rate), resulting in 

a lower particle count.  Additionally, at least three scans are required to obtain CH2 state and 

measurement vectors (which are analogous to acceleration components).  Both the full-rate and 
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third-rate MMPFs use the bootstrap method and incorporate ML-PDA likelihood functions for data 

association and particle weighting. The basic operation of the MRMMPF-TBD is summarized as 

follows: 

1. Initialization: Begin with a set of 1/3-R particles at k-3. Each particle consists of an 

ordered pair, ],[
3/13/1

3|33|3

RR i
kk

i
kk Mx −−−− , that consists of a target state and a mode index.  

2. Mode Mixing: Perform mode mixing according to the Markov state transition 

probabilities. 

3. Third-rate and Full-rate Separation: Compute the probability of maneuver by 

determining the ratio of CH2 mode particles, 2CH
N ,to the total number of particles PN : 

mannonman
P

CH
man PP

N

N
P −== 1,

2

.  Divide the particle set into two portions such that 

Pman NP particles are assigned to the full-rate set and then convert the states of these particles 

from 1/3-R�1-R via the inverse discrete wavelet transform (IDWT) matrix (Defined in section 3).  

The mode indices for each particle remain unchanged. Thus, CH particles are mapped to CV, 

and CH2 particles are mapped to their appropriate CA model.  The remaining fraction (i.e. 

Pnonman NP ) of the particle set is left unchanged.  The key point is that as the maneuver 

probability increases more particles are processed via the full-rate model in order to quickly 

respond to maneuvers. 

4. MMPF: Process the third-rate CH particle set by the third-rate MMPF, using the 1/3-R 

measurement vector (Described in Section 3), and compute the posterior 1/3-R partial particle 

set, ]
~

,~[
3/13/1

||

RR i
kk

i
kk Mx . Process the full-rate particle CV/CA set by the three full-rate MMPFs, using 

the 1-R measurements at kkk ,1,2 −− , and compute the posterior 1-R partial particle set, 

]
~

,~[ ||
i

kk
i

kk Mx .  Convert the 1-R particle set to 1/3-R via the DWT and then merge with the partial 
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posterior 1/3-R set, resulting in the complete posterior 1/3-R set, ],[
3/13/1

||

RR i
kk

i
kk Mx .    

 5. State Estimation: Convert the 1/3-R particle set, ],[
3/13/1

||

RR i
kk

i
kk Mx , to 1-R via the 

inverse DWT and then compute the conditional mean of the particle states to obtain the state 

estimate, kkx |ˆ . Real time outputs, if required, can be obtained at 2−k  and 1−k  from the 1-R 

MMPF particle sets.  Otherwise, target states for 2−k  and 1−k  can be obtained by 

smoothing kkx |ˆ . Smoothed, non-real-time outputs will generally be more accurate since they 

incorporate the information from measurements at kkk ,1,2 −−  and are based on a larger 

particle set.  

 

Figure 4.1 MRMMPF-TBD Block Diagram 
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4.2 Full-Rate Target Models 

The full-rate (1-R) target models used are the standard CV and CA models with the state 

vectors defined as shown in (4.1)-(4.3) . In both the CV and CA cases, the control input, ku ,is 

modeled as a Gaussian noise process, kw , that is zero mean and has variance 2

kw
σ .  

kkkkk uXFX Γ+=+1        (4.1) 
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For the CA Model: k
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  (4.3) 

The 1-R process noise covariance for the CV case is therefore defined as:  
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Correspondingly, the 1-R process noise covariance for the CA case is:  
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4.3 Third-Rate Target Models 

The third rate models include a constant high-pass (CH) model for tracking during non-

maneuvering segments. The CH model is analogous to the CV model in the full-rate case while 

the CH2 model (and its associated patterns) is analogous to the full-rate constant acceleration 

(CA) models.  Note: The third-rate MMPF does not include constant high-high pass (CH2) model. 

Since the MRMMPF-TBD does, however, require CA��CH2 conversions, a derivation of a 2-

pattern CH2 model is included for completeness. 

The vectors are then stacked to produce a 1/3-Rate state vector:  

• Low-Pass XL (analogous to position) 
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• High-Pass XH (analogous to velocity) 

• High-High Pass XH
2 (analogous to acceleration)  

Where:  R
k

R
k

R
k

R
k

R
k uXFX 3/13/13/13/13/1

3 Γ+=+       (4.6) 

The 1/3-R state transition matrices CHF  and 2CH
F  for the equation above are obtained from the 

CH and CH2 model definition that was derived in [45].   
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CH2 Model:  
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In the CH model, the control inputs are modeled as CH2 Gaussian noise disturbances 

with: ),0(~),,0(~),,0(~
222222 332211

HHHHHH
kkkkkk QNxQNxQNx ++++++ . Correspondingly, in 

the CH2 Model the control inputs are modeled as CH3 Gaussian noise disturbances with: 

),0(~),,0(~),,0(~
333333 332211

HHHHHH
kkkkkk QNxQNxQNx ++++++ . 
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Full-rate state vectors are converted into third-rate state vectors (i.e. 1-R�1/3-R) via an 

invertible linear transformation matrix. In the case of a constant velocity model, the CV-CH 

transform matrix is CVT  while the CA-CH2 matrix is CAT . 
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The reverse transformations (i.e. 1/3-R�1-R) are accomplished by multiplying the 1/3-R state 

vectors via the inverse DWT matrices, 1−
CV

T  and 1−
CA

T . 

4.4 Full-Rate Measurement Model 

A typical radar sensor provides range, range rate, and angle information for a target. The 

sensor used in this simulation is a simplified radar that outputs a matrix of 2-dimensional x-y 

target position bins along with a target intensity reading for each bin.  Thus, the 1-R measurement 

vector is defined as: 
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Targets are modeled as point masses and target position smearing due to FFT windowing effects 

or target extent are not modeled. The target amplitude probability density function (PDF) for bin 

(x,y) is modeled as Rayleigh random variable (RV) via the method described in [7] and  [32], 

where SNR is the defined as the minimum expected SNR.   
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Noise-only PDF: ( )
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4.5 Third-Rate Measurement Model 

 In order to convert the full-rate 1-R position measurements into 1/3-R low-pass and high-

pass components, we apply a 1-R-to-1/3-R measurement transformation [45]:  
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The target intensity is assumed to change slowly. It is thus modeled as a low-pass process with 

no high-pass components:  

kkkk III
R

I zzzz 5.05.0
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3/1 ++=
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.       (4.15) 

The complete 1/3-R measurement vector is then defined via (4.16). 
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4.6 Particle Weight Computation (Full-Rate) 

The MRMMPF-TBD algorithm uses the bootstrap method in which the un-normalized 

particle weights are proportional to the value of the measurement likelihood function:   

)|( i
kk

i
k xzpw ∝ .        (4.17) 

The ML-PDA likelihood function for the full-rate particle filter is presented below and is 

obtained by applying the methods described in non-parametric PDAF [7], PDA particle filter [48], 

and the non-parametric IMMPDAFAI [7]. It is first assumed that measurements are statistically 

independent and that position and target amplitude measurements within the validation gate are 

also independent.  The measurement likelihood function can be expressed as the sum of joint 

likelihood functions generated by 1+km  hypotheses: 
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We now factor the RHS of (4.18) to obtain: 
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where: 

n
kθ = Feasible association hypothesis for measurement n; 

( ) =i
k

n
k xp |θ  the probability of hypothesis n

kθ ; 

( ) =n
k

i
kk xzp θ,|  the likelihood of hypothesis n

kθ . 

Since the measurements are assumed to be independent the overall hypothesis likelihood 

becomes a product of the component likelihoods: 
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The likelihood of a given hypothesis can now be obtained using the previous results and 

applying them to the following cases: 

• 0θ : None of the measurements are valid; 

• nθ : Association hypotheses 1..n, each feature a single valid target.  

In order to compute ( )n
k

i
kk xzp θ,| , we also assume that position and target amplitude 

measurements within the validation gate are independent.  The likelihood of hypothesis n
kθ  can 

then be decomposed as a product of individual position and amplitude likelihoods:  
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Where:
kPz is the position component of the measurement and 

kIz is the target intensity. 

The amplitude likelihood function, ( )n
k

i
kI xzp

k
θ,| , if kz  is from a target is: 
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Substituting the PDFs for ( )n

kI
zp0  and ( )n

kI
zp1  that were previously computed, we obtain:  

( )
( )

( )
( )

( ) ( )

( )
( )

( ) ( ).
12

exp
1

1

2
exp

12
exp

1
,|

1
0

2

1
02

2

∏

∏

=

=

⋅














++
=

⋅














−















+
−

+
=

k

kI

kI

k

kI

kI

kI

kIkI

k

m

j

j

n

m

j

j

n

n

nn

n
k

i
kI

zp
SNR

SNRz

SNR

zp
z

z

SNR

z

SNR

z

xzp θ

  (4.23) 

The equation above is now expressed more compactly as: 
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The amplitude likelihood function, ( )n
k

i
kI xzp

k
θ,| , if kz  is not from a target is: 
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The next step is to compute the position likelihood. If n
Pk

z  is from a target, then the position 

likelihood is defined as a Gaussian:  
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If n
Pk

z  is not from a target:   
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where: 

Vk = Volume of measurement space; 

PG = Probability that the correct measurement is inside the gate volume; 

Rk = Position measurement covariance matrix. 

The covariance matrix Rk is obtained by applying the standard radar measurement 

accuracy formula [4]: 
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Since the actual SNR of the target will be unknown, the SNR value in the equation above is 

defined as the minimum SNR at which the tracker is designed to operate. The hypothesis 

probability, ( )i
k

n
k xp |θ , is now calculated by using the non-parametric (i.e. diffuse prior) PDAF 

model shown in (4.29). 
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The value of DP   is computed by integrating the target+noise PDF from the detection 

thresholdτ to infinity: 
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1
.         (4.30) 

Combining (4.26-4.29) and then substituting this into (4.18) we obtain the complete full-rate 

measurement likelihood function in (4.31). 
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The normalized particle weights for the full-rate particle filter are shown in (4.32). 
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The term ( )







⋅∏

=

−
k

kI

k

m

n

nm
k zpV

1
0 is common to both numerator and denominator and thus drops out. 

4.7 Particle Weight Computation (1/3-Rate) 

The 1/3-R position likelihood is computed in an analogous manner to the full-rate case. 

The key difference is that 1/3-R measurements and a 1/3-R measurement covariance 

matrix,
LHkR , are used where: 
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In order to compute the 1/3-R amplitude likelihood, the 1/3-R noise and target+noise PDFs must 

first be computed.  The 1/3-R amplitude measurement is sum of three 1-R Rayleigh random 



  

 

   

 

67 

variables. Therefore, 1/3-R PDFs can theoretically be obtained via a transformation of variables 

and three-way convolution of the 1-R PDF: 
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In practice, however, this PDF derivation has no closed form solution. Instead, the 1/3-R 

PDFs were approximated via moment-matched Gaussian PDFs.  In order to generate this 

moment-matched approximation, we note that the Rayleigh PDF has the following form:  
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with the following first and second moments: 
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The 1/3-R PDF is then approximated by a Gaussian ( )R

L ray
R

rayIzN
3/123/1 ,σµ−  with:  
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For the noise-only case, the PDF is normalized so that 12 =ωσ  while for the target+noise case, 

SNR+=12
ωσ . 

The 1/3-R noise-only PDF is therefore approximated as ( )R

L

R
IzN

3/12
0

3/1
0 ,σµ−   while the 

1/3-R target+noise PDF, is approximated by a Gaussian ( )R

L
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1 ,σµ−  .  The values of  



  

 

   

 

68 

[ ]RR 3/12
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0 ,σµ  are obtained from (4.36-4.38) by setting  12 =ωσ  while [ ]RR 3/12
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1 ,σµ  are 

obtained by setting SNR+=12
ωσ .  

The 1/3-R amplitude likelihood function, conditioned on hypothesis n
kθ  then becomes: 
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The complete 1/3-R likelihood function (i.e. position-amplitude) and the 1/3-R particle weights can 

now be computed in the same manner as the 1-R case via (4.40). 
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4.8 Measurement Gating 

Dim target tracking generates numerous false alarms. Measurement gating is therefore 

required.  The algorithms presented here use a heuristic three-level system of gating. The first 

level of gating, referred to as coarse gating, places a square gate around the predicted 1-R 

measurement point location: 
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ˆ , with PN  being the 

number of particles.  (Note: The measurement matrix kH shown here uses only position 

information and not intensity.) The objective of the coarse gating is to remove unlikely 

measurements without incurring much computational cost. The length of a gate side was set at 

heuristically at 1X the sensor resolution level.  

Measurements that passed the coarse gate were then gated via a fine gate in a fashion 

similar to that outlined by Vermak et al. [59] via (4.41-4.42). Fine gating is used with both the 1-R 

and 1/3-R measurements.  This gating process is illustrated for the 1-R case in Figure 4.2. Note: 

The 1/3-R fine gates are 4-dimensional and cannot be easily depicted.  
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The third level of gating is based on target amplitude and is only applied to 1/3-R 

measurements that pass 1/3-R fine gate. The measurements are sorted by target amplitude 

(highest-to-lowest) and only the maxN  highest ones are selected. Note: The value of maxN  is 

heuristically determined from simulation.  A low value of maxN  reduces run time because fewer 

false measurement sets are generated.  Unfortunately, if this value is set too low, the real 

measurement may sometimes be inadvertently eliminated, resulting in error.  Conversely, if  

maxN  is too large then runtime will be excessive.  During simulations, 8max =N  produced good 

results and fast runtimes.  
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We construct a 1/3-R measurement vector from the measurements in three consecutive 

scans: [ ]kkk zzz ,, 12 −− . The 1-R measurements at each time increment pass through the 1-R 

coarse gate. Since there are false alarms, the measurement vector actually becomes a 

measurement matrix in which each column represents a 1/3-R measurement vector.  If we 

assume that there is only one true target in the scenario, then the number of columns is equal to 

the number of measurement combinations, R
km 3/1 . This quantity is obtained from 

[ ]kkk zzz ,, 12 −−  and is defined as:  

   ( ) ( ) ( )kkkkkk
R NfNfNfmmmm

k
+⋅+⋅+== −−−− 111 1212

3/1 ;      (4.43) 

where kNf = the number of false alarms in the 1-R coarse gate at time k.  

The 1/3-R measurement matrix is defined as [ ]R
kR m

kk
R

k zzz
3/1

3/11 ,...,3/1 = . The 

1/3-R measurement matrix then passes through a 1/3-R fine gate. Next, amplitude gating is 

applied to the surviving 1/3-R measurements. Amplitude gating becomes especially important for 

1/3-R measurements because of the large number of spurious 1/3-R measurement combinations.   
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Figure 4.2 1-R Coarse and Fine Gating Example 
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5 EXTENDED SPATIAL DOMAIN MULTI-RESOLUTION PARTICLE 

FILTERING (E-SD-MRES-PF) 

The Hong and Wicker SD-MRES-PF [71] was a proof-of-concept model that only 

operated over one update cycle.  In its current form it is not suitable as a multiple update particle 

filtering algorithm because of the large number of samples required to generate the histogram 

PDF that the SD-MRES-PF employs. This section presents an extended SD-MRES-PF(E-SD-

MRES-PF) that tracks the evolution of a non-linear/non-Gaussian state over multiple time 

increments.  A detailed derivation of the SD-MRES-PF will not be included in this section since it 

already presented in [71].  Instead, this section will focus on the modifications required to 

implement the E-SD-MRES-PF. 

The algorithm for the E-SD-MRES-PF is described below.  

1. Generate initial sampled PDF of 0PN  particles: ( ) ( )∑
=

−=
0

1
00
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i

i
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i xxxp δω .  This 

PDF will typically be non-Gaussian.  

2. Propagate the particle set through the non-linear process equation, )(xf , and 

generate a the propagated sampled PDF: ( ) ( )∑
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−−− −=
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i
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i
kkk xxzxp
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3. Compute a likelihood function for each particle: ( )i
kkk xzp 1/| − . 

4. Calculate the new normalized weight for each particle, 
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5. Sort the particles according to increasing i
kkx / values in order to generate a 

sampled PDF: ( ) ( )∑
=

−=
0

1

|
PN

i

i
kk

i
kkk xxzxp δω . 

6. Transform the posterior sampled PDF via the “Explicit Method”.  To accomplish 

this, the weights of the sampled PDF are divided into eight-sample blocks. The 

sum of the weights of each block, ∑
=

=
8

1
0

j

j
Bw ω , is then computed and saved (it 

will be used later to re-normalize the weight of the block).  Each block is then fed 

into a 3-level DWT Haar-wavelet filter bank that generates the Level 1-3 filter 

coefficients in the manner shown in Figure 5.1 below.  

 

Figure 5.1 Multiresolutional Decomposition via DWT Filter Bank 

7. Mechanize the filter bank via the linear transformation depicted in (5.1).  
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where:   
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8. Compare the elements of lhω  against the predetermined threshold, st , and set 

to zero any element that is below this threshold.  The result of this thresholding 

process is a new transformed block lhω~ .  

9. Apply inverse DWT,  lhlh TT ωωω ~~~ 1 ′== − in order to obtain a new block of  uni-

resolution weights.  Note: Some of the elements of the new block will have 

repeated elements.  Larger thresholds will result in greater data compression and 

more repeated elements.   

10. Examine the zero elements of the new uni-resolution block in order to determine 

which elements are repeated and remove those so that only distinctive elements 

will be propagated.   

11. Compute the sum of weights of the new block, 1Bw . Multiply the individual 

weights by the ratio of 
1

0

B

B

w

w
.  This ensures that the PDF segment represented by 

the new block will have the same total weight as the original block in Step-5.  

Once all of the eight-sample blocks are processed, we will have a reduced 

particle set with 1PN  particles. An example of this thresholding and 

reconstruction process is depicted in Figure 5.2. 
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12. Resample (with replacement) the new reduced particle set and set the new 

particle weight such that:. 
1

1

P

i
k N

w =  . 

13. Generate the state estimate: [ ] ( )∑
=

−=
1

11

1 PN

i

i
kk

P
k xx

N
xE δ . 

14.  Draw ( ) 12 1 PP NrN +=  particles from the resampled particle set and reset the 

particle weights to:
2

1

P

i
k N

w =  .  The quantity r is a heuristically determined 

value that prevents the reduced particle set from going to zero as the number of 

iterations increases.  (A range of 3.01.0 ≤≤ r produced good simulation results). 

15. Go to Step-2 and repeat Steps 2-15.  

 

Figure 5.2 Thresholding Example via the Explicit Method 



  

 

   

 

76 

6 GAUSSIAN FINITE MIXTURE MODEL PARTICLE FILTERS (GMMPF) 

Two key challenges of particle filters are maintaining multimodality and reducing 

computational costs.   Although particle filtering techniques outperform Kalman-based methods, 

their computational costs are between 2-3 orders of magnitude greater than Kalman filter-based 

estimators.  This fact is illustrated in Table 4.1 below.    

Table 6-1 Filter Run Times (Rounded to Nearest Minute) 

IMM-PDAF IMPDA MMPF MRMMPF

Run Time 
(Minutes)

1 1 416 580

Filter Type

 

The main culprits responsible for the large MMPF and MRMMPF runtimes are computing 

the likelihood functions for each particle and the resampling process.  These large runtimes make 

particle filter-based trackers impractical for most “real-world” tracking scenarios.   In addition, 

particle filters often cannot maintain multimodality over an extended period of time (i.e. weaker 

modes are suppressed). This section presents two Gaussian finite mixture model particle filter 

variants that address the multimodality and computational cost issues.   During the design and 

testing of the MRMMPF, it became apparent that Matlab coding implementation (i.e. vectorizing 

code vs. loops) significantly impacted runtime.  Since particle filter computational cost is a 

function of O(Np), particle count was used as the metric of computational cost. 

6.1 Gaussian Finite Mixture Models (FMM)  

The GMMPF makes use of the Gaussian sum approximation lemma, which states that 

any PDF, ( )xf , can be approximated as closely as desired by a weighted sum of Gaussian 

PDFs, ( )xfi  . In a Gaussian FMM, the multi-modal PDF, ( )xf , is approximated as a sum of k 

Gaussians: 
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( ) ( ) ( ) ( )xfxfxfxf kkπππ +++= L2211       (6.1) 

where: ∑
=

=
k

i
i

1

1π .           

The key benefit of the Gaussian FMM approach is that each individual component of 

( )xf  can be completely described by only two parameters: a mean vector, iµ , and a covariance 

matrix, iΣ .  If ( )xfi  represents the prior PDF and if the measurement likelihood function is 

Gaussian then each Gaussian component can be updated via a Kalman filter variant (analogous 

to that of a Gaussian sum filter bank). In the event that the measurement equations are non-linear 

but the likelihood is Gaussian, an EKF or UKF may be used instead. This GMMPF variant is 

designated as a Kalman GMMPF (K-GMMPF).  If the measurement likelihood function is non-

Gaussian then each component of ( )xf  is updated via a particle filter. These concepts are 

applied in the GMMPF and K-GMMPF algorithms described below.  

The GMMPF/K-GMMPF used the K-means algorithm to divide the particle sets for each 

of the r models into m cluster components.  Next, a mean and covariance, [ ]mrmr ,, ,Σµ , was 

computed for each cluster component. Component weights were computed by dividing the 

number of samples in each cluster component by the total number of particles, 
P

mr
mr N

N ,
, =π .  

Note: The expectation maximization (EM) algorithm [49] was initially used to generate the mixture 

parameters but proved unsatisfactory. It was slow and often produced ill conditioned covariance 

matrices. The K-means based parameter extraction algorithm was much faster than EM and also 

proved to be numerically stable.  

6.2 GMMPF and K-GMMPF Algorithms  

The GMMPF/K-GMMPF algorithms both use three kinematic models: CV, CA-positive 

acceleration, and CA-negative acceleration.  The GMMPF algorithm is summarized below and 

depicted in Figure 6.1. 
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1. Begin with a set of PN  “posterior” particles at time k-1: ( )111 ,| −−− kkk rzxp .  Model index 

indicator 1−kr  is defined (for a 3-model filter) as:  

a. r = 1 corresponds to a negative constant acceleration; 

b. r = 2 corresponds to a zero acceleration (constant velocity); 

c. r = 3 corresponds to a positive constant acceleration. 

2. Perform model mixing according to Markov state transition matrix, TP , with transition 

probabilities ijh . 

3. Run each particle through a process model whose kinematics are based on the particle 

model index and obtain a set of  “prior” particles that represents:  ( )11,| −− kkk rzxp  

4. Partition the particle set into three subsets such that each subset contains particles 

having the same model index, r.   

5. Run each particle subset through an FMM parameter extraction algorithm and generate  

a mean vector,
1

,
−k

mrµ , a covariance matrix 
1, −

Σ
kmr , and a mode probability 

1, −kmrπ . Then 

model the prior particle density as a finite Gaussian mixture model:  GMM1, GMM2,  or 

GMM3. Each GMM is, in turn, composed of m Gaussians (m = 3 for the prototype 

algorithm). Note: the k-1 subscript is omitted in the RHS of 6.2-6-4 in order to reduce 

symbol clutter.  

a. GMM1 (i.e. the GMM for r = 1 particles):  

( ) [ ] [ ] [ ]mmmkkk NNNrzxp ,1,1,12,12,12,11,11,11,111 ,,,1,| Σ++Σ+Σ==−− µπµπµπ L   (6.2) 

b. GMM2 (i.e. the GMM for r = 2 particles):  
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( ) [ ] [ ] [ ]mmmkkk NNNrzxp ,2,2,22,22,22,21,21,21,211 ,,,2,| Σ++Σ+Σ==−− µπµπµπ L  (6.3) 

c. GMM3 (i.e. the GMM for r = 3 particles): 

( ) [ ] [ ] [ ]mmmkkk NNNrzxp ,3,3,32,32,32,31,31,31,311 ,,,3,| Σ++Σ+Σ==−− µπµπµπ L  (6.4) 

6. Draw Pmr N
k 1, −

π samples from each GMM mode, [ ]mrmrN ,, ,Σµ , and assign an 

appropriate model index, r, to each particle. 

a. Particle model indices are assigned based on parent GMM model index. 

b. Samples from each Gaussian mode processed via a separate particle filter, 

PFr,m, where r = process model index and m = Gaussian mode index. 

c. Compute particle weights, 
i

mr k
w , , for each model r and mixture m via the SIR 

algorithm.  Also compute the sum of the particle weights for each model/mode: 

∑
∀

=
i

i
mrmr kk

ww ,,
~ .       (6.5) 

d. Compute the new mixture weights according to the method outlined by Vermaak 

[44]: 

 

∑∑
= =

−

−= 3

1 1
,,

,,
,

~

~

1

1

r

M

m
mrmr

mrmr
mr

kk

kk

k

w

w

π

π
π  .      (6.6)  

7. Resample each of the particle filters.  Draw  
kmrN ,  particles from each particle filter, 

where 
kk mrPmr NN ,, π= .  Thus, the particles are drawn from each particle filter according 
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to their new mixture weights and are combined into a single aggregated particle set.  The 

aggregate particle set now approximates the posterior PDF, ( )kkk rzxp ,| . 

a. Filter output at time k is the mean the mean of the particle states: 

∑
=

=
PN

i

i
kk

P
kk x

N
x

1
||

1
ˆ . 

8. Go back to Step-2 and repeat process for next time increment. 

  The K-GMMPF algorithm is summarized below: 

1-5. Same as GMMPF. 

6. Process each GMM component mode, [ ] 1|,, , −Σ kkmrmrN µ , by a Kalman filter (EKF or UKF) 

and compute the posterior PDF, [ ] kkmrmrN |,, ,Σµ  for each component.  

7. Same as GMMPF except that 
kmrw ,

~  is replaced by 
kmr ,Λ , which is the measurement 

likelihood function for each Kalman filter.  

8. Sample 
kmrN ,  particles from [ ] kkmrmrN |,, ,Σµ  where 

kk mrPmr NN ,, π= .  Thus, the 

particles are drawn from each particle filter according to their new mixture weights and are 

combined into a single aggregated particle set.  The aggregate particle set now approximates 

the posterior PDF, ( )kkk rzxp ,| . 

a. Filter output at time k is the mean the mean of the particle states: 

∑
=

=
PN

i

i
kk

P
kk x

N
x

1
||

1
ˆ .  

9. Same as GMMPF.  
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Figure 6.1 Gaussian Finite Mixture Model Particle Filter (GMMPF) 
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7 SCENARIOS AND SIMULATION RESULTS 

This section describes the simulation scenarios and provides the modeling results for 

following algorithms:  

• MRMMPF vs. MMPF, IMPDA, and IMMPDAF;  

• MRMMPF-TBD vs. MMPF-TBD; 

• Extended Spatial Domain Spatial-Domain Multi-Resolution Particle Filtering (E-SD-

MRES-PF); 

• Gaussian Finite Mixture Model Particle Filters (GMMPF). 

7.1 MRMMPF vs. MMPF, IMPDA, and IMMPDAF  

7.1.1 Scenario Description 

The simulation results below compare the performance of the following algorithms: 

• 3-model IMMPDAF: 1-CV and 2-CA models; 

• 4-Pattern IMPDA: Same patterns as MRMMPF; 

• 3-Model MMPF (10,000 particles): 1-CV and 2-CA models (+accel./-accel.); 

• Prototype 4-Pattern MRMMPF (10,000 particles): 2-CH patterns and 2-CH2 

patterns. 

Each algorithm was tested against four different target acceleration scenarios:  

a = +/-5; a = +/-15, a = +/-25, and a = +/- 40 msec-2.  The performance metrics were average x/y 

position root mean square (RMS) errors and average vx/vy velocity RMS errors. Of these metrics, 

the position RMS errors were the key ones. Each target trajectory lasted for 240 sample times, 

and consisted of five segments: 

• Constant velocity segment-1;  
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• Constant acceleration segment-1 (positive acceleration); 

• Constant velocity segment-2; 

• Constant acceleration segment-2 (negative acceleration); 

• Constant velocity segment-3. 

The start-stop sample increments and acceleration levels of each track segment are summarized 

in Table 7-1.  

Table 7-1 Tracking Scenarios 

Track 
Segment

Start 
Smpl

Stop 
Smpl

Acc
Start 
Smpl

Stop 
Smpl

Acc
Start 
Smpl

Stop 
Smpl

Acc
Start 
Smpl

Stop 
Smpl

Acc

CV-1 1 60 0 1 60 0 1 60 0 1 60 0
CA-1 61 90 5 61 90 15 61 73 25 61 69 40
CV-2 91 150 0 91 150 0 74 150 0 70 150 0
CA-2 151 180 -5 151 180 -15 151 163 -25 151 159 -40
CV-3 181 240 0 181 240 0 164 240 0 160 240 0

Track Scenario-4Track Scenario-1 Track Scenario-2 Track Scenario-3

 

The sampling period for each scenario was 2 seconds and the maximum number of false 

alarms was 3 per scan.  The initial target state for each scenario was: 

• (x0,y0) = (15,100 m, 15,100m); 

• (vx0,vy0) = (100 m/sec, 100 m/s); 

• (ax0,ay0) = (0.0 m/sec2, 0.0 m/s2). 

The full-rate measurement noise covariance was Rk = 10,000 I. The number of Monte-

Carlo runs for each simulation was 50.  The mode/pattern Markov transition matrices for the 

various algorithms were: 

 ;

7.03.00.0

025.095.0025.0

0.03.07.0

;

7.02.01.0

08.09.002.0
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


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
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
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



= −−

8.00.02.00.0

0.08.00.02.0

0.007.092.001.0

07.00.001.092.0

;

85.005.005.005.0

05.085.005.005.0

05.005.085.005.0

05.005.005.085.0

PDAIMPMMPFMR hh . 
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7.1.2 Scenario-1 (a = +/- 5 m/s-2) Results 

Scenario-1 has relatively small target maneuvers.  The patterns for the original IMPDA 

developed by Hong and Cui [45] are defined as: 
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The MRMMPF patterns are the same as the IMPDA except the order has been changed:  
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;
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4321 pppp . 

This rearrangement of patterns was done for simple bookkeeping purposes and does not impact 

the MRMMPF algorithm. Thus, in the MRMMPF, p1 corresponds to a negative acceleration, p2 

and p3 correspond to straight line motion, while p4 corresponds to a positive acceleration.   

The x-y RMS position and vx-vy RMS velocity errors for each filter are shown in Figure 7.6 

through Figure 7.9. The true trajectory overlaid with measurements and false alarms is shown in 

Figure 7.2. Figure 7.3, Figure 7.4, Figure 7.4, and Figure 7.5 depict the RMS position errors vs. 

sample increment for the IMMPDAF, IMPDA, MMPF, and the MRMMPF, respectively. Figure 7.6 

- Figure 7.9 depict the RMS velocity errors for each filter type. Figure 7.10 - Figure 7.11 show the 

pattern probabilities for the IMPDA and MRMMPF while Figure 7.13 - Figure 7.14 depict the 

model probabilities for each of the algorithms (i.e. CV-CA for IMMPDAF/MMPF and CH-CH2 for 

IMPDA/MRMMPF). 
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Table 7-2 RMS Position and Velocity Errors (a=+/-5) 

Filter Type X RMS 
Error

Y RMS 
Error

VX RMS 
Error

VY RMS 
Error

IMMPDAF 57.1 57.8 9.2 9.2
IMP-PDA 35.0 35.7 5.1 5.2
MMPF 45.6 44.2 7.9 7.9
MR-MMPF 30.9 31.7 5.2 5.2

Track Scenario-1: a=+/-5
Acceleration Scenario
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Figure 7.1  True Track vs. Noisy Measurements + FA 
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Figure 7.2  IMMPDAF RMS Position Errors (a=+/-5) 
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Figure 7.3 IMPDA RMS Position Errors (a=+/-5) 
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Figure 7.4 MMPF RMS Position Error (a=+/-5) 
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Figure 7.5 MRMMPF RMS Position Error (a=+/-5) 
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Figure 7.6  IMMPDAF RMS Velocity Errors (a=+/-5) 
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Figure 7.7 IMPDA RMS Velocity Errors (a=+/-5) 
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Figure 7.8  MMPF RMS Velocity Errors (a=+/-5) 
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Figure 7.9 MRMMPF RMS Velocity Errors (a=+/-5) 
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Figure 7.10 IMPDA Pattern Probabilities (a=+/-5) 
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Figure 7.11 MRMMPF Pattern Probabilities (a=+/-5) 
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Figure 7.12 IMMPDAF Model Probabilities (a=+/-5) 
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Figure 7.13 IMPDA Model Probabilities (a=+/-5) 
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Figure 7.14 MMPF Model Probabilities (a=+/-5) 
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Figure 7.15 MRMMPF Model Probabilities (a=+/5) 
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7.1.3 Scenario-2 (a = +/- 15 m/s-2) Results 

Scenario-2 has moderate target maneuvers.  The patterns for the MRMMPF are defined 

as: 
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The IMPDA patterns are defined as: 
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The x-y RMS position and RMS velocity errors for each filter are shown in Table 7-3. In order to 

save space, only the RMS position errors will be displayed for this and subsequent scenarios 

(since RMS position error is the key metric).  Thus, Figure 7.16 - Figure 7.19 depict the RMS 

position errors vs. sample increment for the IMMPDAF, IMPDA, MMPF, and the MRMMPF, 

respectively.     

Table 7-3 RMS Position and Velocity Errors (a=+/-15) 

Filter Type
X RMS 
Error

Y RMS 
Error

VX RMS 
Error

VY RMS 
Error

IMMPDAF 60.8 61.6 13.0 13.1
IMP-PDA 49.8 49.6 13.1 13.0
MMPF 51.4 51.0 13.2 13.2
MR-MMPF 34.8 34.2 9.5 9.3

Track Scenario-2: a=+/-15
Acceleration Scenario

 

 



  

 

   

 

94 

0 50 100 150 200 250
0

20

40

60

80

100

120

Time   (k) 

P
os

iti
on

 E
rr

or
s 

( 
R

M
S

 )

IMM-PDA algorithm: solid - x coordinate,  dotted - y coordinate 

 

Figure 7.16 IMMPDAF RMS Position Errors (a=+/-15) 
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Figure 7.17 IMPDA RMS Position Errors (a=+/-15) 
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Figure 7.18 MMPF RMS Position Errors(a=+/-15) 
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Figure 7.19 MRMMPF RMS Position Errors (a=+/-15) 
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7.1.4 Scenario-3 (a = +/- 25 m/s-2) Results 

Scenario-3 has moderate target maneuvers.  The patterns for the MRMMPF are defined 

as: 
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The patterns for the IMPDA are defined as: 
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The x-y RMS position and RMS velocity errors for each filter are shown in Table 7-4. Figure 7.20 

- Figure 7.23, depict the RMS position errors vs. sample increment for the IMMPDAF, IMPDA, 

MMPF, and the MRMMPF, respectively. 

Table 7-4 RMS Position and Velocity Errors (a=+/-25) 

Filter Type
X RMS 
Error

Y RMS 
Error

VX RMS 
Error

VY RMS 
Error

IMMPDAF 61.2 60.6 13.4 13.3
IMP-PDA 48.0 48.0 18.9 19.0
MMPF 48.3 48.7 12.3 12.2
MR-MMPF 30.2 29.6 10.9 10.9

Track Scenario-3: a=+/-25
Acceleration Scenario
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Figure 7.20 IMMPDAF RMS Position Errors (a=+/-25) 
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Figure 7.21 IMPDA RMS Position Errors (a=+/-25) 
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Figure 7.22 MMPF RMS Position Errors (a=+/-25) 
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Figure 7.23 MRMMPF RMS Position Error (a=+/-25) 
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7.1.5 Scenario-4 (a = +/- 40 m/s-2) Results 

Scenario-4 has large target maneuvers.  The patterns for the MRMMPF are defined as: 
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The patterns for the IMPDA are defined as: 
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The x-y RMS position and RMS velocity errors for each filter are shown in Table 7-5.  Figure 7.24 

- Figure 7.27 depict the RMS position errors vs. sample increment for the IMMPDAF, IMPDA, 

MMPF, and the MRMMPF, respectively. 

Table 7-5 RMS Position and Velocity Errors (a=+/-40) 

Filter Type
X RMS 
Error

Y RMS 
Error

VX RMS 
Error

VY RMS 
Error

IMMPDAF 63.1 62.1 17.4 17.3
IMP-PDA 60.9 61.6 28.3 28.3
MMPF 56.7 57.8 16.5 16.5
MR-MMPF 29.8 30.1 13.2 13.2

Track Scenario-4: a=+/-40
Acceleration Scenario
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Figure 7.24 IMMPDAF RMS Position Error (a=+/-40) 
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Figure 7.25 IMPDA RMS Position Errors (a=+/-40) 
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Figure 7.26 MMPF RMS Position Errors (a=+/-40) 

 

0 50 100 150 200 250
0

20

40

60

80

100

120

140

Time  (k) 

 P
os

iti
on

 E
rr

or
s 

( 
R

M
S

 )

 MR-MMPF Algorithm: solid - x coordinate,  dotted - y coordinate 

 

Figure 7.27 MRMMPF RMS Position Errors (a=+/-40) 
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The track position RMS errors for all of the scenarios are summarized in Table 7-6 and 

displayed in Figure 7.28 below.  Since the x-position and y-position RMS errors are nearly 

identical, only the x-position errors are listed.    

Table 7-6 X-Position RMS Error Summary for All Scenarios 

Filter Type a = +\-5 a = +\- 15 a = +\- 25 a = +\- 40
IMMPDAF 57.1 60.8 61.2 63.1
IMP-PDA 35.0 49.8 48.0 60.9
MMPF 45.6 51.4 48.3 56.7
MR-MMPF 30.9 34.8 30.2 29.8

Acceleration Scenario
X-Position RMS ERROR

 

   

X-Position Average RMS Error vs. Track Acceleration Scenario
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Figure 7.28 X-Position RMS Error Summary for All Scenarios 

7.2 MRMMPF-TBD and MMPF-TBD. 

7.2.1 Scenario-1 Description: Mildly Maneuvering Target  

Scenario-1 used a mildly maneuvering target with the following simulation parameters:  
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• Scan Period: T = 1; 

• Track Length: 123 scans with target visible from T = 4 - 120 ; 

o 1st Maneuver: 2sec5.2 −⋅= ma (a.k.a mode CA-2) from T=25-30;  

o 2nd Maneuver: 2sec5.2 −⋅−= ma (a.k.a mode CA-1) from T=55-60; 

o Rest of track is CV motion; 

• Initial State: [ ]′= 0,0,8000,0,200,80000X ; 

• Detection threshold: SNRdB0=τ ; 

• Amplitude Gating Setting: 8max =N measurements; 

• Sensor resolution = 100m x 100m;  

• Sensor accuracy: Computed as a function of resolution and target SNR via 

(5.28); 

• Markov mode transition matrix: 

















=
75.000.025.0

00.075.025.0

10.010.080.0

TP ; 

• Number of Monte-Carlo runs/simulation: 50.   

MRMMPF-TBD performance was compared against MMPF-TBD performance for 

nominal particle counts of 2000, 1000, and 500 particles and for target SNR values of 10dB, and 

7dB.  The SNR value for each target amplitude measurement was obtained by drawing a random 

number from either the noise-only Rayleigh PDF in (4.13) if the target is not visible or the target + 

noise Rayleigh PDF in (4.12) if the target is visible.  For the latter case, it should be noted that the 

linear, not logarithmic form of SNR must be used in the PDF, where 









= 1010
dBSNR

SNR .  The 

algorithm for this Rayleigh random number generator can be found in Leonov and Leonov [67].    

The performance metrics for this analysis were mean position root-mean-square error (RMSE), 

mean velocity RMSE, and mean particle count. 
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7.2.2 Scenario-2: Non-Maneuvering Target 

A second non-maneuvering scenario was also run for target SNR values of 5dB and 4dB.  

The goal here was to compare performance at very low SNR values and to map out the bottom 

end of the performance envelopes of the MRMMPF-TBD and MMPF-TBD algorithms. The 

simulation parameters are the same as in Scenario-1 except for the following:  

• 2sec0 −⋅= ma ;   

• 15max =N ;  

• 

















=
75.000.025.0

00.075.025.0

03.003.094.0

TP . 

7.2.3 Scenario-1 results 

The MRMMPF-TBD position and velocity RMSE performance for Scenario-1 was 

comparable the MMPF-TBD.  These results are summarized in Table 7-7.  The first column of 

Table 7-7 lists the full-rate particle count used by the MMPF-TBD while the second column 

indicates the mean multirate particle count. The multirate count is lower in all cases because CH 

(i.e. non-maneuvering) particles are updated once in every three scans. The third column lists the 

ratio of multirate to full particle counts and provides a metric of the relative computational cost.  

The remaining columns summarize the position and velocity RMSE performance of the two 

algorithms.    

The full-rate MMPF Position and velocity RMSE plots for the 2000 nominal particle case 

at SNR = 10dB are shown below in Figure 7.29 and Figure 7.30.  Since these results were 

representative, plots for the 1000 and 500 particle cases are omitted. The main tradeoff with the 

MRMMPF-TBD was that although error during CV motion was lower, peak error during maneuver 

period was higher than for the MMPF-TBD. Both the MMPF-TBD and MRMMPF-TBD were also 

tested at for a 6dB SNR. At this low SNR, the performance of both algorithms was erratic and 

they often diverged.  Consequently 6dB SNR results are not included in Table 7-7. The model 
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probability plots for the MMPF and MRMMPF-TBD at SNR= 10dB are shown in Figure 7.31 and 

Figure 7.32 below.   

Inspection of Table 7-7 shows that the actual particle cost for the MRMMPF-TBD was 

approximately 59% of the MMPF-TBD. The mean particle count vs. time plot is shown in Figure 

7.33. The plot shows that the full 2000 particles are used at the third-rate (i.e. )3( +kN seconds) 

update points while approximately 700 particles are used at the full-rate updates (i.e. 

)2(),1( ++ kNkN seconds) during CV motion.   

During the maneuvers, more of the particles migrate from the non-maneuvering mode the 

maneuvering modes (i.e. CA-1 or CA-2) and the full-rate particle count increases. Since the 

modes of the particles are governed by Markov transition probabilities, the actual numbers will 

vary slightly between different runs.  Thus, a mean particle count is computed and displayed as a 

function of time in Figure 7.33.  At every third sample point, a third-rate update occurs in which all 

of the 2000 particles are used.  The grand mean particle count is then computed and summarized 

in Table 7-7.  A sensitivity analysis plot of position RMSE vs. particle count for both the MMPF-

TBD and the MRMMPF-TBD are shown in Figure 7.34 and Figure 7.35, respectively.      

7.2.4 Scenario-2 Results 

The results of the Scenario-2 (i.e. non-maneuvering target) are summarized in Table 7-7. 

MRMMPF-TBD performance is clearly superior to the MMPF-TBD for all cases except the 2000 

particle/SNR=5dB case, in which case the performance is approximately equivalent.  It is also 

evident that except for the 2000 particle/SNR=5dB case, the MMPF-TBD tracker diverged.  In 

contrast, the MRMMPF-TBD algorithm successfully tracked the target except for the worst case 

(i.e. 500 particle/SNR=4dB).  Since there were no target maneuvers, the MRMMPF-TBD in 

Scenario-2 used approximately 40% as many particles as the MMPF-TBD.  This occurred 

because the dominant mode was CH, which is only updated once every three scans.  Since there 

were no maneuvers in Scenario-2, model probabilities and particle counts remained nearly 

constant throughout the run and are therefore not displayed.  
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Table 7-7 MRMMPF-TBD vs. MMPF-TBD Performance Summary: Scenario-1 

SNR 
(dB)

Full 
Rate

Multi 
Rate

Particle 
Ratio 

(Multi/Full)

RMSE 
Full 
Rate

RMSE 
Multi 
Rate

Pos. RMSE 
Ratio 

(Multi/Full)

RMSE 
Full 
Rate

RMSE 
Multi 
Rate

Vel. RMSE 
Ratio 

(Multi/Full)

2000 1166 0.583 13.419 12.790 0.953 4.023 3.813 0.948
1000 585 0.585 13.631 13.396 0.983 4.162 3.914 0.940

500 293 0.586 13.720 14.438 1.052 4.345 4.102 0.944
2000 1188 0.594 18.973 18.128 0.955 5.130 4.856 0.947
1000 596 0.596 18.882 19.669 1.042 5.141 5.091 0.990

500 299 0.599 19.716 19.257 0.977 5.449 4.926 0.904

Mean Time Avg. Velocity 

10

7

Mean Number of Particles Mean Time Avg. Position 

 

 

Table 7-8 MRMMPF-TBD vs. MMPF-TBD Performance Summary: Scenario-2 

SNR 
(dB)

Full 
Rate

Multi 
Rate

Particle 
Ratio 

(Multi/Full)

RMSE 
Full 
Rate

RMSE 
Multi Rate

Pos. RMSE 
Ratio 

(Multi/Full)

RMSE 
Full 
Rate

RMSE 
Multi 
Rate

Vel. RMSE 
Ratio 

(Multi/Full)

2000 796 0.398 25.384 26.119 1.029 3.838 3.810 0.993
1000 400 0.400 261.896 29.774 0.114 5.960 3.504 0.588
500 199 0.398 641.476 26.502 0.041 11.458 3.921 0.342

2000 807 0.403 388.808 41.205 0.106 10.117 4.848 0.479
1000 402 0.402 396.842 31.355 0.079 12.567 4.283 0.341
500 203 0.406 703.138 420.259 0.598 16.050 10.745 0.670

4

Mean Number of Particles Mean Time Avg. Position RMSE Mean Time Avg. Velocity 

5
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Figure 7.29  MMPF-TBD vs. MRMMPF-TBD Position RMSE (2000 Particles, SNR = 10dB) 

 

Figure 7.30 MMPF-TBD vs. MRMMPF-TBD Velocity RMSE (2000 Particles, SNR = 10dB) 
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Figure 7.31 MMPF-TBD Model Probabilities (2000 Particles, SNR = 10dB) 
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Figure 7.32  MRMMPF-TBD Model Probabilities (2000 Particles, SNR = 10dB) 
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Figure 7.33 MRMMPF-TBD Mean Particle Count vs. Time (2000 Particles, SNR = 10dB) 
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Figure 7.34 MMPF-TBD Position RMSE vs. Particle Count Sensitivity 
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Scenario-1: Position RMSE vs. Number of 
Particles (MRMMPF-TBD)
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Figure 7.35 MRMMPF-TBD Position RMSE vs. Particle Count Sensitivity 

7.3 E-SD-MRES-PF vs. Standard Uni-Resolutional Bootstrap Filter (BPF) 

The E-SD-MRES-PF was compared against a standard BPF for the three scenarios described 

below.  The key difference between the scenarios was the type and complexity of the initial PDF.  

The simple scenario featured an initial PDF that was a single Gaussian.  The more complex 

scenarios featured initial PDFs that were Gaussian sums composed of widely dispersed modes 

and different variances.  The key performance metric was the particle efficiency ratio, PER , which 

is defined as the number of uni-resolution particles to multiresolutional particles for a given RMSE 

performance level: 
mresP

uniP
PE N

N
R

_

_= .  
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7.3.1 E-SD-MRES-PF Scenario Description 

7.3.1.1 Scenario-1 (Complex 5-Modal Initial PDF) 

Scenario-1 parameters are listed below: 

• Highly non-linear state equation: ( ) ( )2
2
/

//1 /

/

log
1

5
6.0

kk

kk

x
x

x
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kkkk +
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• Highly non-linear measurement equation: 
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• Number of time steps: 30;  

• Number of Monte-Carlo iterations per simulation:100; 

• Initial particle count (prior to thresholding): 10000 =PN ; 

• Multi-Resolution thresholds varied from 0 to 10-3;   

• Initial PDF: Complex Gaussian mixture with 5 widely spaced modes and widely different 

variances: 

[ ] [ ] [ ] [ ] [ ].3.0,95,3.001.0,55,2.01.0,30,1.02.0,25,1.04,10,3.00 xNxNxNxNxNp ++++=
 

7.3.1.2 Scenario-2 (Bi-Modal Initial PDF) 

All parameters are the same as Scenario-1 except for initial PDF: 

• Initial PDF: Gaussian mixture with 2 widely spaced modes and different variances: 

[ ] [ ]4,20,4.02,10,6.00 xNxNp += . 

7.3.1.3 Scenario-3 (Gaussian Initial PDF) 

All parameters are the same as Scenario-1 except for initial PDF: 

• Initial PDF: Single Gaussian: [ ]4,15,0 xNp = . 

7.3.2 Results 

The results for Scenario-1 are summarized in Table 7-9.  As is evident from Figure 7.36, 

the RMSE  of the E-SD-MRES-PF remained nearly constant except at very low particle counts.   
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Table 7-9 Uni-Res vs. Multi-Res RMSE (Scenario-1) 

Multi-Res 
Threshold

Particle 
Count

Uni-Res 
RMSE (For 

Same # 
Particles)

Multi-Res 
RMSE

Delta: Multi-
Res vs. Uni-

Res

% RMSE 
Delta

1.0E-03 25 0.786 0.764 -0.023 -3.00%
1.0E-04 56 0.743 0.680 -0.063 -9.25%
1.0E-05 145 0.725 0.676 -0.050 -7.34%
1.0E-06 405 0.695 0.677 -0.018 -2.60%
0.0E+00 1008 0.680 0.655 -0.025 -3.85%

Scenario-1: Uni-Res vs. Multi-Res RMSE

 

 

 

Figure 7.36 Uni-Res vs. Multi-Res Performance (Scenario-1) 

In contrast, the RMSE of the uni-res BPF steadily worsened as the particle count was 

reduced. The particle efficiency ratio, PER , was determined by extending a horizontal constant 

RMSE line (shown as a dotted green line in )  from the knee of the curve of the SD-MRES-PF 

RMSE plot to the point at which this line intersected the uni-res BPF RMSE curve. The knee of 
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the curve was chosen because it was at this point that SD-MRES-PF RMSE began to rapidly 

degrade.  In Scenario-1, this resulted in 9.17
56

1000

_

_ ===
mresP

uniP
PE N

N
R .  

The results for Scenario-2 are summarized in Table 7-10 and Figure 7.37.  Although the 

SD-MRES-PF still outperformed the uni-res BPF, the improvement was much less noticeable 

than in Scenario-1.    In Scenario-2, this resulted in 09.4
171

700
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_ ===
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uniP
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N
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Table 7-10 Uni-Res vs. Multi-Res RMSE (Scenario-2) 

Multi-Res 
Threshold

Particle 
Count

Uni-Res 
RMSE (For 

Same # 
Particles)

Multi-Res 
RMSE

Delta: Multi-
Res vs. Uni-

Res

% RMSE 
Delta

1.0E-03 29 0.754 0.734 -0.021 -2.82%
1.0E-04 68 0.695 0.682 -0.013 -1.87%
1.0E-05 171 0.672 0.652 -0.020 -3.11%
1.0E-06 475 0.656 0.650 -0.006 -0.94%
0.0E+00 1008 0.647 0.649 0.002 0.29%

Scenario-2: Uni-Res vs. Multi-Res RMSE

 

 

The results for Scenario-3 are summarized in Table 7-11 and Figure 7.38.  For this case, 

the SD-MRES-PF offered no improvement over the uni-res BPF (i.e. 1=PER ). 

The particle efficiency ratios for all of the scenarios are summarized in Figure 7.39. 
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Figure 7.37 Uni-Res vs. Multi-Res Performance (Scenario-2) 

Table 7-11 Uni-Res vs. Multi-Res RMSE (Scenario-3) 

Multi-Res 
Threshold

Particle 
Count

Uni-Res 
RMSE (For 

Same # 
Particles)

Multi-Res 
RMSE

Delta: Multi-
Res vs. Uni-

Res

% RMSE 
Delta

1.0E-03 29 0.768 0.729 -0.039 -5.34%
1.0E-04 67 0.689 0.675 -0.014 -2.02%
1.0E-05 169 0.656 0.662 0.007 0.99%
1.0E-06 467 0.641 0.648 0.007 1.07%
0.0E+00 1008 0.660 0.644 -0.016 -2.54%

Scenario-3: Uni-Res vs. Multi-Res RMSE
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Figure 7.38 Uni-Res vs. Multi-Res Performance (Scenario-3) 

 

Figure 7.39 Particle Efficiency Ratio Summary 
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7.4 GMMPF AND K-GMMPF  

The goal of the finite mixture modeling approach was to reduce particle counts while 

maintaining multimodality.  Consequently, the GMMPF and K-GMMPF algorithms were both 

tested against a conventional bootstrap MMPF in a single target scenario in order to compare the 

particle counts vs. RMSE performance.   

7.4.1 GMMPF AND K-GMMPF Scenario 

The single target scenario used the following parameters: 

• 3-dimensional state vector: [ ]′xx avx ,, , (clustering only performed on position-

velocity dimensions); 

• Single target with no false alarms (PFA = 0); 

• Probability of detection and gating is unity (PD = 1, PG = 1); 

• Target acceleration:  a = +/- 40; 

• Scan Period: T=8 seconds; 

• Number of time steps per run: 60; 

• Measurement error = 100m; 

• Number of Runs = 50.  

The performance metrics were position RMSE, velocity RMSE, and particle count. The 

“baseline” case was a 1,000-particle MMPF.  Results for a 50 run simulation are listed in 

below in Table 7-12. 
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7.4.2 GMMPF and K-GMMPF Results 

It is evident that both the GMMPF and K-GMMPF provided comparable RMSE 

performance to the MMPF but with a smaller particle count. It is interesting to note that the K-

GMMPF with 200 particles performed nearly as well as the MMPF with 1000 particles but at 20% 

of the particle cost (Note: at 200 particles, the MMPF completely lost track of the target).   

The GMMPF and K-GMMPF were also tested in a two-target scenario in which the 

targets nearly merged then separated.  In this scenario, the filter diverged when K-means was 

used but maintained track when EM was used.  This was the only scenario in which EM proved 

superior to K-means.  

Table 7-12 GMMPF/K-GMMPF Results 

Algorithm 
Number of 
Particles

Max Num 
Gaussians 
per Model

RMS-X 
Error

RMS-Vx 
Error

Particle Cost 
(Relative to 
Baseline)

MMPF (Baseline) 1000 N/A 69.5 17.9 1.00
GMMPF 600 3 68.9 16.5 0.60

K-GMMPF 600 3 69.6 15.5 0.60
K-GMMPF 200 3 70.7 17.8 0.20

Tracking Scenario: Max Accel = 40 
Number of Runs = 50

 

 

7.5 Summary and Discussion of Results 

Chapter 7 presented results from the simulations of the following algorithms: 

• MRMMPF vs. MMPF, IMPDA, and IMMPDAF;  

• MRMMPF-TBD vs. MMPF-TBD; 

• Extended Spatial Domain Spatial-Domain Multi-Resolution Particle Filtering (E-SD-

MRES-PF); 

• Gaussian Finite Mixture Model Particle Filter (GMMPF) and Kalman GMMPF. 
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7.5.1 MMPF and MRMMPF Summary 

It is evident that the particle filter-based MMPF and MRMMPF algorithms significantly 

outperformed the Kalman-based algorithms.  The MRMMPF outperformed all of the other 

algorithms in terms of both RMS position and velocity error.  The key drawback of the particle 

filter algorithms, however, was that run times were between 2-3 orders of magnitude greater than 

that of Kalman-based algorithms. Consequently, next the step was to examine methods that 

could reduce particle filter computational costs while maintaining performance.  

7.5.2 MMPF-TBD and MRMMPF-TBD Summary 

The MRMMPF-TBD had comparable error performance (or better performance for the 

low SNR cases) to the MMPF-TBD with approximately 40% to 60% of the particle cost of the 

latter (depending on the target maneuver scenario). This performance could probably be 

improved further by developing a better importance density (i.e. one that incorporates the current 

measurement).     

7.5.3 E-SD-MRES-PF Summary 

The E-SD-MRES-PF provided large particle savings when the initial PDF was a complex 

Gaussian sum with widely dispersed modes.  This is evident from the particle efficiency ratio RPE.  

As the number of Gaussians and the complexity of the initial PDF increased, the RPE of the E-SD-

MRES-PF also increased.  Conversely, for simple PDF scenarios, the E-SD-MRES-PF does not 

provide any RPE improvement.  A plausible explanation for this trend is that complex PDFs with 

widely spaced modes have large areas where the PDF changes relatively slowly interspersed 

with a few areas in which the value of the PDF changes more rapidly.  The areas that change 

slowly can be adequately modeled as a low-pass process and hence require relatively few 

samples while the few areas that change rapidly also require high-pass and high-high-pass 

components. The data compression ability of E-SD-MRES-PF allows it to concentrate particles on 
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those areas that are rapidly changing.  In contrast, the regions that are changing slowly can be 

adequately described with fewer samples.      

7.5.4 GMMPF AND K-GMMPF Summary 

The GMMPF and K-GMMF, using K-means clustering, provided comparable single-target 

performance to the conventional MMPF but at substantially lower particle counts.  In addition, the 

K-GMMPF was able to maintain track at 200 particles while the MMPF lost track at 200 particles. 

In a limited 2-target scenario, the K-means-based GMMPF and K-GMMPF diverged while their 

EM-based counterparts maintained track.   
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8 CONCLUSIONS 

The dissertation explored the impact of non-Gaussian and multi-modal PDFs on target 

tracking.  It first presented the MRMMPF tracking algorithm and determined that the MRMMPF 

produces a smaller RMSE than the IMMPDAF, IMPDA and full-rate MMPF (for the same particle 

count). During the course of this research, it became apparent that particle filter tracking 

algorithms were computationally costly and resulted in large runtimes.   Consequently, the 

remainder to dissertation focused mainly on developing particle filter-based tracking algorithms 

that provide good performance at a reduced particle count.       

The MRMMPF concept was then extended to include tracking of low SNR targets, 

resulting in the MRMMPF-TBD.  The MRMMPF-TBD had comparable error performance to the 

full-rate MMPF-TBD with approximately 40% to 60% of the particle cost of the latter (depending 

on the target maneuver scenario).  Additionally, when the MRMMPF-TBD was applied to very 

low-SNR, non-maneuvering targets, it provided both particle savings and much better RMSE 

performance than the MMPF-TBD.  

The next topic examined was mutli-resolutional particle filtering. This dissertation 

developed an E-SD-MRES-PF that extended the basic multiresolutional PF and provided 

comparable RMSE performance and much lower particle costs.  The E-SD-MRES-PF provided 

the greatest particle savings for complex, multi-modal PDFs with widely spaced modes.  

The last area that the dissertation examined was particle filter applications of finite 

mixture models (FMM).  The first two FMM-based algorithm developed were the single-target 

GMMPF and the K-GMMPF.  Both of these algorithms provided comparable RMSE performance 

to the standard MMPF but at substantially lower particle cost.     
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9 FUTURE WORK 

9.1 MMPF-TBD and MRMMPF-TBD 

This performance of MMPF-TBD and MRMMPF-TBD could probably be improved further 

by developing a better importance density (i.e. one that incorporates the current measurement).  

Both of these algorithms use the prior for the importance density. This arrangement proved 

adequate for the full-rate MMPF-TBD, which uses a 2-dimensional (2-D) position likelihood 

function. In contrast, the MRMMPF-TBD uses a 4-D position likelihood function which is quite 

narrow relative to the prior.  It was necessary to artificially increase the process noise in order to 

ensure that the prior PDF provided support for the likelihood function.  A better importance 

density would likely result in reduced RMSE.   

Another potential MMPF-TBD and MRMMPF-TBD improvement would to develop an 

adaptive amplitude gate. At higher SNR values, the amplitude likelihood function differences 

between target generated 1/3-R measurements and noise-generated measurements are large. 

Thus, a smaller gate size should be sufficient.  Conversely, at lower SNR values a larger 

amplitude gate is required to capture the true target measurement.  An additional improvement 

could potentially be obtained by applying approximation methods for determining the PDF of 

sums of Rayleigh RVs such as are described in [68] and [69] or by computing the 1/3-R PDF 

numerically via a FFT-based discrete convolution of the 1-R PDFs. 

Another area worth exploring would be to incorporate target feature information into the 

MRMMPF-TBD algorithm for the purpose of joint tracking and identification (JTID).  In realistic 

military tracking scenarios one must consider target ID in order to avoid fratricide.  JTID might 

also assist the data association process by helping to further separate targets from clutter.  
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9.2 E-SD-MRES-PF 

The E-SD-MRES-PF only operates on single dimension.  Many particle filtering 

applications (especially for target tracking) require a multidimensional state vector.  Thus, for an 

E-SD-MRES-PF to be practical for these applications, it must also be multidimensional.  One 

possible way to accomplish this might be via a 2-D discrete wavelet transform that acted on the 

X-Y dimensions but did not process the velocity and acceleration components of each particle.  

Using the explicit method, redundant particles (based on X and Y component thresholding) would 

be removed.  The velocity/acceleration components would then be taken “as is” from the particles 

that survived.  

If the multi-dimensional E-SD-MRES-PF proved practical, it should then be possible to 

combine both multirate and multiresolutional processing in a single tracking filter, resulting in 

even greater particle savings.  

9.3  GMMPF and K-GMMPF 

The GMMPF and K-GMMPF are three-dimensional tracking filters.  It would be useful to 

extend the GMMPF and K-GMMPF to at least six dimensions so that they could process entire 

target state vectors. It would also be useful to provide them with the ability to track multiple 

targets. The main roadblock to this appears to be the EM algorithm.  At dimensions greater than 

two, the EM algorithm often became unstable and generated poorly conditioned or even singular 

covariance matrices. In addition, EM is much slower than K-means. Thus, research that focused 

on developing a more stable and faster variant of the EM algorithm would be a useful endeavor in 

future GMMPF development. 
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APPENDIX-A: LIST OF ABBREVIATIONS 

1-R   Full-rate 

1/3-R   Third Rate 

BPF   Bootstrap Particle Filter 

BDF    Distribution filter 

CA   Constant Acceleration 

CH    Highpass 

CH2   Constant High-Highpass 

CV   Constant Velocity 

DWT   Discrete Wavelet Transform 

EKF    Kalman Filter 

E-SD-MRES-PF Extended Spatial Domain Multi-Resolution Particle Filter   

FMM   Finite Mixture Model 

GMMPF  Gaussian Mixture Model Particle Filter 

GHF   Gauss-Hermite Filter  

GSF   Gaussian Sum Filter 

IDWT   Inverse Discrete Wavelet Transform 

IMM   Interacting Multiple Model 

IMMPDAF  Interacting Multiple Model Probabilistic Data Association Filter 

IMPDA   Interacting Multipattern Data Association 

JPDA   Joint Probabilistic Data Association 

K-GMMPF  Kalman Gaussian Mixture Model Particle Filter 
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KF   Kalman Filter  

MMPF    Multiple Model Particle Filter 

MMPF-TBD   Multiple Model Particle Filter Track Before Detect 

MRMMPF  Multirate Multiple Model Particle Filter 

MRMMPF-TBD  Multirate Multiple Model Particle Filter Track Before Detect 

PDA   Probabilistic Data Association 

PDF   Probability density function 

PF   Particle Filter 

SD-MRES-PF  Spatial Domain Multi-Resolution Particle Filter   

SIR   Sample Importance Resample 

TBD   Track Before Detect 

UKF   Unscented Kalman Filter 
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