4 research outputs found

    An Application Oriented Integrated Unequal Clustering Algorithm for Wireless Sensor Network

    Get PDF
    Wireless Sensor Network consists of group of interconnected devices which are used to sense and exchange the gathered data from the sensing field to understand the perceptual information of the real world. For the importance of monitoring the real world environment, this paper introduces Application Based Integrated Framework for Unequal Clustering Algorithm in WSN. In this chapter the proposed algorithms are integrated together to comprise the data aggregation, cluster formation, Cluster Head election and re-clustering for prolonging the network lifetime in both small scale and large scale application of WSN. The proposed algorithms are chosen based on the required parameters for specified applications. The result shows that the proposed algorithm selects the preeminent suited clustering algorithm for particular applications significantl

    Joint routing protocol and image compression algorithm for prolonging node lifetime in wireless sensor network

    Get PDF
    Wireless sensor network (WSN) are among the emerging modern technologies, with a vast range of application in different areas. However, the current WSNs technology faces a key challenge in terms of node lifetime and network connectivity due to limited power resource of the node. The conventional data routing protocols do not consider the power available at the node on the path from source to sink, thus they result in the exhaustion and eventual death of nodes surrounding the sink node, thus generating routing holes reducing the network throughput. In order to address the issue in this research presents a novel protocol based on equal power consumption at all network nodes. The consume power fairly (CPF) protocol achieves a high power efficiency by distributing power consumption equal on all the network nodes. The protocol compares the power available on all the paths from source to sink and then selects the path with highest power. Additionally in order to reduce the transmitted data size, a lossy image compression technique based on adaptive Haar wavelet transform has been implemented. The simulation designs based on MATLAB consists of 100 randomly distributed nodes over an area of 100 m2, with 30 Kbits and 40 Kbits of packet sizes. The comparison between the proposed CPF protocol and the energy aware protocol has been carried out on the basis of number of iterations and the dead nodes in the network. Thorough simulations have been carried out based on different number of network iterations to validate the potential of the proposed solution. Moreover the implemenetation of multiscale retinex technique results in image enhancement and impoved classification. An implementation of the CPF protocol and image compression technique on a 100 node network with 500 iterations, results in the death of 13 nodes as compard to 38 dead nodes with energy aware protocol for the same network. Thus the performance comparision of CPF and energy aware protocol demonstrates an improvement of 81.19% for the energy consumption of the network. Thus the proposed algorithm prolongs the network under consideration by 57 – 62% as compared to networks with conventional routing protocols

    Impact of Random Deployment on Operation and Data Quality of Sensor Networks

    Get PDF
    Several applications have been proposed for wireless sensor networks, including habitat monitoring, structural health monitoring, pipeline monitoring, and precision agriculture. Among the desirable features of wireless sensor networks, one is the ease of deployment. Since the nodes are capable of self-organization, they can be placed easily in areas that are otherwise inaccessible to or impractical for other types of sensing systems. In fact, some have proposed the deployment of wireless sensor networks by dropping nodes from a plane, delivering them in an artillery shell, or launching them via a catapult from onboard a ship. There are also reports of actual aerial deployments, for example the one carried out using an unmanned aerial vehicle (UAV) at a Marine Corps combat centre in California -- the nodes were able to establish a time-synchronized, multi-hop communication network for tracking vehicles that passed along a dirt road. While this has a practical relevance for some civil applications (such as rescue operations), a more realistic deployment involves the careful planning and placement of sensors. Even then, nodes may not be placed optimally to ensure that the network is fully connected and high-quality data pertaining to the phenomena being monitored can be extracted from the network. This work aims to address the problem of random deployment through two complementary approaches: The first approach aims to address the problem of random deployment from a communication perspective. It begins by establishing a comprehensive mathematical model to quantify the energy cost of various concerns of a fully operational wireless sensor network. Based on the analytic model, an energy-efficient topology control protocol is developed. The protocol sets eligibility metric to establish and maintain a multi-hop communication path and to ensure that all nodes exhaust their energy in a uniform manner. The second approach focuses on addressing the problem of imperfect sensing from a signal processing perspective. It investigates the impact of deployment errors (calibration, placement, and orientation errors) on the quality of the sensed data and attempts to identify robust and error-agnostic features. If random placement is unavoidable and dense deployment cannot be supported, robust and error-agnostic features enable one to recognize interesting events from erroneous or imperfect data

    A topology control protocol based on eligibility and efficiency metrics

    No full text
    The question of fairness in wireless sensor networks is not studied very well. It is not unusual to observe in the literature fairness traded for low latency or reliability. However, a disproportional use of some critical nodes as relaying nodes can cause premature network fragmentation. This paper investigates fairness in multi-hop wireless sensor networks and proposes a topology control protocol that enables nodes to exhaust their energy fairly. Moreover, it demonstrates that whereas the number of neighboring nodes with which a node should cooperate depends on the density of the network, increasing this number beyond a certain amount does not contribute to network connectivity
    corecore