4,019 research outputs found

    EARLY PERFORMANCE PREDICTION METHODOLOGY FOR MANY-CORES ON CHIP BASED APPLICATIONS

    Get PDF
    Modern high performance computing applications such as personal computing, gaming, numerical simulations require application-specific integrated circuits (ASICs) that comprises of many cores. Performance for these applications depends mainly on latency of interconnects which transfer data between cores that implement applications by distributing tasks. Time-to-market is a critical consideration while designing ASICs for these applications. Therefore, to reduce design cycle time, predicting system performance accurately at an early stage of design is essential. With process technology in nanometer era, physical phenomena such as crosstalk, reflection on the propagating signal have a direct impact on performance. Incorporating these effects provides a better performance estimate at an early stage. This work presents a methodology for better performance prediction at an early stage of design, achieved by mapping system specification to a circuit-level netlist description. At system-level, to simplify description and for efficient simulation, SystemVerilog descriptions are employed. For modeling system performance at this abstraction, queueing theory based bounded queue models are applied. At the circuit level, behavioral Input/Output Buffer Information Specification (IBIS) models can be used for analyzing effects of these physical phenomena on on-chip signal integrity and hence performance. For behavioral circuit-level performance simulation with IBIS models, a netlist must be described consisting of interacting cores and a communication link. Two new netlists, IBIS-ISS and IBIS-AMI-ISS are introduced for this purpose. The cores are represented by a macromodel automatically generated by a developed tool from IBIS models. The generated IBIS models are employed in the new netlists. Early performance prediction methodology maps a system specification to an instance of these netlists to provide a better performance estimate at an early stage of design. The methodology is scalable in nanometer process technology and can be reused in different designs

    Behavioral Modelling of Digital Devices Via Composite Local-Linear State-Space Relations

    Get PDF
    This paper addresses the generation of accurate and efficient behavioral models of digital ICs. The proposed approach is based on the approximation of the device port characteristics by means of composite local linear state-space relations whose parameters can effectively be estimated from device port transient responses via well-established system identification techniques. The proposedmodels have been proven to overcome some inherent limitations of the state-of-the-art models used so far, and they can effectively be implemented in any commercial tool as Simulation Program with Integrated Circuit Emphasis (SPICE) subcircuits or VHDL-AMS hardware descriptions. A systematic study of the performances of the proposed state-space models is carried out on a synthetic test device. The effectiveness of the proposed approach has been demonstrated on a real application problem involving commercial devices and a data link of a mobile phon

    Simplified topology for integrated circuit buffer behavioural models

    Get PDF
    This paper addresses the behavioural modelling of digital integrated circuit buffers for performance assessment of high-speed data links. A new modelling technique, with several important advantages is described. All the requirements of black-box identification are met: the approach relies exclusively on the observation of the external port voltages and currents, thus allowing the extraction of models that mimic the operation of real devices without insight on their internal structure. Furthermore, unlike the standard algorithms currently used in EDA tools, the method described in this study provides a straightforward solution to modelling the input-output behaviour. Good model performance in overclocking conditions is an important advantage. This study also investigates the possibility of accounting for power-supply voltage variations and provides a simple solution

    Versatile surrogate models for IC buffers

    Get PDF
    In previous papers [1,2] the authors have investigated the use of Volterra series in the identification of IC buffer macro-models. While the approach benefited from some of the inherent qualities of Volterra series it preserved the two-state paradigm of earlier methods (see [3] and its references) and was thus limited in its versatility. In the current paper the authors tackle the challenge of going beyond an application or device-oriented approach and build versatile surrogate models that mimic the behavior of IC buffers over a wide frequency band and for a variety of loads thus achieving an unprecedented degree of generality. This requires the use of a more general system identification paradig

    Reliable Eye-Diagram Analysis of Data Links via Device Macromodels

    Get PDF
    This paper addresses the impact of device macromodels on the accuracy of signal integrity and performance predictions for critical digital interconnecting systems. It exploits nonlinear parametric models for both single-ended and differential devices, including the effects of power supply fluctuations and receiver bit detection. The analysis demonstrates that the use of well-designed macromodels dramatically speeds up the simulation as well it preserves timing accuracy even for long bit sequences
    • 

    corecore