195,373 research outputs found

    Exploring the Quality of Course Deployment in Engineering Education: A Quantitative Assessment using Quality Function Deployment

    Get PDF
    Due to the rapid changes of the industrial landscape, engineering education is becoming more dynamic in meeting the needs of the 21st century. Many industries may likely prefer special skills over traditional degrees, which necessitates the to keep updating our course curricula in response to the required skillsets. At the same time, it is very important to understand students’ perceptions of this rapidly changing educational portfolio. This paper attempts to explore how our rapidly changing course curricula can develop students’ skillsets while maintaining their expectations and adaptability. To do so, we conduct a well-organized anonymous student survey on the different aspects of a particular course and evaluate using the Quality Function Deployment (QFD) tool, subsequently. The course titled “Design for Manufacturability” (MFG 5311) is used as the case study in this study, where 17 students enrolled in this course were considered as the study population. The course was offered as one of the core courses of the Industrial, Manufacturing, and Systems Engineering (IMSE) department at the University of Texas at El Paso (UTEP) in the Spring 2021 Semester. From this study, we extract several key findings regarding curricular enhancement, students’ expectations, and technical skillsets development from students’ perspectives

    Technology as an economic catalyst in rural and depressed places in Massachusetts

    Get PDF
    This paper uses case studies, including two cities (Lynn and New Bedford), a sub-city district (Roxbury) and two towns in rural Franklin County (Greenfield and Orange), to examine the role of technology as a potential economic catalyst in rural and depressed places in Massachusetts. Though the five target areas vary in size, density, geographic area, demographic characteristics and economic resources, each exhibits chronic patterns of economic distress related to the decline of manufacturing, construction and other key industries

    Process and machine system development for the forming of miniature/micro sheet metal products

    Get PDF
    This paper reports on the current development of the process for the forming of thin sheet-metal micro-parts (t < 50”m) and the corresponding machine system which is part of the research and technological development of an EU funded integrated project - MASMICRO ("Integration of Manufacturing Systems for the Mass-Manufacture of Miniature/Micro-Products" (/www.masmicro.net/). The process development started with qualification of the fundamentals related to the forming of thin sheet-metals in industrial environment, for which a testing machine and several sets of the testing tools were developed. The process was further optimised, followed by new tool designs. Based on the experience gained during the process development, a new forming press which is suitable for industrial, mass-customised production, has been designed

    Development and implantation of a Thesaurus of Manufacturing Engineering terms

    Get PDF
    Present work shows the teaching-learning experience developed in the Department of Manufacturing Engineering of the University of Malaga. This experience is based on the need to generate a specific glossary of manufacturing engineering terms to be used as a study guide by the students. Eventually, it was decided to make a Thesaurus that would be aimed at a teaching activity. Also, it would take part in the educational innovation project PIE 13-025 of the University of Malaga, within the biennium 2013/2015. The first step consisted of the design of Thesaurus pattern, taking into account the kind of information that it was necessary include in it. Afterward, this pattern would be place on the Virtual Campus and the student would have to complete the information required. Finally, the results obtained in the different applications of this activity would be analyzed and evaluated.Universidad de MĂĄlaga. Campus de Excelencia Internacional AndalucĂ­a Tech

    An analysis of students’ behaviour in a Learning Management System through Process Mining

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Information Systems and Technologies ManagementThe exponential growth and transformation of the Internet and information technology in recent years led to the development of several analytical tools. As is the case with process mining, it emerged to fulfill the need to extract and analyze information from event logs by representing it in the form of process models. Process mining is an acclaimed tool and proved crucial in several areas, from healthcare to manufacturing and finance. Nevertheless, and despite the crucial role of digital systems in supporting learning activities and generating large amounts of data about learning processes, limited research focused on process mining applied to the educational context. Therefore, the aim of this dissertation is to apply a process-oriented approach and demonstrate the applicability of process mining techniques to explore and analyze students’ behavior and interaction patterns, based on data collected from Moodle, the widely used Learning Management System. We cover definitions of process mining, education, and a detailed search of the existing literature on educational process mining during this work. Furthermore, the paper analyzes and discusses the findings of the study that combines process mining techniques, specifically process discovery implanted in the Disco tool, with cluster analysis. Through the application of these two techniques, it was possible to recognize the relationship between the students’ behavior registered in the process models and the success of the students in the course, along with the general and specific information about the students’ learning paths. Besides, we obtained findings that allow us to predict the group of students at risk of failing. Finally, with the analysis of these results, we were able to provide improvement proposals and recommendations to enhance the learning experience

    An experience of modularity through design

    Get PDF
    We aim to utilise the experiences of a marine industry-based design team to determine the need for research into a modular design methodology in an industrial environment. In order to achieve this we couple the outcome of a current design project with the findings of a recent literature survey with the objectives of firstly, clarifying why a methodology is required and, secondly, defining the key elements which the methodology would have to realise or address. The potential benefits of modularity have long been recognised in the shipbuilding industry. Many shipbuilders adopt a 'module' approach to ship construction whereby the ship structure is separated into a number of large structural 'blocks' to ease manufacture and manoeuvrability during construction. However, as understanding of the capabilities of modularity as a design tool develops there is increased interest in capitalising on the differing life phase benefits of modularity such as reduced design costs and time, increased ease of maintenance, upgrade, re-use, redesign and standardisation across individual products and product families. This is especially pertinent in naval shipbuilding where the maintenance of a class of ship requires that all previously designed ships in that class must be of similar outfitting and must be able to interface with the new ship, in terms of propulsion, weapons, communications and electronics, and thus often require some form of retrofit. Therefore, many shipbuilders are moving from viewing modularity as a purely 'manufacturing' principle to a design centred principle. However, as noted by Chang and Ward 'none of the design theories or tools in the mechanical world serves as an articulate procedure for designers to follow in practising modular design'. Thus, despite the identification of a need to introduce modular principles at an earlier stage than detail design and construction, there is little aid in the form of tools, techniques and methodologies for designers in practice

    Enhancing the employability of fashion students through the use of 3D CAD

    Get PDF
    The textile and apparel industry has one of the longest and most intricate supply chains within manufacturing. Advancement in technology has facilitated its globalisation, enabling companies to span geographical borders. This has led to new methods of communication using electronic data formats. Throughout the latter part of the 20th Century, 2D CAD technology established itself as an invaluable tool within design and product development. More recently 3D virtual simulation software has made small but significant steps within this market. The technological revolution has opened significant opportunities for those forward thinking companies that are beginning to utilise 3D software. This advanced technology requires designers with unique skill sets. This paper investigates the skills required by fashion graduates from an industry perspective. To reflect current industrial working practices, it is essential for educational establishments to incorporate technologies that will enhance the employability of graduates. This study developed an adapted action research model based on the work of Kurt Lewin, which reviewed the learning and teaching of 3D CAD within higher education. It encompassed the selection of 3D CAD software development, analysis of industry requirements, and the implementation of 3D CAD into the learning and teaching of a selection of fashion students over a three year period. Six interviews were undertaken with industrial design and product development specialists to determine: current working practices, opinions of virtual 3D software and graduate skill requirements. It was found that the companies had similar working practices independent of the software utilised within their product development process. The companies which employed 3D CAD software considered further developments were required before the technology could be fully integrated. Further to this it was concluded that it was beneficial for graduates to be furnished with knowledge of emerging technologies which reflect industry and enhance their employability skills
    • 

    corecore