16 research outputs found

    Reasoning about orchestrations of web services using partial correctness

    Get PDF
    Abstract A service is a remote computational facility which is made available for general use by means of a wide-area network. Several types of service arise in practice: stateless services, shared state services and services with states which are customised for individual users. A service-based orchestration is a multi-threaded computation which invokes remote services in order to deliver results back to a user (publication). In this paper a means of specifying services and reasoning about the correctness of orchestrations over stateless services is presented. As web services are potentially unreliable the termination of even finite orchestrations cannot be guaranteed. For this reason a partial-correctness powerdomain approach is proposed to capture the semantics of recursive orchestrations. </jats:p

    Implementation of an orchestration language as a haskell domain specific language

    Get PDF
    Even though concurrent programming has been a hot topic of discussion in Computer Science for the past 30 years, the community has yet to settle on a, or a few standard approaches to implement concurrent programs. But as more and more cores inhabit our CPUs and more and more services are made available on the web the problem of coordinating different tasks becomes increasingly relevant. The present paper addresses this problem with an implementation of the orchestration language Orc as a domain specific language in Haskell. Orc was, therefore, realized as a combinator library using the lightweight threads and the communication and synchronization primitives of the Concurrent Haskell library. With this implementation it becomes possible to create orchestrations that re-use existing Haskell code and, conversely, re-use orchestrations inside other Haskell programs. The complexity inherent to distributed computation, entails the need for the classification of efficient, re-usable, concurrent programming patterns. The paper discusses how the calculus of recursive schemes used in the derivation of functional programs, scales up to a distributed setting. It is shown, in particular, how to parallelize the entire class of binary tree hylomorphisms.FCT -Fuel Cell Technologies Program(PTDC/EIA/73252/2006

    Reduction Semantics and Formal Analysis of Orc Programs

    Get PDF
    AbstractOrc is a language for orchestration of web services developed by J. Misra that offers simple, yet powerful and elegant, constructs to program sophisticated web orchestration applications. The formal semantics of Orc poses interesting challenges, because of its real-time nature and the different priorities of external and internal actions. In this paper, building upon our previous SOS semantics of Orc in rewriting logic, we present a much more efficient reduction semantics of Orc, which is provably equivalent to the SOS semantics thanks to a strong bisimulation. We view this reduction semantics as a key intermediate stage towards a future, provably correct distributed implementation of Orc, and show how it can naturally be extended to a distributed actor-like semantics. We show experiments demonstrating the much better performance of the reduction semantics when compared to the SOS semantics. Using the Maude rewriting logic language, we also illustrate how the reduction semantics can be used to endow Orc with useful formal analysis capabilities, including an LTL model checker. We illustrate these formal analysis features by means of an online auction system, which is modeled as a distributed system of actors that perform Orc computations

    CaSPiS: A Calculus of Sessions, Pipelines and Services

    Get PDF
    Service-oriented computing is calling for novel computational models and languages with well disciplined primitives for client-server interaction, structured orchestration and unexpected events handling. We present CaSPiS, a process calculus where the conceptual abstractions of sessioning and pipelining play a central role for modelling service-oriented systems. CaSPiS sessions are two-sided, uniquely named and can be nested. CaSPiS pipelines permit orchestrating the flow of data produced by different sessions. The calculus is also equipped with operators for handling (unexpected) termination of the partner’s side of a session. Several examples are presented to provide evidence of the flexibility of the chosen set of primitives. One key contribution is a fully abstract encoding of Misra et al.’s orchestration language Orc. Another main result shows that in CaSPiS it is possible to program a “graceful termination” of nested sessions, which guarantees that no session is forced to hang forever after the loss of its partner

    The computational complexity of QoS measures for orchestrations

    Get PDF
    The final publication is available at link.springer.comWe consider Web services defined by orchestrations in the Orc language and two natural quality of services measures, the number of outputs and a discrete version of the first response time. We analyse first those subfamilies of finite orchestrations in which the measures are well defined and consider their evaluation in both reliable and probabilistic unreliable environments. On those subfamilies in which the QoS measures are well defined, we consider a set of natural related problems and analyse its computational complexity. In general our results show a clear picture of the difficulty of computing the proposed QoS measures with respect to the expressiveness of the subfamilies of Orc. Only in few cases the problems are solvable in polynomial time pointing out the computational difficulty of evaluating QoS measures even in simplified models.Peer ReviewedPostprint (author's final draft

    Northeastern University

    Full text link

    Towards verification of computation orchestration

    Get PDF
    Recently, a promising programming model called Orc has been proposed to support a structured way of orchestrating distributed Web Services. Orc is intuitive because it offers concise constructors to manage concurrent communication, time-outs, priorities, failure of Web Services or communication and so forth. The semantics of Orc is precisely defined. However, there is no automatic verification tool available to verify critical properties against Orc programs. Our goal is to verify the orchestration programs (written in Orc language) which invoke web services to achieve certain goals. To investigate this problem and build useful tools, we explore in two directions. Firstly, we define a Timed Automata semantics for the Orc language, which we prove is semantically equivalent to the operational semantics of Orc. Consequently, Timed Automata models are systematically constructed from Orc programs. The practical implication is that existing tool supports for Timed Automata, e.g., Uppaal, can be used to simulate and model check Orc programs. An experimental tool has been implemented to automate this approach. Secondly, we start with encoding the operational semantics of Orc language in Constraint Logic Programming (CLP), which allows a systematic translation from Orc to CLP. Powerful constraint solvers like CLP(R) are then used to prove traditional safety properties and beyond, e.g., reachability, deadlock-freeness, lower or upper bound of a time interval, etc. Counterexamples are generated when properties are not satisfied. Furthermore, the stepwise execution traces can be automatically generated as the simulation steps. The two different approaches give an insight into the verification problem of Web Service orchestration. The Timed Automata approach has its merits in visualized simulation and efficient verification supported by the well developed tools. On the other hand, the CPL approach gives better expressiveness in both modeling and verification. The two approaches complement each other, which gives a complete solution for the simulation and verification of Computation Orchestration

    CaSPiS: A Calculus of Sessions, Pipelines and Services

    Get PDF
    Service-oriented computing is calling for novel computational models and languages with well disciplined primitives for client-server interaction, structured orchestration and unexpected events handling. We present CaSPiS, a process calculus where the conceptual abstractions of sessioning and pipelining play a central role for modelling service-oriented systems. CaSPiS sessions are two-sided, uniquely named and can be nested. CaSPiS pipelines permit orchestrating the flow of data produced by different sessions. The calculus is also equipped with operators for handling (unexpected) termination of the partner's side of a session. Several examples are presented to provide evidence of the flexibility of the chosen set of primitives. One key contribution is a fully abstract encoding of Misra et al.'s orchestration language Orc. Another main result shows that in CaSPiS it is possible to program a graceful termination of nested sessions, which guarantees that no session is forced to hang forever after the loss of its partner
    corecore