1,464 research outputs found

    On line power spectra identification and whitening for the noise in interferometric gravitational wave detectors

    Get PDF
    In this paper we address both to the problem of identifying the noise Power Spectral Density of interferometric detectors by parametric techniques and to the problem of the whitening procedure of the sequence of data. We will concentrate the study on a Power Spectral Density like the one of the Italian-French detector VIRGO and we show that with a reasonable finite number of parameters we succeed in modeling a spectrum like the theoretical one of VIRGO, reproducing all its features. We propose also the use of adaptive techniques to identify and to whiten on line the data of interferometric detectors. We analyze the behavior of the adaptive techniques in the field of stochastic gradient and in the Least Squares ones.Comment: 28 pages, 21 figures, uses iopart.cls accepted for pubblication on Classical and Quantum Gravit

    Multiscale modelling and identification of a class of lattice dynamical systems

    Get PDF
    A new multiscale modelling framework is introduced to describe a class of lattice dynamical systems (LDS), which can be used to model natural systems involving multiphysics and the multi-resolution facets of a single spatio-temporal dynamical system. The emphasis of the paper is on the multi-resolution facets, with respect to the spatial domain, of a single spatio-temporal dynamical system by using a Haar wavelet decomposition technique. A multiscale identification method for such systems is then proposed, which can be considered as a dual of the multigrid method. The proposed identification method involves three steps: the system dynamics at some specific scale of interest are identified using a recursive least-squares algorithm; the residual is then projected onto coarser scales using Haar wavelets and the parameter estimation errors are minimized; and finally a coarse correction procedure is applied to the original scale. An outstanding advantage of the proposed identification method is a saving on the computational costs. Numerical examples are provided to demonstrate the application of the proposed new approach

    A Scalable MCEM Estimator for Spatio-Temporal Autoregressive Models

    Full text link
    Very large spatio-temporal lattice data are becoming increasingly common across a variety of disciplines. However, estimating interdependence across space and time in large areal datasets remains challenging, as existing approaches are often (i) not scalable, (ii) designed for conditionally Gaussian outcome data, or (iii) are limited to cross-sectional and univariate outcomes. This paper proposes an MCEM estimation strategy for a family of latent-Gaussian multivariate spatio-temporal models that addresses these issues. The proposed estimator is applicable to a wide range of non-Gaussian outcomes, and implementations for binary and count outcomes are discussed explicitly. The methodology is illustrated on simulated data, as well as on weekly data of IS-related events in Syrian districts.Comment: 29 pages, 8 figure

    2-D iteratively reweighted least squares lattice algorithm and its application to defect detection in textured images

    Get PDF
    In this paper, a 2-D iteratively reweighted least squares lattice algorithm, which is robust to the outliers, is introduced and is applied to defect detection problem in textured images. First, the philosophy of using different optimization functions that results in weighted least squares solution in the theory of 1-D robust regression is extended to 2-D. Then a new algorithm is derived which combines 2-D robust regression concepts with the 2-D recursive least squares lattice algorithm. With this approach, whatever the probability distribution of the prediction error may be, small weights are assigned to the outliers so that the least squares algorithm will be less sensitive to the outliers. Implementation of the proposed iteratively reweighted least squares lattice algorithm to the problem of defect detection in textured images is then considered. The performance evaluation, in terms of defect detection rate, demonstrates the importance of the proposed algorithm in reducing the effect of the outliers that generally correspond to false alarms in classification of textures as defective or nondefective

    Adaptive identification and control of structural dynamics systems using recursive lattice filters

    Get PDF
    A new approach for adaptive identification and control of structural dynamic systems by using least squares lattice filters thar are widely used in the signal processing area is presented. Testing procedures for interfacing the lattice filter identification methods and modal control method for stable closed loop adaptive control are presented. The methods are illustrated for a free-free beam and for a complex flexible grid, with the basic control objective being vibration suppression. The approach is validated by using both simulations and experimental facilities available at the Langley Research Center

    Bayesian Lattice Filters for Time-Varying Autoregression and Time-Frequency Analysis

    Full text link
    Modeling nonstationary processes is of paramount importance to many scientific disciplines including environmental science, ecology, and finance, among others. Consequently, flexible methodology that provides accurate estimation across a wide range of processes is a subject of ongoing interest. We propose a novel approach to model-based time-frequency estimation using time-varying autoregressive models. In this context, we take a fully Bayesian approach and allow both the autoregressive coefficients and innovation variance to vary over time. Importantly, our estimation method uses the lattice filter and is cast within the partial autocorrelation domain. The marginal posterior distributions are of standard form and, as a convenient by-product of our estimation method, our approach avoids undesirable matrix inversions. As such, estimation is extremely computationally efficient and stable. To illustrate the effectiveness of our approach, we conduct a comprehensive simulation study that compares our method with other competing methods and find that, in most cases, our approach performs superior in terms of average squared error between the estimated and true time-varying spectral density. Lastly, we demonstrate our methodology through three modeling applications; namely, insect communication signals, environmental data (wind components), and macroeconomic data (US gross domestic product (GDP) and consumption).Comment: 49 pages, 16 figure

    Noise parametric identification and whitening for LIGO 40-meter interferometer data

    Full text link
    We report the analysis we made on data taken by Caltech 40-meter prototype interferometer to identify the noise power spectral density and to whiten the sequence of noise. We concentrate our study on data taken in November 1994, in particular we analyzed two frames of data: the 18nov94.2.frame and the 19nov94.2.frame. We show that it is possible to whiten these data, to a good degree of whiteness, using a high order whitening filter. Moreover we can choose to whiten only restricted band of frequencies around the region we are interested in, obtaining a higher level of whiteness.Comment: 11 pages, 15 figures, accepted for publication by Physical Review

    Statistical digital signal processing and modeling

    Get PDF
    corecore