562 research outputs found

    A Novel Adaptive Spectrum Noise Cancellation Approach for Enhancing Heartbeat Rate Monitoring in a Wearable Device

    Get PDF
    This paper presents a novel approach, Adaptive Spectrum Noise Cancellation (ASNC), for motion artifacts removal in Photoplethysmography (PPG) signals measured by an optical biosensor to obtain clean PPG waveforms for heartbeat rate calculation. One challenge faced by this optical sensing method is the inevitable noise induced by movement when the user is in motion, especially when the motion frequency is very close to the target heartbeat rate. The proposed ASNC utilizes the onboard accelerometer and gyroscope sensors to detect and remove the artifacts adaptively, thus obtaining accurate heartbeat rate measurement while in motion. The ASNC algorithm makes use of a commonly accepted spectrum analysis approaches in medical digital signal processing, discrete cosine transform, to carry out frequency domain analysis. Results obtained by the proposed ASNC have been compared to the classic algorithms, the adaptive threshold peak detection and adaptive noise cancellation. The mean (standard deviation) absolute error and mean relative error of heartbeat rate calculated by ASNC is 0.33 (0.57) beats·min-1 and 0.65%, by adaptive threshold peak detection algorithm is 2.29 (2.21) beats·min-1 and 8.38%, by adaptive noise cancellation algorithm is 1.70 (1.50) beats·min-1 and 2.02%. While all algorithms performed well with both simulated PPG data and clean PPG data collected from our Verity device in situations free of motion artifacts, ASNC provided better accuracy when motion artifacts increase, especially when motion frequency is very close to the heartbeat rate

    Optimal fiducial points for pulse rate variability analysis from forehead and finger PPG signals

    Get PDF
    Objective: The aim of this work is to evaluate and compare five fiducialpoints for the temporal location of each pulse wave from forehead and fingerphotoplethysmographic pulse waves signals (PPG) to perform pulse rate variability(PRV) analysis as a surrogate of heart rate variability (HRV) analysis. Approach: Forehead and finger PPG signals were recorded during tilt-table testsimultaneously to the ECG. Artifacts were detected and removed and, five fiducialpoints were computed: apex, middle-amplitude and foot points of the PPG signal,apex point of the first derivative signal and, the intersection point of the tangent tothe PPG waveform at the apex of the derivative PPG signal and the tangent to thefoot of the PPG pulse defined as intersecting tangents method. Pulse period (PP)time intervals series were obtained from both PPG signals and compared to the RRintervals obtained from the ECG. Heart and pulse rate variability signals (HRV andPRV) were estimated and, classical time and frequency domain indices were computed. Main Results: The middle-amplitude point of the PPG signal (nM), the apexpoint of the first derivative (n*A), and the tangents intersection point (nT) are themost suitable fiducial points for PRV analysis, which result in the lowest relativeerrors estimated between PRV and HRV indices, higher correlation coefficients and reliability indexes. Statistically significant differences according to the Wilcoxon testbetween PRV and HRV signals were found for the apex and foot fiducial points ofthe PPG, as well as the lowest agreement between RR and PP series according toBland-Altman analysis. Hence, they have been considered less accurate for variabilityanalysis. In addition, the relative errors are significantly lower fornMandn*Afeaturesby using Friedman statistics with Bonferroni multiple-comparison test and, we proposenMas the most accurate fiducial point. Based on our results, forehead PPG seems toprovide more reliable information for a PRV assessment than finger PPG. Significance: The accuracy of the pulse wave detections depends on the morphologyof the PPG. There is therefore a need to widely define the most accurate fiducial pointto perform a PRV analysis under non-stationary conditions based on different PPGsensor locations and signal acquisition techniques

    Accurate wearable heart rate monitoring during physical exercises using PPG

    Get PDF
    Objective: The challenging task of heart rate (HR) estimation from the photoplethysmographic (PPG) signal, during intensive physical exercises is tackled in this paper. Methods: The study presents a detailed analysis of a novel algorithm (WFPV) that exploits a Wiener filter to attenuate the motion artifacts, a phase vocoder to refine the HR estimate and user-adaptive postprocessing to track the subject physiology. Additionally, an offline version of the HR estimation algorithm that uses Viterbi decoding is designed for scenarios that do not require online HR monitoring (WFPV+VD). The performance of the HR estimation systems is rigorously compared with existing algorithms on the publically available database of 23 PPG recordings. Results: On the whole dataset of 23 PPG recordings, the algorithms result in average absolute errors of 1.97 and 1.37 BPM in the online and offline modes, respectively. On the test dataset of 10 PPG recordings which were most corrupted with motion artifacts, WFPV has an error of 2.95 BPM on its own and 2.32 BPM in an ensemble with 2 existing algorithms. Conclusion: The error rate is significantly reduced when compared with the state-of-the art PPG-based HR estimation methods. Significance: The proposed system is shown to be accurate in the presence of strong motion artifacts and in contrast to existing alternatives has very few free parameters to tune. The algorithm has a low computational cost and can be used for fitness tracking and health monitoring in wearable devices. The Matlab implementation of the algorithm is provided online
    corecore