14 research outputs found

    Phase Separation Dynamics in Isotropic Ion-Intercalation Particles

    Full text link
    Lithium-ion batteries exhibit complex nonlinear dynamics, resulting from diffusion and phase transformations coupled to ion intercalation reactions. Using the recently developed Cahn-Hilliard reaction (CHR) theory, we investigate a simple mathematical model of ion intercalation in a spherical solid nanoparticle, which predicts transitions from solid-solution radial diffusion to two-phase shrinking-core dynamics. This general approach extends previous Li-ion battery models, which either neglect phase separation or postulate a spherical shrinking-core phase boundary, by predicting phase separation only under appropriate circumstances. The effect of the applied current is captured by generalized Butler-Volmer kinetics, formulated in terms of diffusional chemical potentials, and the model consistently links the evolving concentration profile to the battery voltage. We examine sources of charge/discharge asymmetry, such as asymmetric charge transfer and surface "wetting" by ions within the solid, which can lead to three distinct phase regions. In order to solve the fourth-order nonlinear CHR initial-boundary-value problem, a control-volume discretization is developed in spherical coordinates. The basic physics are illustrated by simulating many representative cases, including a simple model of the popular cathode material, lithium iron phosphate (neglecting crystal anisotropy and coherency strain). Analytical approximations are also derived for the voltage plateau as a function of the applied current

    Three-dimensional simulation of unstable gravity-driven infiltration of water into a porous medium

    Get PDF
    Infiltration of water in dry porous media is subject to a powerful gravity-driven instability. Although the phenomenon of unstable infiltration is well known, its description using continuum mathematical models has posed a significant challenge for several decades. The classical model of water flow in the unsaturated flow, the Richards equation, is unable to reproduce the instability. Here, we present a computational study of a model of unsaturated flow in porous media that extends the Richards equation and is capable of predicting the instability and captures the key features of gravity fingering quantitatively. The extended model is based on a phase-field formulation and is fourth-order in space. The new model poses a set of challenges for numerical discretizations, such as resolution of evolving interfaces, stiffness in space and time, treatment of singularly perturbed equations, and discretization of higher-order spatial partial–differential operators. We develop a numerical algorithm based on Isogeometric Analysis, a generalization of the finite element method that permits the use of globally-smooth basis functions, leading to a simple and efficient discretization of higher-order spatial operators in variational form. We illustrate the accuracy, efficiency and robustness of our method with several examples in two and three dimensions in both homogeneous and strongly heterogeneous media. We simulate, for the first time, unstable gravity-driven infiltration in three dimensions, and confirm that the new theory reproduces the fundamental features of water infiltration into a porous medium. Our results are consistent with classical experimental observations that demonstrate a transition from stable to unstable fronts depending on the infiltration flux.United States. Dept. of Energy (Early Career Award Grant DE-SC0003907

    Computationally efficient solution to the Cahn–Hilliard equation: Adaptive implicit time schemes, mesh sensitivity analysis and the 3D isoperimetric problem

    Get PDF
    We present an efficient numerical framework for analyzing spinodal decomposition described by the Cahn–Hilliard equation. We focus on the analysis of various implicit time schemes for two and three dimensional problems. We demonstrate that significant computational gains can be obtained by applying embedded, higher order Runge–Kutta methods in a time adaptive setting. This allows accessing time-scales that vary by five orders of magnitude. In addition, we also formulate a set of test problems that isolate each of the sub-processes involved in spinodal decomposition: interface creation and bulky phase coarsening. We analyze the error fluctuations using these test problems on the split form of the Cahn–Hilliard equation solved using the finite element method with basis functions of different orders. Any scheme that ensures at least four elements per interface satisfactorily captures both sub-processes. Our findings show that linear basis functions have superior error-to-cost properties. This strategy – coupled with a domain decomposition based parallel implementation – let us notably augment the efficiency of a numerical Cahn–Hillard solver, and open new venues for its practical applications, especially when three dimensional problems are considered. We use this framework to address the isoperimetric problem of identifying local solutions in the periodic cube in three dimensions. The framework is able to generate all five hypothesized candidates for the local solution of periodic isoperimetric problem in 3D – sphere, cylinder, lamella, doubly periodic surface with genus two (Lawson surface) and triply periodic minimal surface (P Schwarz surface)

    On diffuse interface modeling and simulation of surfactants in two-phase fluid flow

    Full text link
    An existing phase-field model of two immiscible fluids with a single soluble surfactant present is discussed in detail. We analyze the well-posedness of the model and provide strong evidence that it is mathematically ill-posed for a large set of physically relevant parameters. As a consequence, critical modifications to the model are suggested that substantially increase the domain of validity. Carefully designed numerical simulations offer informative demonstrations as to the sharpness of our theoretical results and the qualities of the physical model. A fully coupled hydrodynamic test-case demonstrates the potential to capture also non-trivial effects on the overall flow

    A face-centred finite volume method for second-order elliptic problems

    Get PDF
    This work proposes a novel finite volume paradigm, the face-centred finite volume (FCFV) method. Contrary to the popular vertex (VCFV) and cell (CCFV) centred finite volume methods, the novel FCFV defines the solution on the mesh faces (edges in 2D) to construct locally-conservative numerical schemes. The idea of the FCFV method stems from a hybridisable discontinuous Galerkin (HDG) formulation with constant degree of approximation, thus inheriting the convergence properties of the classical HDG. The resulting FCFV features a global problem in terms of a piecewise constant function defined on the faces of the mesh. The solution and its gradient in each element are then recovered by solving a set of independent element-by-element problems. The mathematical formulation of FCFV for Poisson and Stokes equation is derived and numerical evidence of optimal convergence in 2D and 3D is provided. Numerical examples are presented to illustrate the accuracy, efficiency and robustness of the proposed methodology. The results show that, contrary to other FV methods, the accuracy of the FCFV method is not sensitive to mesh distortion and stretching. In addition, the FCFV method shows its better performance, accuracy and robustness using simplicial elements, facilitating its application to problems involving complex geometries in 3D

    Modeling local pattern formation on membrane surfaces using nonlocal interactions

    Get PDF
    2015 Spring.Includes bibliographical references.The cell membrane is of utmost importance in the transportation of nutrients and signals to the cell which are needed for survival. The magnitude of this is the inspiration for our study of the lipid bilayer which forms the cell membrane. It has been recently accepted that the lipid bilayer consists of lipid microdomains (lipid rafts), as opposed to freely moving lipids. We present two lipid raft models using the Ginzburg-Landau energy with addition of the electrostatic energy and the geodesic curvature energy to describe the local pattern formation of these lipid rafts. The development and implementation of a C⁰ interior penalty surface finite element method along with an implicit time iteration scheme will also be discussed as the optimal solution technique

    A face-centred finite volume method for second-order elliptic problems

    Get PDF
    This work proposes a novel finite volume paradigm, ie, the face‐centred finite volume (FCFV) method. Contrary to the popular vertex and cell‐centred finite volume methods, the novel FCFV defines the solution on the mesh faces (edges in two dimensions) to construct locally conservative numerical schemes. The idea of the FCFV method stems from a hybridisable discontinuous Galerkin formulation with constant degree of approximation, and thus inheriting the convergence properties of the classical hybridisable discontinuous Galerkin. The resulting FCFV features a global problem in terms of a piecewise constant function defined on the faces of the mesh. The solution and its gradient in each element are then recovered by solving a set of independent element‐by‐element problems. The mathematical formulation of FCFV for Poisson and Stokes equation is derived, and numerical evidence of optimal convergence in two dimensions and three dimensions is provided. Numerical examples are presented to illustrate the accuracy, efficiency, and robustness of the proposed methodology. The results show that, contrary to other finite volume methods, the accuracy of the FCFV method is not sensitive to mesh distortion and stretching. In addition, the FCFV method shows its better performance, accuracy, and robustness using simplicial elements, facilitating its application to problems involving complex geometries in three dimensions
    corecore