395 research outputs found

    A Transformer-based deep neural network model for SSVEP classification

    Full text link
    Steady-state visual evoked potential (SSVEP) is one of the most commonly used control signal in the brain-computer interface (BCI) systems. However, the conventional spatial filtering methods for SSVEP classification highly depend on the subject-specific calibration data. The need for the methods that can alleviate the demand for the calibration data become urgent. In recent years, developing the methods that can work in inter-subject classification scenario has become a promising new direction. As the popular deep learning model nowadays, Transformer has excellent performance and has been used in EEG signal classification tasks. Therefore, in this study, we propose a deep learning model for SSVEP classification based on Transformer structure in inter-subject classification scenario, termed as SSVEPformer, which is the first application of the transformer to the classification of SSVEP. Inspired by previous studies, the model adopts the frequency spectrum of SSVEP data as input, and explores the spectral and spatial domain information for classification. Furthermore, to fully utilize the harmonic information, an extended SSVEPformer based on the filter bank technology (FB-SSVEPformer) is proposed to further improve the classification performance. Experiments were conducted using two open datasets (Dataset 1: 10 subjects, 12-class task; Dataset 2: 35 subjects, 40-class task) in the inter-subject classification scenario. The experimental results show that the proposed models could achieve better results in terms of classification accuracy and information transfer rate, compared with other baseline methods. The proposed model validates the feasibility of deep learning models based on Transformer structure for SSVEP classification task, and could serve as a potential model to alleviate the calibration procedure in the practical application of SSVEP-based BCI systems

    BCI applications based on artificial intelligence oriented to deep learning techniques

    Get PDF
    A Brain-Computer Interface, BCI, can decode the brain signals corresponding to the intentions of individuals who have lost neuromuscular connection, to reestablish communication to control external devices. To this aim, BCI acquires brain signals as Electroencephalography (EEG) or Electrocorticography (ECoG), uses signal processing techniques and extracts features to train classifiers for providing proper control instructions. BCI development has increased in the last decades, improving its performance through the use of different signal processing techniques for feature extraction and artificial intelligence approaches for classification, such as deep learning-oriented classifiers. All of these can assure more accurate assistive systems but also can enable an analysis of the learning process of signal characteristics for the classification task. Initially, this work proposes the use of a priori knowledge and a correlation measure to select the most discriminative ECoG signal electrodes. Then, signals are processed using spatial filtering and three different types of temporal filtering, followed by a classifier made of stacked autoencoders and a softmax layer to discriminate between ECoG signals from two types of visual stimuli. Results show that the average accuracy obtained is 97% (+/- 0.02%), which is similar to state-of-the-art techniques, nevertheless, this method uses minimal prior physiological and an automated statistical technique to select some electrodes to train the classifier. Also, this work presents classifier analysis, figuring out which are the most relevant signal features useful for visual stimuli classification. The features and physiological information such as the brain areas involved are compared. Finally, this research uses Convolutional Neural Networks (CNN) or Convnets to classify 5 categories of motor tasks EEG signals. Movement-related cortical potentials (MRCPs) are used as a priori information to improve the processing of time-frequency representation of EEG signals. Results show an increase of more than 25% in average accuracy compared to a state-of-the-art method that uses the same database. In addition, an analysis of CNN or ConvNets filters and feature maps is done to and the most relevant signal characteristics that can help classify the five types of motor tasks.DoctoradoDoctor en Ingeniería Eléctrica y Electrónic

    Classification of Frequency and Phase Encoded Steady State Visual Evoked Potentials for Brain Computer Interface Speller Applications using Convolutional Neural Networks

    Get PDF
    Over the past decade there have been substantial improvements in vision based Brain-Computer Interface (BCI) spellers for quadriplegic patient populations. This thesis contains a review of the numerous bio-signals available to BCI researchers, as well as a brief chronology of foremost decoding methodologies used to date. Recent advances in classification accuracy and information transfer rate can be primarily attributed to time consuming patient specific parameter optimization procedures. The aim of the current study was to develop analysis software with potential ‘plug-in-and-play’ functionality. To this end, convolutional neural networks, presently established as state of the art analytical techniques for image processing, were utilized. The thesis herein defines deep convolutional neural network architecture for the offline classification of phase and frequency encoded SSVEP bio-signals. Networks were trained using an extensive 35 participant open source Electroencephalographic (EEG) benchmark dataset (Department of Bio-medical Engineering, Tsinghua University, Beijing). Average classification accuracies of 82.24% and information transfer rates of 22.22 bpm were achieved on a BCI naïve participant dataset for a 40 target alphanumeric display, in absence of any patient specific parameter optimization

    On Tackling Fundamental Constraints in Brain-Computer Interface Decoding via Deep Neural Networks

    Get PDF
    A Brain-Computer Interface (BCI) is a system that provides a communication and control medium between human cortical signals and external devices, with the primary aim to assist or to be used by patients who suffer from a neuromuscular disease. Despite significant recent progress in the area of BCI, there are numerous shortcomings associated with decoding Electroencephalography-based BCI signals in real-world environments. These include, but are not limited to, the cumbersome nature of the equipment, complications in collecting large quantities of real-world data, the rigid experimentation protocol and the challenges of accurate signal decoding, especially in making a system work in real-time. Hence, the core purpose of this work is to investigate improving the applicability and usability of BCI systems, whilst preserving signal decoding accuracy. Recent advances in Deep Neural Networks (DNN) provide the possibility for signal processing to automatically learn the best representation of a signal, contributing to improved performance even with a noisy input signal. Subsequently, this thesis focuses on the use of novel DNN-based approaches for tackling some of the key underlying constraints within the area of BCI. For example, recent technological improvements in acquisition hardware have made it possible to eliminate the pre-existing rigid experimentation procedure, albeit resulting in noisier signal capture. However, through the use of a DNN-based model, it is possible to preserve the accuracy of the predictions from the decoded signals. Moreover, this research demonstrates that by leveraging DNN-based image and signal understanding, it is feasible to facilitate real-time BCI applications in a natural environment. Additionally, the capability of DNN to generate realistic synthetic data is shown to be a potential solution in reducing the requirement for costly data collection. Work is also performed in addressing the well-known issues regarding subject bias in BCI models by generating data with reduced subject-specific features. The overall contribution of this thesis is to address the key fundamental limitations of BCI systems. This includes the unyielding traditional experimentation procedure, the mandatory extended calibration stage and sustaining accurate signal decoding in real-time. These limitations lead to a fragile BCI system that is demanding to use and only suited for deployment in a controlled laboratory. Overall contributions of this research aim to improve the robustness of BCI systems and enable new applications for use in the real-world
    corecore